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Abstract
Objective To prospectively compare the interobserver variability of combined transrectal ultrasound (TRUS)/computed
tomography (CT)- vs. CT only- vs. magnetic resonance imaging (MRI) only-based contouring of the high-risk clinical
target volume (CTVHR) in image-guided adaptive brachytherapy (IGABT) for locally advanced cervical cancer (LACC).
Methods Five patients with LACC (FIGO stages IIb–IVa) treated with radiochemotherapy and IGABT were included.
CT, TRUS, and T2-weighted MRI images were performed after brachytherapy applicator insertion. 3D-TRUS image
acquisition was performed with a customized ultrasound stepper device and software. Automatic applicator reconstruction
using optical tracking was performed in the TRUS dataset and TRUS and CT images were fused with rigid image
registration with the applicator as reference structure. The CTVHR (based on the GEC-ESTRO recommendations) was
contoured by five investigators on the three modalities (CTVHR_CT, CTVHR_TRUS-CT, and CTVHR_MRI). A consensus
reference CTVHR_MRI (MRIref) was defined for each patient. Descriptive statistics and overlap measures were calculated
using RTslicer (SlicerRT Community and Percutaneous Surgery Laboratory, Queen’s University, Canada), comparing
contours of every observer with one another and with the MRIref.
Results The interobserver coefficient of variation was 0.18± 0.05 for CT, 0.10± 0.04 for TRUS-CT, and 0.07± 0.03 for
MRI. Interobserver concordance in relation to the MRIref expressed by the generalized conformity index was 0.75± 0.04
for MRI, 0.51± 0.10 for TRUS-CT, and 0.48± 0.06 for CT. The mean CTVHR_CT volume of all observers was 71% larger
than the MRIref volume, whereas the mean CTVHR_TRUS-CT volume was 15% larger.
Conclusion Hybrid TRUS-CT as an imaging modality for contouring the CTVHR in IGABT for LACC is feasible and
reproducible among multiple observers. TRUS-CT substantially reduces overestimation of the CTVHR volume of CT alone
while maintaining similar interobserver variability.
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Introduction

In image-guided adaptive brachytherapy (IGABT) of lo-
cally advanced cervical cancer (LACC), magnetic reso-
nance imaging (MRI) with applicator in place is currently
considered as the gold standard for tumor visualization and
dose optimization [1–9]. MRI is, however, not always avail-
able in centers with fewer resources, which is why com-
puted tomography (CT) has been evaluated as alternative,
as most radiotherapy departments are equipped with a CT
scanner [10]. Contouring on CT enables excellent visual-
ization of the applicator and organs at risk (OAR), but also
generally leads to an overestimation of the target volume
compared to MRI [10].

Increasing evidence shows that transrectal ultrasound
(TRUS) might be a more promising and inexpensive al-
ternative. TRUS is extensively used in prostate brachyther-
apy, but apart from tumor assessment and confirming tan-
dem placement, it has not been generally adopted in LACC
brachytherapy to date [11]. First studies investigating TRUS
for target definition in LACC brachytherapy indicated that
TRUS appears non-inferior to MRI for assessing the high-
risk clinical target volume (CTVHR) dimensions [12, 13].
As TRUS and CT are widely available in radiotherapy de-
partments, combining their assets could possibly provide an
equivalent for MRI in contouring target volumes in IGABT
for LACC. A clinical workflow for combined TRUS/CT
treatment planning in LACC brachytherapy has already
been successfully simulated in a patient [14].

If TRUS is further developed as a treatment planning
modality, a TRUS/CT-based target delineation protocol
should be developed to allow for volumetric TRUS-based
contouring in routine clinical practice. As ultrasound is
known for its observer dependence and previous studies
on TRUS for LACC brachytherapy were performed only
with a single observer, further research with multiple ob-
servers is mandatory as a key step towards development of
TRUS-based brachytherapy. The objective of this analysis
was to investigate the feasibility of combined TRUS/CT-
based contouring using a dedicated prototype system for
LACC brachytherapy and to analyze interobserver vari-
ability for CTVHR within a prospective pilot study with
multiple observers.

