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Glioma, as the most common and lethal intracranial tumor, is a serious disease that causes many deaths every year. Good
comprehension of the mechanism underlying this disease is very helpful to design effective treatments. However, up to now, the
knowledge of this disease is still limited. It is an important step to understand themechanism underlying this disease by uncovering
its related genes. In this study, a graphicmethodwas proposed to identify novel glioma related genes based on known glioma related
genes. A weighted graph was constructed according to the protein-protein interaction information retrieved from STRING and the
well-known shortest path algorithm was employed to discover novel genes. The following analysis suggests that some of them are
related to the biological process of glioma, proving that ourmethod was effective in identifying novel glioma related genes.We hope
that the proposed method would be applied to study other diseases and provide useful information to medical workers, thereby
designing effective treatments of different diseases.

1. Introduction

Glioma is the most common and lethal intracranial tumor. It
always revealed itself as malignant glioma which is usually
divided into astrocytoma, oligodendroglioma, and oligoas-
trocytoma. Besides the classification based on histopatho-
logical features, glioma could also be graded on a WHO
consensus-derived scale of I to IV by means of the degree
of malignancy [1]. Clinically, most of the gliomas are high-
grade gliomas (HGG). Glioblastoma (GBM), one of the
HGG, accounts for more than half of gliomas [1]. Although
the knowledge of glioma, especially HGG, has increased
dramatically in recent years, many questions are still waiting
for further elucidation. On the other hand, the overall 5-
year survival rate of GBM remains less than 5% despite the
advances in surgery, radiation, and chemotherapy [2].

In the previous reports, glioma always manifested itself
with disordered pathways which regulated proliferation,
survival, invasion, and angiogenesis. Among these biological
processes, RB and p53 pathways are more inclined to be
dysfunctional in GBM, and the disrepair could lead to the
destruction of cell cycle by regulating the G1-to-S-phase tran-
sition [3, 4]. Furthermore, other pathways such as MAPK,
PI3K/PTEN/AKT, and NF-𝜅B pathway are also overactivated
in glioma and contribute to the uncontrollable cellular pro-
liferation [5–7]. As we know, the tumorigenesis of glioma
is a complicated process which involved intricate pathways
beyond the above ones. Towidely understand themechanism
underlying this disease, identification of its related genes
and uncovering the relationship of them and the biological
process of glioma are very important. However, it is time-
consuming and expensive to identify novel glioma related
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genes by conventional experiments. On the other hand,
encouraged by the successful application of computational
methods to deal with various biological problems such as
drug design [8–13] and analysis of complicated biological
pathway [14–17], computational methods may address this
problem and provide some useful information for investiga-
tors.

In this study, we proposed a graphic method and
attempted to apply this method to discover novel glioma
related genes. The current known glioma related genes col-
lected from various sources were the firsthand information.
Based on these genes, some new discovered genes were
obtained by the well-known shortest path algorithm. Fur-
thermore, a permutation test was conducted to exclude false
positives among them. The analysis of the final remaining
genes suggests that some of them had direct or indirect
relationship to the biological process of glioma, indicating
that this method was effective and may give new insight to
study other diseases.

2. Materials and Methods

2.1. Materials. The current known glioma related genes were
retrieved from the following sources. (1)All the 11 data sheets
listed on the web page of COSMIC (http://cancer.sanger.ac
.uk/cancergenome/projects/census/) were downloaded, from
which we obtained 18 glioma related genes; (2) search for
human diseases in UniProt (http://www.uniprot.org/) with
keywords “human glioma oncogene” and “human glioma
suppressor gene,” thereby obtaining 49 and 32 genes (only
reviewed genes were selected), respectively; (3) select “Lit-
erature Search” in TSGene (http://bioinfo.mc.vanderbilt.edu/
TSGene/search.cgi) and input “glioma” as keyword, obtain-
ing 7 genes. After collecting all of the genes mentioned
above, we finally obtained 77 glioma related genes, which
were available in Supplementary Material I available online
at http://dx.doi.org/10.1155/2014/891945.

