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Common multi-allelic copy-number variants (CNVs) appear enriched for phenotypic 

associations compared to their di-allelic counterparts1-4. Here we investigated the influence 

of gene-dosage effects on adiposity through a CNV association study of gene expression 

levels in adipose tissue. We identified significant association of a multi-allelic CNV 

encompassing the salivary amylase gene (AMY1) with body mass index and obesity, and 

replicated this finding in 6,200 subjects. Increased AMY1 copy-number was positively 

associated with both amylase gene expression (P=2.31×10−14) and serum enzyme levels 

(P<2.20×10−16), while reduced AMY1 copy-number was associated with increased BMI 

(per-estimated-copy:β=−0.15[0.02]kg/m2;P=6.93×10−10) and obesity risk (per-estimated-

copy:OR=1.19[1.13-1.26]95%CI;P=1.46×10−10). The OR of 1.19 per-copy of AMY1 
translates to about an eight-fold difference in risk of obesity between subjects in the top 

(CN>9) and bottom (CN<4) 10% of the copy-number distribution. Our study provides a first 

genetic link between carbohydrate metabolism and BMI and demonstrates the power of 

integrated genomic approaches beyond genome-wide association studies.

We designed a gene-centric association study (GCAS) to identify common CNVs 

overlapping genes and inducing a dosage effect on gene expression, hypothesising that these 

might be enriched for physiologically-relevant CNVs. To achieve this, we conducted a 

family-based association analysis of signal intensity data from DNA arrays (log R ratio and 

B-allele frequency) with transcriptomic data from adipose tissue using famCNV5 in 149 

Swedish families ascertained through siblings discordant for obesity6 (Table 1;Figure 

1;Supplementary Figure 1). A total of 76 probes located within putative CNVs showed a 

dosage effect on gene expression at 1% FDR (Supplementary Table 1). Of these probes, only 

cnvi0020639, located within a CNV overlapping the amylase gene cluster (including the 

AMY1 salivary and the AMY2 pancreatic amylase genes expression probeset 208498_s_at; 

FDR=6.88×10−3), was also associated with adiposity [both BMI (P=3.86×10−4) and fat mass 

(P=3.11×10−4)] (Supplementary Figures 2-4). Reduced signal intensity at this probe was 

associated with increased adiposity levels (Table 2;Figure 2;Supplementary Figures 2-4).

This inverse association between copy-number in the amylase region and BMI was first 

replicated using signal intensity data from DNA arrays in 972 subjects from TwinsUK 

(Table 1)7. The strongest association was observed at cnvi0022844 (P=1.13×10−3;Table 2), 

which showed significant association with BMI after Bonferroni correction. When multiple 

probes were considered through principal component analysis, the BMI association signal 
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actually extended over a region between cnvi0022844 and cnvi0016754 (P=1.32×10−3), 

which overlapped the cnvi0020639 probe associated with adiposity in the Swedish discovery 

families. These results, although supportive of the association in the amylase region, did not 

permit us to distinguish which of the salivary or pancreatic amylases was driving the 

association with adiposity, necessitating use of a non-array-based method of copy-number 

measurement.

Consequently, we estimated copy-number at AMY1 and AMY2 in 481 subjects from the 

Swedish families (Table 1) using quantitative real-time PCR (qPCR). This approach 

generates a continuous intensity distribution from which integer copy-numbers can be 

inferred by comparison to a reference sample of known copy-number (Supplementary 

Information). Given the many technical challenges inherent in copy-number measurement at 

multi-allelic loci2,8-11, we treated these discretised measurements as relative estimates or 

surrogates correlated with the true underlying copy-number state, as opposed to absolute 

copy-number genotypes.

Only three estimated copy-number states (one to three) were detected for the pancreatic 

amylase (AMY2) gene, and these were not associated with either BMI or fat mass 

(Supplementary Table 2). In contrast, copy-number estimates at AMY1 ranged from two to 

fourteen, and showed association with both BMI (P=8.08×10−3) and fat mass (P=8.53×10−3) 

confirming our previous DNA-array based analysis (Supplementary Table 2). We found 

greater correlation between signal intensity at cnvi0020639 and AMY1 (r=0.73; 

