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Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China

N6-methyladenosine (m6A) methylation is one of the most common modifications of RNA
in eukaryotic cells, and is mainly regulated by m6A methyltransferases (writers), m6A
demethylases (erasers), and m6A binding proteins (readers). Recently, accumulating
evidence has shown that m6A methylation plays crucial roles in the regulation of the
tumor immune microenvironment, greatly impacting the initiation, progression, and
metastasis processes of various cancers. In this review we first briefly summarizes the
m6A-related concepts and detection methods, and then describes in detail the
associations of m6A methylation modification with various tumor immune components
especially immune cells (e.g., regulatory T cells, dendritic cells, macrophages, and
myeloid-derived suppressor cells) in a variety of cancers. We discuss the relationship
between m6A methylation and cancer occurrence and development with the involvement
of tumor immunity highlighted, suggesting novel markers and potential targets for
molecular pathological diagnosis and immunotherapy of various cancers.
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INTRODUCTION

N6-methyladenosine (m6A) methylation is one of the most abundant RNA modifications in
eukaryotic cells (1, 2). It involves three kinds of vital regulatory proteins, namely writers, erasers,
and readers (2), which can respectively add, remove, and preferentially bind to the m6A
modification sites and modulate the fate of RNA (1). m6A modification is a key regulator of
diverse RNA biology processes (Figure 1), including RNA processing, translation, stabilization,
splicing, and degradation (3, 4). Recently, accumulating evidence has revealed the potential links
between m6A modification and cancer immunology (5, 6). m6A modification plays vital roles in
diverse tumor immunity processes among a variety of cancers, affecting the development,
proliferation, growth, invasion, and metastasis of cancers (5). The tumor microenvironment
(TME) is the environment around tumor cells, including the surrounding blood vessels, immune
cells, fibroblasts, molecules, the extracellular matrix, and other stromal components. In this review,
we discuss the characteristics of m6A modulators and the immunomodulatory function of m6A
methylation in the tumor immune microenvironment (TIME), which refers to the immune and
immune-associated components of the TME, and which is a complex interactive network consisting
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of various immune cells, cytokines, and fibroblasts that plays
important roles in tumor initiation, progression, metastasis,
and treatment response (7, 8). We focus on the associations
of m6A modification in the TIME with cancer immunity
and immunotherapy.
REGULATION OF m6A METHYLATION BY
m6A WRITERS, ERASERS, AND READERS

m6A Writers
m6A writers are generally considered to be composed of m6A
methylases, majorly including methyltransferase-like 3
(METTL3), methyltransferase-like 14 (METTL14), Wilms’
tumor 1-associating protein (WTAP), RNA binding motif
protein 15 (RBM15) and its paralog RBM15B, which form the
methyltransferase complex (MTC) (9). m6A writers are
responsible for writing methylation information into RNA (6,
10). METTL3, a 70-kDa protein of the first identified m6A
methyltransferases in eukaryotes, is a key enzymatic
component of the MTC (6, 11); it can combine with S-
adenosyl methionine (SAM) and transfer a methyl group to
Frontiers in Immunology | www.frontiersin.org 2
RNA. METTL4 is responsible for the recognition of substrates
and functions as an allosteric activator that also binds to the
target RNA (10–12). METTL14 serves as the RNA-binding
platform, promoting the translation of related genes and
enhancing the complex integrity (13, 14). METTL3 can form a
heterodimer complex with the homologous protein METTL14.
The METTL3-METTL14 dimer complex induces m6A
deposition in transcripts on nuclear RNA (10). RBM15/15B
interacts with METTL3 in a WTAP-dependent manner to help
recruit the complexes to methylate-specific sites (15). Other m6A
methyltransferases such as methyltransferase-like 16
(METTL16), zinc finger CCCH domain-containing protein 13
(ZC3H13), KIAA1429 [also known as vir-l ike m6A
methyltransferase associated (VIRMA)], and NOP2/Sun
domain family, member 2 (NSun2) are also essential for the
formation of the MTC (16–21).

m6A Erasers
Obesity-associated protein FTO and alkB homolog 5 (ALKBH5)
are m6A demethylases which are also called erasers and which
ensure that m6A modification is a dynamic and reversible
process (22). The RNA m6A modification can be removed by
the demethylases FTO and ALKBH5. FTO was the first protein
FIGURE 1 | Regulators of m6A methylation within immune cells. Writers, erasers, and readers play different roles in the dynamic m6A modification of RNA. Common
writers include METTL3, METTL14, and WTAP, common erasers include FTO and ALKBH5, and common readers include YTHDF1/2/3, YTHDC1/2, HNRNP, and
IGF2BPs.
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discovered to catalyze m6A demethylation, and knocking down
the expression of FTO can increase the m6A methylation level of
RNA. In contrast, when FTO is overexpressed, the m6A level of
intracellular RNA is suppressed (23). FTO is located in nuclear
speckles, where the m6A MTC also locates, and can reverse the
m6A modification of RNA. ALKBH5 was the second m6A
demethylase identified that could oxidatively reverse m6A
modifications (22, 24). It is a Fe2+- and a-ketoglutarate-
dependent non-heme oxygenase that can oxidize the N-methyl
group at the m6A methylation site to hydroxymethyl group.
ALKBH5 is also mainly located in nuclear speckles, and depends
on its demethylase activity to affect the transport of RNA out of
the nucleus; it then further modulates nuclear RNA metabolism
and gene expression (22–25).