2.2. Construction of a Weighted Graph from Protein-Protein
Interactions. Protein-protein interaction (PPI) is useful
information for investigating various biological problems
[18–22]. Many computational methods were proposed
based on the fact that proteins that can interact with each
other always share similar functions. Since the known
glioma related genes must have some common features
related to glioma, it is reasonable to discover novel glioma
related genes based on protein-protein interaction and
known glioma related genes. The data concerning protein-
protein interactions was downloaded from STRING (Search
Tool for the Retrieval of Interacting Genes/Proteins,
http://string.embl.de/) [23], a large database containing
known and predicted protein interactions which are derived
from genomic context, high-throughput experiments,
(Conserved) Coexpression and Previous knowledge. In the
obtained file, we extracted all protein-protein interactions of
human. Each obtained interaction consists of two proteins
and a score with range between 150 and 999, which can
quantify the likelihood that an interaction may occur. For
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Figure 1: A simple example of the weighted graph.
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graph took proteins occurring at least one protein-protein
interaction of human as nodes, while two nodes were
adjacent if and only if the score of the interaction between
the corresponding proteins was greater than zero. The
obtained graph consisted of 18,600 nodes and 1,640,707
edges. Furthermore, to correctly reflect the strength of the
interaction, each edge with nodes V
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weight, which can be computed by
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2.3. Selection of CandidateGenes. It is obvious that the glioma
related genes must have some common features which are
related to glioma. On the other hand, as mentioned in
Section 2.2, two proteins that can interact with each other,
that is, they are adjacent in the constructed weighted graph,
always share common features. The idea of our method was
based on these facts. To clearly elaborate the idea of the
method, we constructed a simple weighted graph which is
shown in Figure 1, because the original graph was too large
to exhibit in the paper. It is easy to observe from Figure 1
that the shortest path connecting 𝑎 and 𝑑 contains 𝑒, 𝑓 and
𝑔 as the inner nodes. Based on the weights of edges on this
path, we can obtain that genes 𝑎 and 𝑒 can share common
functions with high probability, because the confidence score
of the interaction between 𝑎 and 𝑒 is very high, which is
1000 − 20 = 980. The similar results also hold for 𝑒 and 𝑓,
𝑓 and 𝑔, 𝑔 and 𝑑. If genes 𝑎 and 𝑑 are two known glioma
related genes, genes 𝑒,𝑓, and𝑔 are actual glioma related genes
with high likelihood. In view of this, shortest paths between
any pair of known glioma related genes obtained by Dijkstra’s
algorithm, themost famous shortest path algorithmproposed
by Dijkstra in 1956 [24], are useful information for further
investigation.

After obtaining the shortest paths connecting any pair of
known glioma related genes, it can be seen that some nodes/
genes occurred in many paths, while most of nodes/genes
in the graph were not contained in any path. Thus, for each
node/gene in the graph, we counted the number of paths
containing the node/gene, termed as betweenness which
is defined as the number of shortest paths containing the
node/gene as an inner node. The concept of betweenness
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has been employed in some studies of natural and man-
made networks [25–29]. In fact, the betweenness of some
node/gene reflects the direct and indirect relationship of the
gene and known glioma related genes. Thus, the likelihood
of genes with high betweenness to be related to glioma was
higher than those with low betweenness. In view of this,
we selected genes with betweenness greater than 0 as the
candidate genes, whichmay be the novel glioma related genes
with high probability. It is necessary to point out that the
known glioma related genes were not included in the set of
candidate genes.

2.4. Filtering Candidate Genes by Permutation Test. As
described in Section 2.3, some candidate genes can be
obtained by researching the shortest paths connecting any
two known glioma related genes. However, some of them
may be false positives, because some nodes/genes may easily
receive a high betweenness due to their location in the
weighted graph even if we randomly select genes in STRING
as the known glioma related genes. To exclude these false
discoveries, a permutation test should be executed as follows.