Methods

Five patients with squamous cell carcinoma of the uterine
cervix treated with curative intent were included in this
prospective pilot study (EK no. 1998/2014). Two patients
had FIGO stage IIB disease, three had stage IIIC2 (local:
IIB, IIIB, IVA, respectively; FIGO version 2018 [15]). All
patients underwent a staging MRI at diagnosis. Treatment

consisted of external beam radiation therapy (EBRT) with
concomitant cisplatin and IGABT. During EBRT, the elec-
tive clinical target volume (CTV) received 45Gy in 1.8-Gy
fractions, with a simultaneously integrated boost to patho-
logic lymph nodes to 55–57.5Gy in 2.2–2.3-Gy fractions.
MRI-based IGABT was performed at the end or after EBRT
in two applications of two fractions each, using high-dose-
rate brachytherapy with a planning aim of delivering a D90
>85Gy EQD210 to the CTVHR (EBRT+ IGABT). A tandem-
ring applicator (“Vienna-type” applicator, Elekta, Sweden)
without or with (straight, oblique, or freehand) interstitial
titanium needles was used.

Imagingmodalities for IGABT

TRUS, CT, and MRI were performed after applicator
placement. A Somatom Plus S scanner was used for CT
(Siemens, Erlangen, Germany), in 2-mm slice intervals
without contrast medium. T2-weighted MRI was per-
formed with a 0.35T system (Magnetom C, Siemens) with
5-mm slice thickness, acquiring axial, para-axial, sagittal,
and coronal images.

TRUS system

TRUS was performed with a dedicated prototype sys-
tem developed for LACC brachytherapy allowing for 3D-
TRUS imaging with automatic applicator reconstruction
by optical tracking of the applicator (MedCom, Germany;
Elekta; ACMIT, Austria). The main principle of the sys-
tem is that the TRUS probe and the applicator are fixed
to each other by a dedicated positioning arm and that
tracking tools are positioned at specific reference ge-
ometries, which can be identified by the optical tracking
system. Overall, the prototype consists of (1) a mobile cart
with a PC equipped with (2) an imaging software (Gyn-
US v2.0, MedCom); (3) a 5–10-MHz integrated TRUS
transducer (BiopSee, MedCom) with a biplanar probe
(BIPC6.5/10/128, BIPL7.5/70/128), mounted to (4) a step-
per unit (ECRM, Elekta) with affixed (5) tracking tools
(ACMIT) containing factory NDI trackers (single-faced
rigid bodies) tracked by (6) a ceiling-mounted Polaris
Spectra system (NDI, Canada); and (7) multi-DOF passive
positioning arms connecting the applicator to the stepper
unit (Baitella, Switzerland), and connecting the complete
imaging unit to the operating table’s side rail (MFA, iSYS
Medizintechnik, Austria). Further technical details have
been published elsewhere [16, 17].

TRUS imaging and tracking procedure

After applicator insertion, the TRUS probe with the step-
per unit and loose MFA arms was placed manually in the
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rectum at the optimal depth and angle according to the posi-
tion and flexure of the uterus/applicator. The MFA arm was
locked and the stepper unit subsequently connected to the
applicator with the second positioning arm. Image acquisi-
tion was performed during automated rotation of the TRUS
probe, generating a 3D volume using the longitudinal array
of the probe from the level of the ring applicator to the
fundus of uterus, if reachable. Optical tracking of the appli-
cator was based on a set of retroreflective marker spheres
mounted on both the TRUS probe and the applicator. The
relative position of the two components was tracked with
a stereo camera (Polaris, NDI, Canada). The system has
already been described by Jelinek et al. [17]. Using spatial