m6A Readers
The RNA-binding proteins that bind to m6A modification sites
are called m6A readers, which include the YTH domain family
(YTHDF1/2/3 and YTHDC1/2), heterogeneous nuclear
ribonucleoproteins (HNRNPs; hnRNPC, hnRNPG, and
hnRNPA2B1), and insulin-like growth factor 2 mRNA-binding
proteins (IGF2BP1-3); they can specifically bind to the m6A
methylation sites affecting RNA metabolism, and are responsible
for reversing or eliminating the RNA modification (23, 26–31).
YTHDF1 interacts with translation initiation factors to promote
translation and to reduce the binding of ribosomes to m6A-
modified RNA, which promotes the degradation of RNA.
YTHDF2 accelerates the decay of m6A-methylated RNA, and
YTHDF3 can promote the translation promoted by YTHDF1
and regulate the YTHDF2-mediated RNA-decay-promotion
(13, 29). The recognition of the ribonucleoprotein HNRNPC/G
and its binding to the m6A modification sites are also indirect,
which are mediated by the m6A switch mechanism and which
participate in the processing and maturation of targeted RNA
(13). The RNA-binding protein HNRNPA2B1 can bind to the
nuclear m6A-modified RNA, allowing genes to be spliced
(13, 22, 26). IGF2BP1-3 can recognize and bind to m6A
modification sites, which increases the stability of target RNA
and which promotes its translation (10).
TECHNIQUES FOR DETECTING m6A
MODIFICATIONS

As early as in the 1970s, m6A methylation was identified to
modify the mRNA and long non-coding RNA (lncRNA) in
eukaryotes (11). However, limited by technical means, the
detection especially the quantification of m6A and the
identification of m6A at the single-base level had been
progressing slowly (11, 32). The revitalization of researches
related to m6A modification benefits from the emergence of
effective analytical methods. The rapid development of next-
generation sequencing (NGS) technologies and the improvement
of liquid chromatography sensitivity provide a reliable basis for
studying the influence of m6A RNA methylation on RNA
structure (32–35).
Frontiers in Immunology | www.frontiersin.org 3
An emerg ing me thod ca l l e d me thy l a t ed RNA
immunoprecipitation sequencing (MeRIP-seq) or m6A-seq for
identifying m6Amodification sites on mammalian RNA emerged
in 2012, and has recently received widespread attention (34–37).
This new method is based on the high specificity of antibodies
against m6A, and its combination with high-throughput
sequencing makes it possible to describe the specific map of
m6A modification in the mammalian transcriptome. The first
step of MeRIP-seq is to fragment the RNA, followed by the use of
immuno-magnetic beads with m6A antibody to enrich the m6A-
methylated RNA fragments and the purification of the enriched
RNA fragments to construct a high-throughput sequencing
library by performing on-machine sequencing. In addition, a
common transcriptome library needs to be constructed
separately as a control. Finally, the two sequencing libraries are
put together for bioinformatics analyses, and the region with a
higher degree of m6A methylation is obtained, which is also
called m6A peak (36, 37). The advantage of this method is that it
is convenient, fast, and of low cost, and that it can enable a
qualitative analysis of the RNA regions that are hyper-
methylated. However, MeRIP-seq can only identify the m6A
sites within RNA fragments of 100-200 nucleotides, and cannot
achieve single-base resolution (34). To overcome the low
resolution issue, a novel method called m6A individual
nucleotide resolution crosslinking immunoprecipitation
(miCLIP) has marked a major advancement in the field of
m6A sequencing. This method enhances m6A-seq by UV-
induced crosslinking of antibodies with immuno-precipitated
RNA fragments (35, 38). Other approaches with higher
resolutions include site-specific cleavage and radioactive-
labelling followed by ligation-assisted extraction and thin-layer
chromatography (SCARLET) and photo-crosslinking-assisted
m6A-sequencing (PA-m6A-Seq) (38). Furthermore, it is
currently possible to use the CRISPR-based genetic engineering
modification methods to directly change any modification site in
many organisms and to help develop m6A RNAmethylation into
a research method for more extensive investigations (34).

New breakthroughs have been made in the methods for
detecting the overall m6A methylation level of cells, including the
m6A dot-blot and high-performance liquid chromatography-mass
spectrometry (HPLC-MS/MS) method to detect the overall m6A
level of RNA, which can be used to generate important quantitative
information on the presence and abundance of m6A modifiers (34).
m6A MODIFICATION AS A NOVEL
REGULATOR OF THE TUMOR IMMUNE
MICROENVIRONMENT

Recently, a growing number of studies have emerged mainly
focusing on the mechanisms of strengthening anticancer
immunity activation. The immune system is divided into innate
and adaptive immunity. m6A plays critical roles in both the innate
and adaptive immune responses and in tumor immunology, which
provides important hints for developing various types of antitumor
immunotherapies (22, 31). m6A also plays a vital role in the
December 2021 | Volume 12 | Article 773570
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complex regulatory network within the TIME, and subsequently
affects tumor occurrence, progression, metastasis, and treatment
response (39–42). Most of the anticancer immune regulations rely
on overcoming the continuous suppression of the adaptive immune
response within the TME (43). Immune suppression is a typical
feature of the TME, which involves the dysfunction of antigen
presenting cells (APCs), recruitment or induction of large numbers
of suppressive immune cells, such as CD4+ regulatory T cells
(Tregs), dendritic cells (DCs), tumor-associated macrophages
(TAMs), and myeloid cell-derived suppressor cells (MDSCs), and
secretion of various cytokines (Figure 2) (44, 45).