(I) 1,000 node/gene sets, denoted by 𝐺
1
, 𝐺
2
, . . . , 𝐺

1000
,

were randomly selected in the weighted graph such
that each of them had the same size of known glioma
related gene set.

(II) For each candidate gene discovered in Section 2.3,
calculate its betweenness on each set 𝐺

𝑖
(1 ≤ 𝑖 ≤

1000).
(III) Calculate the permutation FDR of each candidate

gene 𝑝 by

FDR (𝑝) =
∑
1000

𝑖=1
𝛿
𝑖

1000

, (2)

where 𝛿
𝑖
was set to be 1 if the betweenness of 𝑝 on 𝐺

𝑖

was larger than that of 𝑝 on the known glioma related
gene set; otherwise, it was set to be 0.

Obviously, small permutation FDR of one candidate gene
implies that it is the true positive with high probability.

3. Results and Discussions

3.1. Candidate Genes. For the 77 genes mentioned in
Section 2.1, we searched the shortest path connecting any
two of them by Dijkstra algorithm. After calculating the
betweenness of each node/gene in the weighted graph, 215
candidate genes with betweenness larger than zero were
obtained. These 215 genes and their betweenness were avail-
able in Supplementary Material II. To exclude the false
positives, the permutation test was conducted as described
in Section 2.4. By (2), we can calculate the permutation FDR
of each candidate gene. These values were also provided in
Supplementary Material II. Since the likelihood of gene with
small permutation FDR to be the actual glioma related gene
is high, we set the threshold to be 0.05, that is, selecting genes
with permutation FDRs lower than 0.05 among 215 candidate
genes, thereby obtaining 67 genes, listed in Table 1. These

genes were deemed to have strong relationship with glioma
and further discussions were based on these genes.

3.2. Analysis of Enriched KEGG Pathways of Candidate
Genes. As mentioned in Section 3.1, 67 candidate genes were
obtained. To analyze the relationship of them and glioma, we
employed DAVID (Database for Annotation, Visualization
and Integrated Discovery) [30], a functional annotation tool
to understand biological meaning behind large list of genes.
67 candidate genes comprised the input gene list of DAVID,
thereby obtaining 9 KEGG pathways that were enriched by
these 67 candidate genes. The detailed output of DAVID
for KEGG pathway enrichment analysis was available as
Supplementary Material III.

The top 5 pathways have the 𝑃 value less than 0.05
which were discussed below. The most enriched pathway is
hsa04360: axon guidance (“count” = 8). Among the 8 genes,
7 ephrins-related genes are enriched whose corresponding
proteins include 4 members (EFNA3, EFNB1, EFNB2, and
EFNB3) of the ephrins family and 3 members (EPHA1,
EPHA4, and EPHA7) of the ephrins receptor subfamily.
Eph receptor tyrosine kinases (Ephs) and ephrins (EPH)
could navigate cells by controlling cell-cell adhesion and
segregation [31]. In other words, with the function of axon
guidance Ephs/EPH could regulate the invasion, neoangio-
genesis, and metastasis of gliomas [32, 33]. Ding and his
colleagues have identified several somatic mutations of Ephs
especially EphA7 in lung cancer [34]. Although the close con-
nection between Ephs/EPH and cancer has been reported,
its pathogenic mechanism in gliomas is still unknown. The
second pathway is hsa04510: focal adhesion (“count” = 7).
As we know, infiltration of tumor cells and angiogenesis are
critical for the growth of tumor. Zagzag et al. reported that
focal adhesion kinase (FAK), highly associated with these
biological processes, plays an important role in tumorigenesis
of gliomas via enhancing the ability of infiltration and angio-
genesis [35]. The FAK-related genes, like CTNNB1, VEGFA,
KDR, and FLT4 enriched in this pathway, are always mutated
or aberrantly expressed in various types of cancers [36, 37].
The third pathway is hsa04530: tight junction (“count” = 5).
In the brain, the expression of the tight junction proteins is
important for blood-brain tumor-barrier (BTB) permeability.
Hence destruction of the tight junction could facilitate the
development of gliomas by increasing BTB permeability
[38, 39]. The fourth pathway is hsa04520: adherens junction
(“count” = 4). Adherens junction is reported to be disordered
in the glioblastoma and to affect the invasive behavior of
GBM [40, 41]. The last significantly enriched pathway is
hsa05200: pathways in cancer (“count” = 7). The result shows
that a common mechanism is shared by the gliomas and
other types of cancers. Although these significant enriched
pathways have been reported to be related to gliomas more
or less, our results might expand the avenues to explore new
mechanisms in the tumorigenesis of gliomas.