Fig. 1 Example transrectal ultrasound (TRUS) images of a patient with FIGO IIB cervical carcinoma at time of brachytherapy with the applicator
in place: a axial view; b sagittal view; c axial view with reconstructed applicator; d sagittal view with reconstructed applicator

information from the tool tracking system, automatic ap-
plicator reconstruction using applicator library models was
performed ([14]; Fig. 1). The reconstruction process was
verified within a plausibility check based on several ref-
erence structures (tandem, posterior curvature of the ring,
rotation of the ring as indicated by the holes, interstitial
needles) and fine-tuned, if necessary. The positioning arms
were then unlocked and the imaging unit was removed.
The resulting TRUS image volumes were rigidly registered
to the post-implant CT using the applicator as a reference
coordinate system as previously described [14].
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All further image registration and contouring operations
were performed in the Oncentra brachytherapy treatment
planning system (TPS; Elekta).

Contouring protocol and image analysis

Five investigators were available for analysis. The inves-
tigators were all radiation oncologists with experience in
contouring brachytherapy target volumes on CT and MRI
in LACC. For TRUS-based contouring, only one observer
was experienced.

All investigators were given an introductory course on
TRUS contouring by the experienced investigator and two
test cases were contoured by all investigators. After ap-
proval of these cases, the study cases could be contoured.
Investigators were provided with the following material:
clinical information of each patient, a pelvic MRI at di-
agnosis, and a 3D clinical drawing of the gynecological
examination at diagnosis and at the time of brachytherapy
[18].

All investigators contoured each case independently fol-
lowing the workflow defined in Fig. 2. First, the CTVHR

was contoured on CT (CTVHR _CT) according to the con-
sensus guidelines for CT-based brachytherapy, defined by
the complete mass (cervical+ parametrial) at intermediate

Fig. 2 Flowchart of contouring protocol. TRUS transrectal ultrasound,
CT computed tomography, BT brachytherapy, MRImagnetic resonance
imaging,MRIref reference high-risk clinical target volume (CTVHR) on
MRI

density (grey/white). The CTVHR height on CT was deter-
mined by the GTV height on the MRI at diagnosis [10].

Secondly, the CTVHR was contoured on TRUS
(CTVHR_TRUS), defined by a hypoechogenic mass (cervi-
cal+ parametrial) on grey-scale imaging [13]. After con-
touring this preliminary target volume on TRUS, the struc-
tures were resampled to CT and adapted according to the
OAR depicted on CT (CTVHR_TRUS-CT). The CTVHR

height on TRUS-CT was determined by the GTV height
on the MRI at diagnosis.

Next, the CTVHR was contoured on MRI (CTVHR_MRI)
according to the recommendations for MR-based brachyther-
apy as the whole cervix and any residual disease at time of
brachytherapy including “grey zones” [19, 20].

Finally, a reference contour on MRI (MRIref) was gen-
erated for each patient, attained by reaching consensus
amongst all observers.

Analysis of contouring deviations

For each imaging modality, the maximum width (maximum
latero-lateral diameter found in all para-axial slices), the
maximum thickness (maximum antero-posterior diameter
found in all para-axial slices), the maximum height (max-
imum cranio-caudal diameter found in all sagittal slices),
and the total volume of each CTVHR from every observer
was measured for each patient.

CT and MRI images were automatically registered with
TRUS-CT images based on the applicator position, serv-
ing as a common reference coordinate system defined on
the TPS [21]. Finally, all contours were superimposed on
a single CT image set per patient, including all contours
from all imaging modalities from all observers, allowing
for direct comparison to each other (Fig. 3). To assess inter-
observer variations, all images and contours were exported
to the SlicerRT software system, version 4.5.0-1 (SlicerRT
Community and Percutaneous Surgery Laboratory, Queen’s
University, Canada) [22]. Contours of every observer were
compared with one another and with the MRIref.