T and B Cells
T cells regulate the entire adaptive immune response. m6A is
selectively regulated in tumor infiltrating T cells, and can be an
Frontiers in Immunology | www.frontiersin.org 4
important target in antitumor immunotherapies (44). Regulatory
T cells (Tregs) are an important type of T cells which are
involved in suppressing inflammation and producing
immunosuppression (39). They are a key subset of effector T
cells with strong immunosuppressive effects in the TME, and
m6A-dependent immune function regulation was found in Tregs
(44). The family of cytokine signal transduction (SOCS) proteins,
mainly including SOCS1-3 and CIS, are inhibitory proteins
involved in the transduction of the JAK-STAT signaling
pathway, and play a vital role in inhibiting T cell proliferation
and differentiation (39, 40, 43–48). The SOCS family genes are
regulated by m6A methylation (44, 49); the modification was
induced by the METTL3 complex at the 3’-end of the SOCS2
transcript, which could be recognized by YTHDF2 (48).
Considering the importance of SOCS2 in Tregs in their
FIGURE 2 | Roles of m6A modification in cancer immune regulation. Key m6A regulators and relevant pathways and molecules with biology activities clarified in
various immune cells are presented. The descriptions are detailed in the relevant texts with citation of this figure. DC, dendritic cell; MDSC, myeloid-derived
suppressor cell; LPS, lipopolysaccharide.
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noteworthy suppressive potential of the differentiation and
function of CD4+ T cells and tumor-killing CD8+ T cells in
the TME, the roles of m6A methylation of SOCS2 mRNA in T
cells in immune response disorders during tumorigenesis should
be further explored. In the process of inducing naive T cell
development through IL-7 stimulation, the SOCS gene controls
the IL-7 signaling (46). The SOCS family could act as a mediator
binding to IL-7 receptor, which prevents STAT5 activation and
inhibits downstream signals involved in T cell maturation and
differentiation; T cells are highly responsive to IL-7 signals with
downregulation of SOCS gene expressions, while upregulation of
SOCS gene expressions suppresses the IL-7-dependent function
of T cells (46). If naive CD4+ T cells are co-cultivated with
METTL3-knockout Treg cells, naive T cells will have a greater
ability to proliferate due to the complete lack of Treg inhibitory
function (11, 50). In CD4+ T cells, reduced m6A modification
can enhance the stability of the SOCS gene mRNA, thereby
preventing signal transduction in the IL-2/STAT5 signaling
pathway (11, 48, 50). The downregulation of METTL3 makes
T cells stay in the naive T cell stage for longer time with reduced
METTL3-mediated m6A methylation targeting the IL-7/STAT5/
SOCS pathway (47). Together, m6A modification specifically
targets the same class of genes encoding components of
essential signaling pathways in different T cell subtypes; m6A
methylation of SOCS mRNA with the involvement of m6A
modulators including METTL3 and YTHDF2 decreases the
stability and expression of SOCS mRNA, and reduces the
inhibition of SOCS on the JAK/STAT signal, which promotes
T cell proliferation, maturation differentiation, and
function (Figure 2).

Downregulation of the m6A writer METTL14 specifically in B
cells could result in severe defects in B cell development, with
inhibition of IL-7-induced pro-B cell proliferation and blocking
of large-to-small pre-B cell transition (51). More studies are
needed to further reveal the regulatory roles of m6A modification
in B cells.

Dendritic Cells (DCs)
Abundant abnormalities of m6A mRNA modifications were
found in DCs in cancers. DCs are specialized APCs, which are
responsible for the processing and presentation of antigens and
the activation of T cell immune responses (11, 39). The
regulation of their functions is closely related to the overall
balance of immune responses. Exploring the regulatory
mechanism of DC function activation is of great significance
for in-depth understanding of the inflammatory and immune
processes within the TME and for finding potential therapeutic
targets for cancers with the involvement of abnormal DC
activation (48, 52, 53). DCs have different stages of maturity:
Immature DCs induce immune tolerance, mature DCs activate
and stimulate immune response, and regulatory DCs
downregulate immune response by suppressing T cell response
(53). m6A methylation mediated by the methyltransferase
METTL3 promotes the activation and function of DCs (54).
Lipopolysaccharide can induce high expression levels of
METTL3 in DCs (55). The specific consumption of METTL3
Frontiers in Immunology | www.frontiersin.org 5
in DCs leads to impaired phenotype and functional maturation
of DCs, and reduces the expression of costimulatory molecules
CD40, CD80, and cytokine IL-12 involved in DC maturation. In
vitro and in vivo studies have confirmed that after silencing
METTL3 the ability of DCs to stimulate T cell responses is
reduced. The METTL3-mediated m6A methylation modification
of the CD40, CD80, and TLR4 signal transduction junction Tirap
(also known as Mal) transcript enhances the translation in DCs
to stimulate T cell activation and enhances the TLR4/NF-kB
signal transduction to promote cytokine production; these
confirm the new role of METTL3-mediated m6A methylation
in promoting DC maturation (54). Furthermore, YTHDF1-
knockdown mice had stronger response to tumor antigen-
specific CD8+ T cells than wild-type mice; knockdown of
YTHDF1 in classic DC cells enhanced the cross-presentation
of tumor antigens in vivo and the cross-activation of CD8+ T
cells (30, 40). The transcripts of multiple DC lysosomal
cathepsins all have m6A modification, and YTHDF1 can
promote the translation of lysosomal cathepsin in DCs by
combining these transcripts (30, 56). The depletion of
YTHDF1 in DCs attenuated the translation of genes related to
the phagosome and lysosomal pathways which are a member of
the cathepsin family (56). The enzymatic degradation of the
proteins in phagosomes after DCs ingestion could destroy
antigens to limit cross-presentation of antigens (57–59). The
antigen cross-presentation of tumor-infiltrating DCs in
YTHDF1-deficient melanoma or colon cancers can induce
stronger anticancer immune response, and both in vitro and in
vivo, mature YTHDF1-deficient DCs can induce stronger T cell
activation than wild-type cells (57). YTHDF2 is also considered
as a potential suppressor of tumor immunity (44). The activation
of antitumor T cells and the initiation of anticancer immunity
depend on the migration of APCs, especially the migration of
DCs to lymph nodes (44, 60). CC-chemokine receptor 7 (CCR7)
can stimulate the rapid but transient migration of DCs to
draining lymph nodes, via upregulating the expression of the
lncRNA lnc-Dpf3 by removing the m6A modification to prevent
RNA degradation (61). DC-specific lnc-Dpf3 promotes CCR7-
mediated DC migration, leading to excessive adaptive immune
responses and inflammatory damage. The m6A-dependent
manner regulates the dynamic expression of lnc-Dpf3 in DCs,
and YTHDF2 reduces the expression level of lnc-Dpf3 in resting
mature DCs (61). Together, in DCs m6A methylation of Tirap/
Mal mRNA induced majorly by METTL3 strengthened the
NF-kB signal, which promotes the expressions of several
costimulatory molecules and enhances the maturation,
activation, and function of DCs; the m6A regulator YTHDF1
promotes the translation of cathepsins in lysosomes/phagosomes,
which enhances the degradation of antigens thus preventing
antigen presentation and the subsequent activation of effector
immune cells; YTHDF2 inhibits the expression of lnc-Dpf3, and
suppresses the CCR-7-induced DC migration (Figure 2). The
activation of DCs through m6A modification has vital roles in
promoting the subsequent immune cell activation and function
and in the migration of immune cells, thus importantly
impacting the initiation and progression of cancers. The
December 2021 | Volume 12 | Article 773570
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breakthrough of researches on the m6A epi-transcriptome
accelerates the understanding of m6A-dependent DC
development and activation, serving as prerequisite for future
translational exploitation of m6A-based immunotherapy.
Checkpoint blockade inducing YTHDF1 and/or YTHDF1
depletion in DCs may be a potential immunotherapy
strategy (56).