P<2.20×10−16) than AMY2 copy-number (r=0.35; P=1.25×10−8), suggesting that the GCAS 

association was mainly capturing copy-number variation at AMY1 as opposed to AMY2, 

justifying follow-up of the former. Furthermore, we validated accuracy of the AMY1 qPCR 

assay by using AMY1 copy-number estimates derived using whole-genome shotgun-

sequencing data from the 1000 Genomes Project12, and observed a correlation of 0.94 

(P<2.20×10−16) between AMY1 copy-number estimates derived by qPCR and sequencing 

(Supplementary Figures 5-8; Supplementary Table 3). To further validate the AMY1 qPCR 

assay, we also compared the copy-number measured by qPCR in 96 samples from the 

DESIR cohort13 with AMY1 copy-number measured by digital PCR in the same samples, 

obtaining high correlation between the two methods (r=0.95; P<2.20×10−16; Supplementary 

Figure 9). Analogously, high correlation (r=0.98; P<2.20×10−16; Supplementary Figure 9) 

was also observed between copy-numbers measured using the qPCR assay used in this study 

and those obtained using a different qPCR assay on the same 96 DESIR samples.

To replicate the observed association in a larger sample, we next estimated AMY1 copy-

number by qPCR in an additional sample of 1,479 female subjects from TwinsUK14 and 

2,137 male and female subjects from DESIR13 (Table 1). The two population samples 

showed a similar copy-number distribution (Wilcoxon test P>0.05) with estimated median 

copy-number of six, ranging from one to eighteen (Supplementary Figure 10; 

Supplementary Tables 4-5). Meta-analysis of AMY1 effects in TwinsUK and DESIR (total 

n=3,616) showed significant association between reduced AMY1 copy-number and 

increased BMI (per copy-number β=−0.15[0.02]kg/m2;P=6.93×10−10; Table 2;Figure 

3;Supplementary Tables 6-9). Results of associations assessed using both the qPCR intensity 

signal as a continuous measure, as well as discretised using an unsupervised clustering 
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approach (k-means), were concordant with those generated using integer copy-numbers 

(Supplementary Information).

We then assessed the effect of AMY1 copy-number on obesity susceptibility by selecting 

obese cases (BMI≥30kg/m2) and normal-weight controls (BMI<25kg/m2) from TwinsUK 

and DESIR and by measuring AMY1 copy-number by qPCR in an additional 205 severely 

obese cases and 358 age-matched controls from the AOB15 study (Table 1;Supplementary 

Information). In these European samples, subjects with lower estimated AMY1 copy-

number showed significantly increased risk of obesity in each of the three samples (per-

estimated AMY1 copy-number meta-analysis: 

OR=1.19[1.13-1.26]95%CI;P=1.46×10−10;Table 2;Figure 3). The AMY1 copy number 

distribution in our sample ranged from one to eighteen copies, with approximately 10% of 

subjects carrying fewer than four copies of AMY1, and 10% of subjects with an AMY1 
copy number greater than nine (Table 2). Given the multi-allelic nature of the AMY1 CNV, 

this OR of 1.19 per copy of AMY1 translates to about an eight-fold difference in risk of 

obesity between subjects in the top (CN>9) and bottom (CN<4) decile of the estimated 

AMY1 copy-number distribution (OR=7.67[3.92-14.99]95%CI;P=2.52×10−9;Supplementary 

Table 10). Using a multi-factorial liability threshold model16, we estimated the proportion of 

total variance of obesity explained by estimated AMY1 copy-number to lie between 

1.73-7.94%[95%CI] (Supplementary Table 11). Therefore, based on an estimated 

heritability of 40-70%17,18, copy-number variation at AMY1 may account for 2.47-19.86% 

of the total genetic variation of obesity. Analogously, we estimated that between 0.66% and 

4.40% of the proportion of genetic variance of BMI could be explained by inferred AMY1 
copy-number in these European samples.

As all the samples included in our analyses were of European origin, we reasoned that 

replication in a sample of different ethnicity and under differing environmental influences on 

obesity would provide greater support for its physiological role. We therefore selected a 

Singaporean Chinese case-control sample from SP219. A total of 136 obese and 197 

overweight subjects were identified among the 2,431 Chinese subjects included in the SP2 

cohort, with 325 matched lean Chinese SP2 normal-weight controls. AMY1 copy-number 

was measured by qPCR in all 658 subjects. Median copy-number in SP2 normal-weight 

subjects was 6 (ranging from 2 to 16), similar to our French DESIR and UK TwinsUK 

populations, and in line with previous observations by Perry et al20. Case-control association 

analysis in the Chinese sample showed reduced AMY1 estimated copy number to be 

associated with increased risk of obesity (per copy-number 

OR=1.17[1.05-1.29]95%CI;P=3.73×10−3). Extending the case sample to include the 197 

overweight subjects further confirmed the results (per copy-number 

OR=1.13[1.06-1.21]95%CI;P=3.52×10−4).