The coefficient of variation (COV) was defined as the
standard deviation divided by the mean value and is larger
with increasing variability (more dispersion in the data).
A generalized conformity index (CIgen) was defined as the
ratio of the sum of all overlapping volumes between pairs
of observers and the sum of all overlapping and all addi-
tional volumes between the same pairs [23]. A CIgen of 1
indicates a total overlap, while 0 means there is no concor-
dance. Descriptive statistics, mean differences between the
groups, and a paired t-test were calculated. Statistics were
performed with Excel 2010 software (Microsoft, Washing-
ton). A p-value <0.05 was considered as statistically signif-
icant.
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Fig. 3 Example contours of a
patient with FIGO IIB cervical
carcinoma at time of brachyther-
apy with the applicator in place
on computed tomography (CT)
(a), magnetic resonance imaging
(MRI) (b), and transrectal ul-
trasound (TRUS) (c). Contours
from all observers are projected
on the CT dataset: MRI contours
in pink, TRUS contours in green,
CT contours in blue

Results

The proposed workflow of hybrid TRUS-CT with optical
tracking of the applicator was successfully applied. 3D-
TRUS imaging, automatic applicator reconstruction, vol-
umetric contouring on TRUS, and image fusion with CT
were feasible in all patients. All observers were able to
contour the CTVHR on TRUS-CT for all patients, with
an acceptable agreement between the observers (CIgen:
0.66± 0.08; COV: 0.10± 0.04).

The mean maximum width of the CTVHR was 55mm±
8mm, 52mm± 6mm, and 64mm±6mm, and the mean vol-
ume was 46cm3± 9cm3, 43cm3± 10cm3, and 67cm3± 9cm3

on TRUS-CT, MRI, and CT, respectively. The mean CIgen
was 0.66± 0.08, 0.75± 0.04, and 0.66± 0.06, and the mean
COV was 0.10± 0.04, 0.07± 0.03, and 0.18± 0.05 for
TRUS-CT, MRI, and CT, respectively (Table 1).

No significant difference was observed in the mean max-
imum width, height, thickness, or volume on TRUS-CT
compared to MRI. The mean maximum width and volume
were significantly larger on CT compared to MRI (Tables 3
and 4).

The mean volume of the CTVHR was 15% larger on
TRUS-CT (14%, 9%, 28%, 20%, and 5% for patients 1–5,
respectively) and 71% larger than on CT (55%, 50%, 70%,
94%, and 85% for patients 1–5, respectively) than on the
MRIref volume (Fig. 4a). The mean maximum width of the
CTVHR was 5% larger on TRUS-CT (14%, 13%, 18% larger
for patients 1, 2, and 3; 15% and 3% smaller for patients 4
and 5, respectively) and 24% larger on CT (24%, 29%,
29%, 8%, and 31% for patients 1–5, respectively) than on
the MRIref contour (Fig. 4b). The CIgen was 0.51± 0.1,
0.75± 0.04, and 0.48± 0.06 for all TRUS-CT, MRI, and CT
contours, respectively, in relation to the MRIref contour
(Table 2).

The differences in mean maximum width, height, and
volume were significantly smaller for TRUS-CT compared
to MRIref than for CT compared to MRIref (Tables 3
and 4).
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Table 1 Mean maximum width (mm), maximum thickness (mm), maximum height (mm), and volume (cm3) with respective ranges (min–max);
generalized conformity index; and coefficient of variation from all observers for contours on CT, TRUS-CT, and MRI

Patient 1 Patient 2 Patient 3 Patient 4 Patient 5 Mean (SD)

CT Width 75
(64–82)

58
(56–61)

62
(54–66)

63
(56–70)

62
(55–72)

–

Height 58
(53–63)

52
(46–57)

52
(41–58)

64
(54–72)

68
(62–76)

–

Thickness 40
(38–42)

44
(39–49)

43
(41–45)

34
(25–39)

34
(30–37)

–

Volume 82
(49–102)

59
(47–64)

68
(46–79)

56
(36–63)

71
(40–85)

67 (9)

CIgen 0.60 0.73 0.71 0.65 0.59 0.66 (0.06)

COV 0.23 0.10 0.17 0.18 0.24 0.18 (0.05)
TRUS-CT Width 69

(62–71)
51
(43–57)