Macrophages
Macrophages are immune cells derived from the hematopoietic
system; they provide important innate immune defenses and
maintain tissue-specific functions through regulation of the
internal environment within organs (62, 63). For innate
immunity, macrophages participate in the regulation of tissue
homeostasis and resist viral infection and inflammation (48).
Regarding the roles in inflammation and the TME, macrophages
can be mainly polarized into the classically activated
macrophages (M1 type) with antitumor function and the
alternatively activated macrophages (M2 type), the latter of
which can inhibit inflammation, promote angiogenesis and
tissue repair, and also participate in tumor metastasis (48, 62–
67). Upregulation of METTL3 activity greatly promotes the
polarization of M1 macrophages, but it has an inhibitory effect
on the polarization of M2 macrophages (68). METTL3 directly
methylates the mRNA encoding signal transducer and activator
of transcription 1 (STAT1), which is the main transcription
factor that regulates the polarization into M1 macrophages (57).
METTL3-mediated methylation of STAT1 mRNA significantly
increases the mRNA stability and subsequently increases the
expression of STAT1. METTL3 may serve as an anti-
inflammatory target which drives the polarization of M1
macrophages by directly methylating STAT1 mRNA (68).
Silencing the demethylase FTO significantly inhibits the
polarization of M1 and M2 macrophages; FTO knockdown
reduces the phosphorylation levels of IKKa/b, IkBa, and p65
in the NF-kB signaling pathway, which in turn leads to the
downregulation of STAT1 expression in M1-type macrophages,
and of STAT6 and peroxisome proliferation-activated receptor-g
(PPAR-g) in M2-type macrophages. The actinomycin D
experiment showed that silencing FTO could increase the
instability of STAT1 and PPAR-g mRNAs, thereby inhibiting
transcription (64). Moreover, when the m6A reading protein
YTHDF2 is silenced, the mRNA stability and expression of
STAT1 and PPAR-g increase. Silencing FTO can inhibit the
NF-kB signaling pathway and reduce the stability of STAT1
and PPAR-g mRNA through the participation of the YTHDF2
protein, thereby hindering the activation of macrophages (64,
65). FTO contributed to both M1 and M2 macrophage
activation. RNA-binding motif 4 (RBM4) interacts with
YTHDF2 and can be a possible inhibitor of M1 macrophage
polarization via the degradation of m6A-modified STAT1mRNA
(69, 70). Together, in macrophages m6A methylation of STAT1
mRNA induced by METTL3 increases the expression of STAT1
and promotes macrophage activation and polarization into the
M1 type; the m6A eraser FTO can strengthen the NF-kB signal,
and promote both the expression of STAT1 for macrophage
polarization into M1 type and the expressions of STAT6 and
Frontiers in Immunology | www.frontiersin.org 6
PPAR-g for polarization into M2 type; YTHDF2 and RBM4
appear to have effects opposite to FTO (Figure 2). m6A
modification majorly impacts the polarization of macrophages
thus regulating cancer biology behaviors. These findings may
open up new ways to study macrophage polarization and the
underlying molecular mechanisms of its involvement in cancers.

Myeloid-Derived Suppressor Cells
(MDSCs)
MDSCs are a group of heterogeneous myeloid cells generally with
positive expression of CD33 and with potent immune-inhibitory
activity; they have been identified as potential precursors of DCs,
macrophages, and granulocytes (71, 72). In the TME MDSCs can
suppress immune cells and protect tumors (73). The increase in
METTL3 levels in CD33+ MDSCs in the TME is associated with
poor prognosis (74). Knocking down METTL3 in CD33+ cells
could attenuate MDSC or tumor-related MDSC differentiation in
vitro (72). In MDSCs the lncRNA pseudogene Olfr29-ps1 was
upregulated by the pro-inflammatory cytokine IL-6; the function
of Olfr29-ps1 depended on IL-6-mediated m6A modification, and
the lncRNA promoted the differentiation and immunosuppressive
function of mononuclear MDSCs both in vitro and in vivo (74).
ALKBH5 knockout in tumor cells enhanced the efficacy of
immunotherapy, and ALKBH5 could regulate target gene
expression and splicing, resulting in changes in metabolite
contents and the accumulation of MDSCs (75). Together,
METTL3-induced m6A methylation of Olfr29-ps1 which can be
stimulated by IL-6 increases the stability of Olfr29-ps1, and
promotes MDSC differentiation and function (Figure 2).
The inhibition of MDSCs through the modification of
m6A methylation may represent a promising anticancer
treatment strategy.
ASSOCIATIONS OF m6A RNA
METHYLATION WITH TUMOR IMMUNITY
IN VARIOUS CANCERS