To validate our AMY1 genomic copy-number data at the protein level, we investigated the 

effect of copy-number variation at AMY1 and AMY2 on serum amylase enzyme levels, and 

their relationship with BMI using 468 French morbidly obese subjects from the ABOS study 

(Table 1;Supplementary Table 12). On average, salivary and pancreatic amylase proportions 

were approximately equal in serum (52% and 48%, respectively) and their levels showed 

close positive association with copy-number variation at their respective genes 
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(P<2.20×10−16 and P=1.04×10−11, respectively; Supplementary Figure 11). BMI was 

inversely associated with serum salivary amylase (β=−0.23[0.04]kg/

m2;P=2.26×10−7;Supplementary Figure 12) and to a lesser extent serum pancreatic amylase 

(β=−0.23[0.06]kg/m2;P=2.29×10−4;Supplementary Figure 12), likely reflecting the 

physiological correlation between the levels of the two enzymes (r=0.21;P=4.29×10−6).

Salivary amylase catalyses hydrolysis of the α-1,4-glycosidic bonds of starch, initiating 

carbohydrate digestion in the oral cavity. While individual salivary amylase levels vary in 

response to environmental factors including psychological stress21, they are genetically 

influenced by and directly correlated with the highly variable copy-number at AMY120,22. 

Increased gene copy-numbers at this locus are believed to have evolved in the human lineage 

as a consequence of a shift to a starch-rich diet23. Human populations traditionally 

consuming a high proportion of carbohydrates in their diet show higher copy-numbers and 

salivary amylase activity than those consuming a low-starch diet20,24. Both the salivary 

glands and pancreas contribute similarly to determine overall levels of serum amylase25, 

although enzyme activity is also detectable in other organs, including adipose tissue26,27. 

Indeed amylase was among the 30% most-highly expressed genes in adipose tissue in both 

our discovery sample and publicly-available data from the general population, thus 

suggesting that this gene is actively expressed in adipose tissue (Supplementary 

Information). Whether adipose tissue is functionally involved in the link between AMY1 
copy-number and obesity, or whether this link implicates a different tissue in which AMY1 
is also actively transcribed warrants further investigation.

Decreased blood amylase levels have been observed in both obese humans28 and rats29, and 

have recently been associated with increased risk of metabolic abnormalities30,31 and 

reduced pre-absorptive insulin release32. Furthermore, a recent study in mice fed a high fat/

high sugar diet suggested association between the amylase locus and weight gain33. In these 

mice, this locus was also shown to be associated with the proportion of Enterobacteriaceae 
in the gut microbiota33, which have been previously correlated with obesity in humans34.

Rare copy-number variants have recently been implicated in highly-penetrant forms of 

obesity35,36 and severe thinness37, through a gene dosage effect. Common bi-allelic CNVs 

have also been associated with BMI38-41, however, since most of these are reliably tagged by 

surrounding SNPs42, they share the same properties of small effect sizes and limited 

predictive value for obesity risk. In contrast, complex multi-allelic CNVs show decreased 

linkage disequilibrium with surrounding SNPs (Supplementary Table 13) and are 

consequently less detectable by SNP-based GWAS43. Surprisingly, FTO is the most-

replicated obesity susceptibility gene identified through GWAS41, yet in our analyses 

estimated AMY1 copy-number appeared to show stronger association with BMI than FTO 
SNPs (Supplementary Tables 14-15). It is conceivable that high structural variability in the 

amylase region and subsequent low SNP coverage (Supplementary Figures 13-14) may have 

hampered previous SNP-based GWAS attempts to detect association between the amylase 

cluster and adiposity. Indeed, examination of data from the most recent BMI meta-analysis 

conducted by the GIANT consortium41 revealed a large gap in SNP coverage across the 

locus encompassing the salivary amylase gene (Supplementary Figure 14).
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Present DNA high-throughput methods for CNV assessment, including array-, PCR- and 

sequencing-based approaches, are all affected by a wide number of variables including DNA 

source, extraction methods, quality and concentration, as well as experimental factors 

inducing batch effects10,11,44. These factors complicate copy-number measurement at multi-

allelic CNVs and hinder pooling of data from multiple centres. The observed association of 

AMY1 with obesity may rekindle interest in the role of multi-allelic CNVs in common 

disease, driving development of novel technological approaches for accurate and high-

throughput measurement of absolute copy-number at such loci. These technological 

improvements will enable high-quality association analyses at such loci in larger sample 

sizes similar to those included in SNP association studies, and are mandatory for disease 

risk-assessment at the individual level, paving the way towards personalized medicine.