57
(54–58)

49
(45–51)

47
(45–50)

–

Height 55
(38–62)

46
(45–50)

47
(41–54)

59
(51–64)

65
(54–73)

–

Thickness 34
(32–39)

35
(30–39)

37
(33–42)

31
(25–36)

29
(24–32)

–

Volume 60
(44–71)

43
(40–43)

51
(45–60)

35
(29–39)

40
(30–48)

46 (9)

CIgen 0.60 0.77 0.71 0.65 0.59 0.66 (0.08)

COV 0.14 0.03 0.10 0.11 0.13 0.10 (0.04)
MRI Width 64

(60–73)
47
(43–50)

48
(46–50)

53
(49–60)

48
(45–49)

–

Height 53
(48–56)

54
(51–61)

44
(41–46)

49
(45–52)

44
(41–46)

–

Thickness 42
(41–44)

34
(32–36)

37
(36–38)

21
(17–23)

37
(36–38)

–

Volume 59
(53–65)

40
(36–47)

43
(41–45)

30
(26–34)

43
(40–45)

43 (10)

CIgen 0.74 0.72 0.81 0.73 0.78 0.75 (0.04)

COV 0.08 0.10 0.03 0.09 0.05 0.07 (0.03)

CT computed tomography, TRUS-CT transrectal ultrasound combined with computed tomography, MRI magnetic resonance imaging,
CIgen generalized conformity index, COV coefficient of variation, SD standard deviation

Table 2 Mean generalized conformity index for CT, TRUS-CT, and MRI in relation to MRI reference volume

CIgen Patient 1 Patient 2 Patient 3 Patient 4 Patient 5 Mean (SD)

CT–MRIref 0.49 0.54 0.53 0.48 0.39 0.48 (0.06)

TRUS–MRIref 0.51 0.57 0.63 0.49 0.38 0.51 (0.10)

MRI–MRIref 0.73 0.70 0.80 0.75 0.78 0.75 (0.04)

CT computed tomography, TRUS-CT transrectal ultrasound combined with computed tomography, MRI magnetic resonance imaging,
CIgen generalized conformity index, SD standard deviation, MRIref reference high-risk clinical target volume (CTVHR) on MRI

Table 3 Differences (p-values) in mean maximum width, thickness,
height, and volume on TRUS-CT vs. MRI and CT vs. MRI

Width Thickness Height Volume

TRUS-CT vs.
MRI

0.32 0.78 0.31 0.21

CT vs. MRI <0.01 <0.01 <0.01 <0.01

TRUS-CT transrectal ultrasound combined with computed tomography,
CT computed tomography, MRI magnetic resonance imaging

Table 4 Differences (p-values) in mean maximum width, thickness,
height, and volume between TRUS-CT compared to MRIref and CT
compared to MRIref

Width Thickness Height Volume

TRUS-CT vs CT 0.01 0.16 <0.01 <0.01

TRUS-CT transrectal ultrasound combined with computed
tomography, CT computed tomography, MRI magnetic resonance
imaging, MRIref reference high-risk clinical target volume (CTVHR)
volume on MRI
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Fig. 4 Relative over-/underestimation of the mean volume of the
high-risk clinical target volume (CTVHR; a) and mean width of the
CTVHR (b) on CT (black) and on TRUS-CT (grey) compared to the
reference CTVHR on MRI for all patients. Pt patient, CT computed to-
mography, TRUS-CT transrectal ultrasound combined with computed
tomography