RNA methylation plays an important role in tumor genesis and
development. Aberrant RNA methylation has been linked to
various human cancers. The expression disorder of m6A RNA
methylation regulators is closely related to a variety of cancers
(48, 76, 77). RNA methylation affects tumor biology by
regulating the relevant components of the immune system. It
has been found that m6A RNA methylation has a variety of
biology-regulatory functions during the occurrence and
development of cancers via modulating tumor immunity (75,
78, 79). The TIME is often characterized by the infiltration of
various immunosuppressive cell types, most notably MDSCs and
Tregs, and a lack of antitumor immune activity (8, 80). In this
section, we summarize the roles of m6A modulators in the TIME
and immunotherapy within a variety of cancers, and organize the
tumor types according to the anatomic systems which the
involved organs belong to (nervous system, digestive system,
respiratory system, urinary system, reproductive system,
hematologic system, and others).
December 2021 | Volume 12 | Article 773570
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Nervous System Cancers
Glioblastoma and Glioma
In recent years, a large number of studies have proved that the
TIME plays a vital role in cancer progression and anticancer
therapeutic effects in glioblastoma and glioma (81, 82). Immune
cells can penetrate into the brain and form an immune
microenvironment. m6A regulatory factors are involved in
multiple biological processes of tumor progression (50, 83–85).
Therefore, clarifying the relationship between m6A regulatory
factors and TME-infiltrating immune cells can help to assess the
anticancer response to immunotherapy in glioblastoma patients
(50). 19 m6A regulators were highly expressed in glioma tissues
(82). The expressions of m6A regulatory factors were related to
the classification of glioma subtypes. The m6A modulators could
predict prognosis and therapeutic effects, and were also related to
the immune microenvironment of glioma (82, 83). The m6A
modification regulator ELAVL1 was an effective predictor of PD-
L1 treatment efficacy (83). Compared with normal brain tissues
and glioblastoma tissues, most m6A RNA methylation regulators
are differentially expressed in lower-grade gliomas tissues (85).
Studies have revealed the correlation between TME infiltration of
immune cells and m6A modification (86). In glioblastoma,
WTAP was found to be overexpressed and to regulate tumor
invasion and migration. High expression of WTAP was
associated with a low postoperative survival rate. Furthermore,
HNRNPC can also impact the invasiveness of glioblastoma cells
and is regarded as a potential prognostic biomarker and
therapeutic target for glioblastoma (86). Du et al. (87)
comprehensively analyzed the m6A modification patterns of
1152 low-grade glioma samples, and found that the cases with
a low m6A score had high immunogenicity and that those with a
high m6A score were sensitive to chemo-radiotherapy
and immunotherapy.
Digestive System Cancers
Gastric and Esophageal Cancers
Zhang et al. (88) reported that m6A modification plays an
important role in the formation of TIME diversity and
complexity by analyzing 21 m6A modulators in 1938 gastric
cancer (GC) samples. Three m6A modification patterns
including immune-excluded, immune-inflamed, and immune-
desert phenotypes were discovered (88). m6A modification
patterns could predict the stage of cancer-related inflammation,
cancer subtypes, TME matrix activity, genetic variation, and
patient prognosis (88–90). The high m6A-score subtype had a
poor survival rate and had matrix activation with lack of effective
immune infiltration; a low m6A score was associated with an
increased neo-antigen load and an enhanced response to anti-PD-
1/L1 immunotherapy (86–89). Assessing the m6A modification
patterns of individual tumors will help to guide more effective
immunotherapy strategies (88). High expression of WTAP was
associated with RNA methylation, and its low expression was
correlated with strong T cell-related immune responses in GC (86,
89). The infiltration of tumor-associated T cells in the TME was
associated with high levels of m6A modification, which was
mediated by WTAP mRNA expression (48, 89). Patients with
Frontiers in Immunology | www.frontiersin.org 7
high WTAP expression had fewer Tregs and CD4+ memory-
activated T cells (48, 89). The high infiltration of Tregs and CD4+
memory-activated infiltrating T cells was associated with
improved prognosis of GC patients (48, 89). Mo et al. (91)
retrospectively analyzed 293 stomach adenocarcinoma samples
using data from The Cancer Genome Atlas, and suggested that
m6A methylation might also be used as an immunotherapy
predictor in GCs.

The expressions of m6A modulators were correlated with the
expressions of immuno-modulators and the level of immune
infiltration in esophageal cancer, which can be divided into
esophageal adenocarcinoma and esophageal squamous cell
carcinoma (ESCC) (92). The m6A modulators might improve
the responsiveness of ESCC patients to immunotherapy by
regulating the TIME and expression of PD-L1 (93).

Colorectal Cancer (CRC)
Based on the m6A signature score integrating m6A-related
characteristic genes, patients with colon cancer (CC) could be
divided into high- and low-score subgroups; a lower m6A score
was associated with greater tumor mutation burden, higher PD-
L1 expression, and higher SMG (such as PIK3CA and SMAD4)
mutation rates (94, 95). The efficacy of immunotherapy for rectal
cancer (RC) is closely related to the level of immune infiltration
(96). Low expression of METTL14 in RC led to the
downregulation of m6A RNA modification, which thereby
reduced the level of immune cell infiltration and which led to a
poor prognosis (96). The expression level of METTL14 was an
independent prognostic factor in RC, and it was positively
correlated with the level of immune infiltration. Durable neo-
antigen-specific immunity was regulated by m6A RNA
modification mediated by the m6A-binding protein YTHDF1
(56). In a CC-bearing mouse model, YTHDF1-deficient mice
showed tumor growth inhibition and survived longer than wild-
type mice (56). The loss of YTHDF1 in classical dendritic cells
enhanced the cross-presentation of tumor antigens and the
cross-priming of CD8+ T cells in vivo. In mice receiving anti-
PD-L1 immunotherapy for CC, YTHDF1-deficient mice showed
a higher cure rate (56). FTO was believed to regulate the
methylation of PD-L1 mRNA thus determining the expression
of PD-L1 in CC cells (97). Moreover, in CCs with proficient
mismatch repair or low microsatellite instability, deletion of
METTL3 and METTL14 increased the infiltration of CD8+ T
cells and the levels of IFN-g, Cxcl9, and Cxcl10 secretion and
enhanced anti-PD-1 response (98, 99). CD34/CD276 affected the
TIME and was modulated by m6A-dependent mechanisms,
which ultimately promoted the immune escape of CRCs (100).