Our study provides a first genetic link between carbohydrate metabolism and obesity, with 

low copy-number at AMY1 resulting in decreased salivary amylase levels and a higher risk 

of obesity. This finding provides intriguing insight into some of the biological mechanisms 

underlying obesity, as well as a novel rationale for the investigation of innovative obesity 

treatments based on manipulation of digestive enzyme levels.

ONLINE METHODS

Further detailed methods are provided in the Supplementary Information. Associations were 

assessed using linear mixed effects models, including plate as a random effect and family 

structure as an additional random effect where appropriate. Age and sex were included as 

covariates.

Discovery

The discovery sample included 149 Swedish families (342 subjects) ascertained through an 

obesity-discordant sib-pair (BMI difference>10kg/m2)6. Gene expression for 29,546 

transcripts (16,563 Ensembl genes) was measured in subcutaneous adipose tissue using the 

Affymetrix Human Genome U133 Plus 2.0 microarray. GWAS signal intensity data from 

Illumina 610K-Quad arrays were available for 348,150 probes lying within each transcript 

plus 30kb upstream and downstream to encompass the coding regions and their internal and 

nearby regulatory regions.

Quantitative real-time PCR (qPCR) was carried out to infer relative copy-number 

measurements reflecting the underlying copy-number distribution at AMY1 and AMY2, 

respectively, using the TaqMan assays Hs07226362_cn and Hs04204136_cn on an Applied 

Biosystems 7900HT Real-Time PCR System. Association analyses were carried out for 481 

subjects with complete data on BMI and dual-energy X-ray absorptiometry (DEXA)-derived 

fat mass.

Replication

In-silico replication of the BMI association was conducted using 972 female subjects from 

the UK adult twin registry (TwinsUK) cohort14 using intensity signals from Illumina 610K-

Quad arrays7. Association with BMI and obesity was analysed in two population samples 

using qPCR estimates of AMY1 copy-number for 1,479 female twins from TwinsUK14 and 
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2,137 subjects from the French Data from the Epidemiological Study on the Insulin 

Resistance syndrome (DESIR)13 cohort. Obesity association with qPCR data was also 

assessed in an additional case-control sample of 205 obese cases and 358 age-matched 

controls from the French Adult Obesity study (AOB)15. An additional case-control sample 

was extracted from the Singapore Prospective Study Program (SP2) cohort, a population-

based study including 2,431 adult Chinese Singaporean subjects19. Obesity in the Chinese 

population was defined as BMI≥28kg/m2 and normal-weight as BMI<23kg/m2, based on 

criteria set by the Working Group on Obesity in China45 and the WHO expert consultation 

for Asia46. Accordingly, a total of 136 obese and 197 overweight subjects were identified 

among the 2,431 Chinese subjects of the SP2 cohort, with 325 matched lean SP2 subjects 

selected as normal-weight controls.

In order to avoid any potential population stratification impacting on our association 

analyses resulting from the known differences in AMY1 copy number distribution between 

populations traditionally consuming high versus low starch diets20, we carried out genotype 

principal component analysis using genome-wide SNP array data to ensure that samples 

included in each analysis were of the same ethnicity and genetic background. Furthermore, 

AMY1 association analyses were conducted separately in each of the study populations and 

then combined by meta-analysis using METAL47 rather than pooling.