Discussion

Contouring uncertainties due to poor target volume visu-
alization have a substantial impact on tumor coverage and
dose to OAR. MRI is currently considered the gold stan-
dard for target volume contouring in IGABT in LACC be-
cause of the high tissue contrast in pelvic anatomy [10,
20], but is not always accessible due to its cost. There-
fore, CT could serve as a plausible alternative, but liter-
ature on the comparison of CT- and MRI-based contour-
ing showed a substantial overestimation of CTVHR volume
on CT [18, 24, 25]. Contouring of the extent of parame-
trial invasion remains challenging due to lacking soft tissue
contrast on CT, specifically in large tumors with extensive
invasion [24]. Recently, TRUS has been considered as an
imaging modality for IGABT, since it provides excellent
soft tissue contrast and has already proven its advantages
in prostate cancer brachytherapy [26]. Schmid et al. sug-
gested implementing TRUS in the pre- and intraoperative

setting to assess the CTVHR before applicator insertion, for
preplanning purposes, and for TRUS-guided tandem and
needle insertion [12]. A comparison of the target volume
dimensions between TRUS and MRI showed no statisti-
cally significant difference for the CTVHR width, indicating
the high potential of TRUS for IGABT in LACC [13]. To
integrate TRUS into IGABT and to outweigh subsequent
limitations, a workflow for combined TRUS-CT was es-
tablished by Nesvacil et al. [14], showing that TRUS-CT-
based volumetric contouring and treatment planning is fea-
sible and may be clinically comparable to the MRI-based
approach.

In this report, volumetric contouring for LACC on 3D-
TRUS with multiple observers was investigated for the first
time. The previously described workflow for TRUS-CT
treatment planning proved feasible within this prospective
pilot study and all observers managed to follow a contour-
ing protocol for combined TRUS-CT-based CTVHR con-
touring. A dedicated prototype comprising standard equip-
ment from different fields including a standard TRUS probe,
fixation devices, and an optical tracking system were safely
applied. Particularly the TRUS probe positioning and imag-
ing process using a table-mounted flexible stepper unit in
combination with fixation devices was a substantial im-
provement in comparison to the system used in our previ-
ous studies. 3D-TRUS imaging with the applicator in place
could therefore be applied for all patients in this report. It
appears that with such a system, the previously reported
substantial proportion (�20%) of patients not suitable for
TRUS imaging with applicator could be significantly re-
duced. Since the location of the applicator, particularly the
ring-component, can’t be defined on TRUS with reasonable
accuracy for subsequent treatment planning, optical track-
ing of the applicator was implemented in the system to
allow for automatic applicator reconstruction in the TRUS
dataset. This is a crucial step within the proposed workflow
to enable further image fusion with CT and treatment plan-
ning. Extensive phantom and clinical tests were performed
in advance to learn and improve the tracking procedure;
however, optical tracking is sensitive to various interfer-
ences and shows limitations in daily clinical practice for
LACC brachytherapy in its current form. Nevertheless, au-
tomatic applicator reconstruction using applicator library
models was successfully performed, with some minor man-
ual adjustments, in all patients in this study. Further opti-
mization and investigation of alternative tracking modali-
ties, such as electromagnetic or mechanical tracking, are
necessary.

In accordance with our previous study, the mean maxi-
mum width of the CTVHR on TRUS-CT was smaller than
on CT alone and comparable to MRI, indicating the re-
producibility of these previous findings with multiple ob-
servers. Furthermore, combining TRUS and CT reduced the
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mean CTVHR volume by approximately one third, reduced
the mean COV from 0.18 to 0.10, and slightly improved
the CIgen from 0.48 to 0.51 compared with the MRIref
volume. As expected, the variation for the MRI contours
was smaller (mean COV= 0.1 and mean CIgen= 0.75 be-
tween all observers and with regard to the MRIref vol-
ume), whereas the mean CTVHR volume was similar be-
tween TRUS-CT (46cm3) and MRI (43cm3). These results
are in line with the literature on interobserver variations
in target delineation of IGABT in LACC: Petric et al. re-
ported a CIgen of 0.78 for MRI-based contouring based
on 13 cases and two observers [27], Viswanthan et al. re-
ported a CIgen of 0.48 for CT-based contouring based on
3 cases and 23 observers [24], and Pötter et al. reported
a CIgen of 0.54 for CT-based contouring with support of
a pre-brachytherapy MRI scan [25]. Performance of TRUS
appears to have a similar impact on interobserver variation
as a pre-brachytherapy MRI scan, but with the advantage of
having the applicator already in place as a reference struc-
ture. In addition, Mahantshetty et al. recently investigated
the use of TRUS assistance for CT-based target contouring
by using measurements of reference points in relation to the
cervical canal instead of full volumetric image fusion, and
did not observe major deviations compared to MRI-based
contouring [28].