Hepatocellular Carcinoma (HCC)
Risk stratification by the expressions of 5 m6A-related genes
(YTHDF1, HNRNPC, RBM15, METTL3, and YTHDF2) could
improve the prognosis prediction of HCC and was related to the
response to sorafenib treatment and anti-PD-1 immunotherapy
(69, 101, 102). High expression of YTHDF2 was associated with
poor prognosis of HCC, and together with increased immune cell
infiltration, YTHDF2 might be an independent prognostic
biomarker for HCC (103). HCC with low expression of
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METTL3 had increased dendritic cell infiltration in the TME
(98). The levels of m6A methylation regulators were related to
the overall survival and immunity in HCC, and METTL3,
METTL13, YTHDF1, and YTHDF2 might be potential
prognosis predictors and therapeutic targets in HCC (104,
105). Du et al. (106) used four m6A-related genes to construct
a risk feature, which was associated with tumor immunity and
which could stratify HCCs. m6A regulatory factors were
significantly related to the TIME of HCC, which could divide
HCCs into two clusters and which were associated with the
expression level of programmed death ligand 1 (PD-L1),
immune score, immune cell infiltration, and prognosis (107).

Pancreatic Cancer (PC)
Tang et al. (108) explored the correlation between M6A-related
genes and the immune microenvironment of PC, and found that
infiltrating immune cells might affect the M6A modification in
tumor cells. An integrated model called “M6AScore” was
constructed based on M6A modulation factors using RNA-seq
data in pancreatic ductal adenocarcinoma-: M6AScore-high
pancreatic ductal adenocarcinoma was characterized by immune
reduction and T cell depletion, andM6AScore-low pancreatic ductal
adenocarcinoma had higher reaction rates on immune checkpoint
inhibitors (ICIs) treatment (109, 110). Thus, the M6AScore was
associated with the invasiveness and immune status of PC, and
could predict PC prognosis and response to ICIs treatment (108,
109, 111). Wang et al. (112) also established a prognostic model
based on the expressions of m6A regulators, including IGF2BP2/3,
KIAA1429, METTL3, EIF3H, and LRPPRC, which was associated
with the TIME and immune statuses in PC.

Respiratory System Cancers
Lung Cancer (LC)
Lung adenocarcinoma is the most common histological
manifestation of LC and is closely related to m6A
abnormalities (95, 113–115). m6A methylation is reduced in
the hyper-immune subtype of lung adenocarcinoma, indicating
that m6A modification may mediate tumor immunity and
provide potential anticancer therapeutic strategies (115).
Compared with the low-risk lung squamous cell carcinoma
patients, the expressions of ALKBH5, METL3, HNRNPC, and
KIAA1429 were significantly reduced in patients with high-risk
lung squamous cell carcinoma. It is worth noting that high-risk
lung squamous cell carcinoma patients showed more promising
treatment responses to PD-1 therapy (115). In non-small-cell
lung cancer with high expressions of YTHDF1 and YTHDF2, the
densities of four subsets of tumor-infiltrating lymphocytes (TILs;
PD-1+, CD8+, Foxp3+, and CD45RO+) were significantly higher
(116). High expressions of YTHDF1 and YTHDF2 were related
to good prognosis of non-small-cell lung cancer patients, higher
TIL density, and downregulation of PD-L1 (116).

Urinary System Cancers
Renal and Bladder Cancers
The expressions of FTO and METTL3 mRNAs were oppositely
correlated with the expressions of CD8+ T cell migration-related
chemokines in clear cell renal cell carcinoma (ccRCC), which
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might affect the antitumor immune response (117). Zhong et al.
(118) constructed an m6A score to accurately evaluate the m6A
methylation pattern in ccRCC patients, which could be used to
predict the anti-PD-1 treatment response in ccRCC. In ccRCC
the high m6A score group had higher PD-L1 expression, larger
numbers of CD8+ T cells and CD4+ FOXP3+ Treg cells, and
higher levels of immune cell infiltration (119). Among patients
receiving immune checkpoint therapies, the clinical benefits were
significantly higher in patients with high m6A scores (119). The
expressions of 17 m6A RNA methylation regulators were closely
related to the immunity and malignant progression of papillary
renal cell carcinoma (120).

Overexpression of IL-32 is associated with m6A modification
and good prognosis in bladder cancer, and which may promote
the recruitment of CD4+ T cells and dendritic cells, thereby
promoting the antitumor effect (121–124).

Reproductive System Cancers
Breast Cancer (BC)
He et al. (125) showed the significant association between RNA
methylation levels and the numbers of tumor-infiltrating CD8+
T cells, regulatory T cells, helper T cells, activated NK cells, and
M2macrophages,which indicated the key roles ofm6Amodulators
in the host anti-tumor immune response. Furthermore, the
expression pattern of m6A modulators was also significantly
related to the expression of PD-L1, TIM3, LAG3, and CCR4,
which are well-known T cell depletion targets and important
biomarkers in immunotherapy (126, 127) (126). The expression
levels of METTL14 and ZC3H13 were significantly positively
correlated with the infiltration levels of CD4+ T cells, CD8+ T
cells, neutrophils, macrophages, and dendritic cells, and negatively
correlated with Treg cells in BC (128). BC genotypes could be
divided into two clusters based on four representative m6A
regulators (IGF2BP2, IGF2BP3, YTHDC2, and RBM15), which
were associated with the number of TILs (129).

Ovarian, Endometrial, and Prostate Cancers
The levels of immune cell infiltration and various immune gene
markers were closely related to the expressions of RBM15B,
ZC3H13, YTHDF1, and IGF2BP1 in ovarian cancer (OC) (130).
Gu et al. (131) identified two differentm6Amodes based on 21m6A
regulators: A lowm6A scorewas associatedwith immune activation
and stronger sensitivity to immune checkpoint inhibitors, while a
high m6A score was associated with progression of OC.