Protein levels

‘Atlas Biologique de l’Obésité Sévère’ (ABOS) is a French cohort comprised of candidates 

for bariatric surgery. Serum pancreatic and total amylase levels for 468 patients were 

measured by an enzymatic colorimetric assay with an autoanalyzer (CoBAS Icobas® 8000 

modular analyser series; kits AMYL2-03183742122 and AMY-P-20766623322, Hoffman-

La Roche Ltd). Serum salivary amylase levels were calculated by subtracting serum 

pancreatic amylase levels from total serum amylase levels.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Manhattan plot of gene-centric CNV association study (GCAS) results with gene 
expression levels in subcutaneous adipose tissue from the Swedish sib-pair dataset
Chromosomal location for each probe is given on the horizontal axis for each of the 22 

autosomes, while minus log10 (P) of the association between probe signal intensity and gene 

expression levels is shown on the vertical axis. The probes tested against the amylase genes 

transcriptional levels are shown in green.
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Figure 2. The amylase region in detail
Top to bottom: famCNV association results between signal intensity at probes within 30kb 

of the amylase cluster and amylase expression levels (probeset 208498_s_at) in adipose 

tissue (black dots) in the Swedish family discovery study, with chromosomal coordinates 

given on the horizontal axis and minus log10(P) on the vertical axis; locations of probes 

showing association between signal intensity and BMI: cnvi0020639 (blue; Swedish family 

discovery study), cnvi0022844 (red; TwinsUK); gene content in the amylase region based on 

the human reference sequence (hg19; RefSeq), depicting AMY2B, AMY2A and the 

AMY1A/B/C genes, as well as two high sequence similarity segmental duplications in the 

region; LD between HapMap markers (release 23) calculated with HaploView46 (darker 

shading corresponds to higher r2 value). Because of the repetitive nature of this region, 

which contains six paralogs (including one pseudogenized copy) in the reference genome 

(Supplementary Figure 13), the cnvi0020639 and the cnvi0022844 probes were found to 

map to two locations within the amylase gene cluster.
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Figure 3. 
Effect of estimated AMY1 copy-number on obesity and BMI. A: Scatter plots of raw qPCR 

signal intensity (ΔΔCt) plotted against BMI for the TwinsUK and DESIR samples. B: 

Boxplots of ΔΔCt in normal weight (BMI<25kg/m2) and obese (BMI≥30kg/m2) subjects in 

the TwinsUK, DESIR and AOB samples. For plots A and B, low ΔΔCt values correspond to 

high AMY1 copy-numbers. C: relative copy-number distribution in obese cases (BMI≥30 

kg/m2; black bars) versus normal weight controls (BMI<25 kg/m2; grey bars) in the 

TwinsUK, DESIR, and AOB studies. Estimated copy-numbers higher than 13 (showing 

frequency < 2.5%) were collapsed together into a single category. D and E: BMI at different 

estimated AMY1 copy-numbers and AMY1 copy-number estimates by BMI categories in 

the TwinsUK and DESIR population samples. WHO BMI classification: Underweight 

(<18.5); Normal range (18.50 – 24.99); Pre obese (25.00 – 29.99); Obese class I (30.00 – 

34.99); Obese class II (35.00 – 39.99). Error bars represent the standard error of the mean. 
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*Association between BMI and qPCR ΔΔCt intensity signal, corrected for age, sex (DESIR), 

family (TwinsUK) and genotyping plate. **Wilcoxon rank sum test.
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Table 1

Summary information on subjects included in this study.

Sample Total Male Female Median age 1st – 3rd quartiles Median BMI 1st – 3rd quartiles

Swedish 342 98 244 37 (33 - 43) 27.9 (22.6 - 36.5)

TwinsUK 1,479* - 1,479 53 (45 - 60) 26.0 (22.8 - 28.4)

DESIR 2,137 942 1,195 52 (44 - 61) 24.6 (22.2 - 26.6)

AOB 563 160 403 35 (32 - 39) - -

 Cases 205 39 166 36 (29 - 41) 46.2 (42.5 - 51.3)

 Controls 358 121 237 35 (33 - 38) 21.6 (20.3 - 22.4)

SP2 658 237 421 46 (37 - 52) - -

 Cases** 333 139 194 47 (40 - 54) 27.1 (25.9 - 28.9)

 Controls 325 98 227 44 (34 - 51) 18.4 (17.5 - 19.1)

ABOS 468 122 346 43 (33 - 51) 46.2 (41.7 - 52.3)

*
Consisting of 334 dizygotic and 193 monozygotic twin pairs and 425 singletons.

**
Including 136 obese (BMI ≥ 28 kg/m2) and 197 overweight (23 kg/m2 ≤ BMI < 28 kg/m2) Singaporean Chinese subjects.
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