The limitations of TRUS are the limited field-of-view
and applicator-induced artefacts, implying that parts of the
target volume are hardly or not visible on TRUS images
alone (Fig. 1). Especially the limited depth of insertion of
the transrectal probe in the presence of the applicator ham-
pers depiction of the most cranial parts of the uterus, as
was the case for the presented cases. To reach a consen-
sus amongst observers, the initial GTV height as seen on
the diagnostic MRI was adopted as the CTVHR height on
CT or TRUS-CT. Also, the anterior border of the CTVHR

adjacent to the bladder was more difficult to assess, due
to the distance from the probe and acoustic shadowing by
the applicator, resulting in a wider range in the maximum
thickness on TRUS-CT compared to MRI. The presence of
the TRUS probe can also cause compression of the uterus,
leading to a reduced thickness of the CTVHR as shown in
our previous study [13]. In our present study, however, no
significant difference between TRUS-CT and MRI was ob-
served. The posterior and lateral parts of the cervix were
well defined on TRUS, resulting in a consistently compara-
ble range in the maximum width on TRUS-CT and MRI. In
two patients, the maximum width on TRUS-CT was smaller
compared to the MRIref contour (15% and 3% in patients 4
and 5, respectively), which should be interpreted with cau-
tion as the absolute differences are minor (8mm±2mm for
patient 4 and 1mm± 2mm for patient 5), but needs to be
taken seriously, as this could result in a potential topograph-
ical miss by TRUS-CT. A random geometric uncertainty

of up to 2mm between contours from different modalities
was noticed during conformity analysis. This may be re-
ducible by further technical refinement of the applicator-
based TRUS/CT registration methods. The dosimetric im-
pact of the interobserver variations will be presented sep-
arately. In the present study, low-field MRI was used as
planning modality. Although high-field MRI (1.5–3T) MRI
is more widely available, both are considered suitable for
IGABT [20], and a previous report comparing target volume
dimensions between TRUS and 1.5T MRI showed similar
results [13].

Another limitation of TRUS could be the operator de-
pendence. Four out of five observers had very limited to
no experience with TRUS-based contouring. Therefore, an
introductory course into TRUS-based contouring was given
and two training cases were contoured. Despite minimal
training, excellent results with an acceptable interobserver
variation could be achieved. Further improvement with in-
creasing experience can be expected. Of note, while image
interpretation and contouring were performed by multiple
observers, TRUS image acquisition was performed by only
one observer. The operator dependence of TRUS image ac-
quisition is another possible source of variation, which was
not addressed in the current study and has to be investigated
separately. A similar learning curve as described for TRUS-
based prostate brachytherapy can be assumed for TRUS in
LACC brachytherapy [29, 30].

The present study covers interobserver contouring using
TRUS-CT as one step further in the development of TRUS
as a possible treatment modality in IGABT. However, other
key questions remain to be answered, in particular regard-
ing optimization of the imaging and tracking procedure,
the performance of TRUS by multiple observers, and the
actual treatment of patients by any form of TRUS-based
brachytherapy within a clinical study.

Conclusion

TRUS-CT-based contouring in IGABT for LACC with
automatic applicator reconstruction by optical tracking is
feasible after a minimal amount of training, is consistent
amongst multiple observers, and leads to reduced volumes
compared to CT alone. This prospective interobserver anal-
ysis could be the next step in the shift from TRUS being
just an aid for tumor assessment and tandem placement ver-
ification during the procedure, to an accessible alternative
to MRI for CTVHR contouring.
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