The expressions of METTL14, ZC3H13, and YTHDC1 were
positively correlated with the expression of PD-L1 in
endometrial cancer (EC) (132). Knockdown of ZC3H13 or
YTHDC1 in vitro promoted the malignant phenotype
transformation of EC cells.

The expressions of HNRNPA2B1 and METTL3 may also
affect the immune microenvironment of prostate cancer (133).

Hematologic System Cancers
Acute Myeloid Leukemia (AML)
Acute myeloid leukemia (AML) is a blood cancer that affects a
specific subgroup of hematopoietic stem/progenitor cells, and
has different genetic and molecular abnormalities (105, 126, 127,
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134). In AML, YTHDF2 could isolate m6A-modified circRNA
and inhibit innate immunity (125). For unmodified circRNA, it
could be used as an effective adjuvant to induce antigen-specific
T cell activation, antibody production, and antitumor immunity
enhancement (125). The genetic depletion and pharmacological
inhibition of FTO significantly inhibited the self-renewal of
leukemia stem cells, and induced immune responses by
inhibiting the expression of immune checkpoint genes (128).
Targeting FTO could make leukemia cells more sensitive to T cell
toxicity and overcome immune evasion induced by hypo-
methylation agents, suggesting the potential value of targeting
FTO in anticancer treatment (128).

Other Cancers
Knockdown of FTO increased the m6A methylation of key
tumor-promoting genes in melanoma cells, including PD-1,
CXCR4, and SOX10, resulting in increased RNA attenuation
mediated by the m6A reader YTHDF2 (129, 135, 136).
Knockdown of FTO made melanoma cells more sensitive to
interferon gamma (IFN-g), thereby reducing the resistance to
anti-PD-1 therapy in mice in an adaptive immunity-dependent
manner (129, 137). The combination of FTO inhibition and anti-
PD-1 blockade reduced the resistance of melanoma to
immunotherapy (86). The expression and mutation statuses of
the ALKBH5 gene were closely related to the response to
immunotherapy in patients with melanoma (75). Knockout of
ALKBH5 in tumor ce l l s enhanced the e fficacy of
immunotherapy, which supported the therapeutic value
of ALKBH5 in melanoma immunotherapy (75). Mutation or
downregulation of the ALKBH5 gene in melanoma patients was
associated with positive response to PD-1 blockade by
pembrolizumab or nivolumab (75).

m6A RNA methylation may be involved in the regulation of
the immune microenvironment in head and neck squamous cell
carcinoma (HNSCC) in synergy with the PI3K/AKT/mTOR
signaling pathway (138). Li et al. found that YTHDC2 is
associated with the level of immune infiltration of B cells, CD8+
T cells, CD4+ T cells, neutrophils, and dendritic cells in HNSCC
(139). Feng et al. (140) further revealed the important role of m6A
RNA methylation-related lncRNAs in the HNSCC immune
microenvironment. Nasopharyngeal carcinoma (NPC) is a highly
immunogenic tumor, which is characterized by a large abundance
of tumor infiltrating lymphocytes. METTL3 was low expressed in
NPC and related to the infiltration of various immune cells
(76, 141–144).

Adrenocortical carcinoma (ACC) is a highly immunogenic
tumor, and 86.3% of ACCs had abundant tumor infiltrating
lymphocytes (145). The m6A reader HNRNPA2B1 mediated the
pattern of TME infiltration, and promoted the progression of
ACC by regulating the activity of macrophages (145).

Numbers of most of the immune cells (type M1 and M2
macrophages, CD8+ T cells, Tregs, and dendritic cells) were
negatively associated with IGF2BP2 expression in osteosarcoma
(146). M6A modification-mediated aberrant activation of cell
cycle-related pathways and suppression of immune response
may play a crucial role in the progression of osteosarcoma (147).
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PERSPECTIVES

m6A RNA methylation modification plays various vital roles in
nearly all biology processes including cancer initiation and
progression. There are some unsolved questions that need to
be addressed in the future to fully reveal the function of m6A
modification during tumor genesis, progression, and antitumor
immune response. The roles of m6A methylation need to be
studied in more types of immune cells and immune-associated
cells besides those herein reviewed, and the involvement of m6A
modification in the regulation of more biology behaviors and
functions (e.g., metabolism) of immune cells and in the interplay
and crosstalk between cancer cells, immune cells, other stromal
cells, and non-cellular TME components need to be further
investigated, to comprehensively reveal the complicated m6A-
associated regulatory networks and to provide promising targets
for novel immunotherapy strategies. The m6A-modified
molecules and the relevant signaling pathways which have
been investigated are limited, and the full m6A regulatory
spectra within specific immune cells need to be further
uncovered. Notably, the effects of m6A methylation on the
biology behavior and function of a certain type of immune cell
may vary according to different target RNAs (mRNAs and non-
coding RNAs), and the interaction between different regulatory
pathways need to be clarified. Besides the extracellular m6A
inducers (e.g., IL-6 and lipopolysaccharide) herein reviewed,
explorations of other inducers and inhibitors may offer better
understanding of the meticulous m6A regulatory network. The
m6A regulators which have currently been explored are also
limited; deciphering the roles of more m6A writers, erasers, and
readers and the further interplays between them and
identification of the most relevant and potent regulators may
provide important hints for development of m6A-relevant targets
for precision immunotherapy. While the inhibition of YTHDF1
and/or YTHDF2 in DCs and macrophages have been suggested
to be promising anticancer strategy, the influences of such
inhibition on the other intracellular molecules and pathways
besides those already explored and on cancer cells, other immune
cells, and other stromal cells also need to be clarified to further
support the therapeutic significance with safety; it would also be
important to explore how to precisely deliver the corresponding
inhibitory drugs to the specific cell types to minimize the off-
target effects. It may also be interesting to investigate the impact
of m6A modification on RNA in different organelles, such as
mitochondria and extracellular vesicles. The different regulatory
roles of m6Amethylation in different stages of tumor progression
and in primary and metastatic cancer sites and the interplay
between m6A and other RNA modifications may also be
intriguing topics of research.

Most of the currently available evidence on the roles of m6A
modification in the regulation of tumor immunity in the TME
can be divided into two aspects: Exploration of the biology
function of a single m6A modulator to clarify the underlying
mechanism and construction of model or signature integrating
multiple m6A regulators to precisely predict the prognosis and
immunotherapy efficacy within a specific cancer. For mechanism
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explorations, it is encouraged that the impact of m6A
modification on more tumor biology behaviors including
immune metabolism, extracellular vesicular activity, and
autophagy beyond the routinely investigated ones be evaluated.
It is important to also look more into the feedback modulation of
m6A modification by the TIME, and a feedback loop between
m6A methylation and tumor immunity may better represent the
real biology processes within humans. A target RNA is regulated
by multiple m6A modulators, and a modulator can function on
various target RNAs. The interaction between diverse regulatory
pathways cannot be neglected, and artificial intelligence (AI) and
bioinformatics methods may help to better understand the
complex processes. While various m6A-based signatures or
scores have been constructed, they are mostly based on
publicly available databases (e.g., TCGA) which include mostly
western populations and often lack validations in different
ethnicities. It is warranted that more precision models will be
derived from clinically oriented data within different populations
and be validated across countries or continents, to largely
improve the representativeness and generalizability. The
methods used to build the m6A-based models are also largely
heterogeneous across studies. Comparative studies paralleling
investigating the prediction efficacy of models constructed using
different methods, including deep learning, other machine
learning (e.g., the classical support vector machine), and the
popular LASSO regression for selecting more predictively
meaningful variables, may help to identify the best model.

Previously, using machine learning, we have constructed two
personalized signatures majorly based on multiple selected
immune cell markers in the TME which can precisely predict
prognosis and chemotherapy benefits for a specific patient (148–
150); furthermore, we also build an individualized predictive
model based on immune cells in the peripheral blood to help to
precisely select the subgroup of patients who will more likely
benefit from radical resection (151). It may be interesting to
investigate the associations between m6A methylation and
tumor immunity-based signatures or scores. For m6A-based
model construction, it is investigable to alternatively change the
endpoint from survival outcomes to signatures summarizing
characteristics of the TIME, and the models constructed may
also be well predictive of longer-term outcomes. Since tissue
specimens are not always obtainable especially among patients
with advanced or metastatic cancers that are not resectable, it is
necessary to fully consider the concept of liquid biopsy and to find
surrogate markers within easily accessible samples, especially the
peripheral blood. It is encouraged that further studies focus on the
association between the m6A regulators and tumor immunity
markers in the cancer lesion and in easily accessible body liquids to
clarify the representativeness of the latter, and then on the clinical
usefulness of m6A-based models constructed based on the
peripheral blood markers. It may also be interesting to assess the
efficacy of predicting the previously constructive immune
signature and then prognosis and treatment benefits based on
scores integratingm6A regulators, and models integrating both the
m6A regulators and tumor immunity components may have
further enhanced predictive efficacy.
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Based on the close relationship between m6A modification
and tumor immunity, m6A-targeted immunotherapy strategies
may be promising. Regulations of the methylation and
demethylation statuses within diverse immune cells may
dramatically impact the antitumor activities, and rebalancing
the homeostasis of m6A writers, erasers, and readers may
contribute to creating a favorable anticancer immunity
effectively inhibiting tumor initiation and progression.
m6A-based signatures can well predict the efficacy of
immunotherapy using agents targeting PD-1/L1, etc., and it is
desirable that m6A-targeted therapeutic strategies will further
enhance the efficacy of immunotherapy; targeting both tumor
immunity and m6A modification may have markedly stronger
effects compared to targeting either alone. It may be
recommendable that m6A modulators associated with
anticancer immune components and activities be selected and
form the basis for further drug development; particularly, those
with clear and obvious interactions with famous cancer immune
markers whose functions have been well revealed (e.g., PD-1/L1,
CTLA4, and CD47) should be the focus. Since m6A modification
is a relatively new concept, there may still be some way to go for
the development of relevant agents. Notably, there are complex
m6A regulatory networks accompanied by numerous feedback
loops and other precise regulatory mechanisms within human
bodies, and targeting a single modulator may not fully produce
the anticipated effects. Action on multiple m6A modulators to
reshape the relevant homeostasis may have better anticancer
effects. Furthermore, to minimize the possible off-target effects, it
may be desirable to more precisely deliver the m6A-targeted
modulatory agents into the immune cells of interest, with the
help of some advanced drug delivery technologies (e.g.,
nanotechnology). Importantly, it is unclear whether change in
level of a specific modulator will cause a dramatic cascade
reaction greatly impairing other body functioning, and the
influences of the “butterfly flapping its wings” should be
carefully assessed before any m6A-targeted agents are used
in humans.
CONCLUSIONS

This review focuses on the modulation of immune function by
m6A in the TME of various cancers. m6A is one of the most
common RNA modifications and affects tumor occurrence,
development, and response to immunotherapy by regulating
anticancer immunity. The m6A writers, erasers, and readers,
which are involved in nearly all biology processes of RNA, such
as maturation, transport, splicing, translation, and degradation,
all play important roles in the modulation of anticancer immune
response. m6A can impact anticancer immunity by regulating
diverse activities of various immune cells, such as the
differentiation of T cells, the stabilization of Tregs, the
maturation of DCs, the polarization of macrophages, and
the function modulation of MDSCs. m6A modulators are
closely related to tumor immunity and immunotherapy, and
many abnormally expressed m6A regulatory factors can impact
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anticancer immune functions and further modulate tumor
genesis, proliferation, growth, invasion, and metastasis by
regulating the balance between the expressions of oncogenes
and tumor-suppressor genes in the TIME. Notably, most of the
reviewed studies on the relationship between m6A RNA
methylation and tumor immunity are still in their infancy, and
more in-depth researches are needed to explore the mechanisms
under ly ing the regula t ion of tumor immuni ty by
m6A modifications.
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