3.3. Analysis of Enriched GO Terms Candidate Genes. In
addition to KEGG pathway enrichment analysis, DAVID
also provided the GO terms enrichment analysis of the
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Table 1: Candidate genes with permutation FDR lower than 0.05.

Ensemble ID of candidate gene Gene name Betweenness Permutation FDR
ENSP00000227638 PANX1 72 0
ENSP00000235310 MAD2L2 72 0
ENSP00000245323 EFNB2 335 0
ENSP00000258428 REV1 72 0
ENSP00000265727 ADAM22 72 0
ENSP00000281821 EPHA4 339 0
ENSP00000293831 EIF4A1 72 0
ENSP00000302719 KCNAB3 72 0
ENSP00000312697 DMAP1 88 0
ENSP00000329797 CADM1 72 0
ENSP00000335434 WDR20 72 0
ENSP00000341138 EPB41L3 72 0
ENSP00000351697 REV3L 72 0
ENSP00000354778 CNTNAP2 72 0
ENSP00000356150 MDM4 72 0
ENSP00000357177 ARHGEF11 142 0
ENSP00000361366 SFTPD 72 0
ENSP00000369218 RBM17 72 0
ENSP00000370119 SMN2 72 0
ENSP00000245304 RAP2A 72 0.001
ENSP00000275815 EPHA1 72 0.001
ENSP00000328511 KCNA4 72 0.001
ENSP00000377446 SUCLG1 210 0.001
ENSP00000399511 TNIK 72 0.001
ENSP00000229595 ASF1A 72 0.002
ENSP00000252699 ACTN4 72 0.002
ENSP00000263208 HIRA 72 0.002
ENSP00000263923 KDR 104 0.002
ENSP00000304169 PITX2 210 0.002
ENSP00000330633 CNTN2 72 0.002
ENSP00000276072 TAF1 72 0.003
ENSP00000295600 MITF 138 0.003
ENSP00000360157 FOXD3 6 0.003
ENSP00000264010 CTCF 72 0.004
ENSP00000271628 SF3B4 75 0.004
ENSP00000350941 SRC 421 0.004
ENSP00000361125 VEGFA 164 0.004
ENSP00000226091 EFNB3 67 0.006
ENSP00000358309 EPHA7 2 0.006
ENSP00000358918 SUFU 72 0.007
ENSP00000316879 EIF4G1 72 0.011
ENSP00000260653 SIX3 2 0.012
ENSP00000352516 DNMT1 90 0.016
ENSP00000358716 DDX20 72 0.017
ENSP00000357393 EFNA3 50 0.018
ENSP00000341680 DTNBP1 66 0.02
ENSP00000344456 CTNNB1 607 0.02
ENSP00000297904 FIGF 2 0.021
ENSP00000265165 LEF1 134 0.022
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Table 1: Continued.

Ensemble ID of candidate gene Gene name Betweenness Permutation FDR
ENSP00000347948 TNFRSF14 68 0.023
ENSP00000288986 NCK1 78 0.027
ENSP00000261937 FLT4 2 0.029
ENSP00000333919 BTLA 68 0.03
ENSP00000332549 GRIN2A 58 0.032
ENSP00000376765 PIAS3 4 0.033
ENSP00000361818 SDC4 1 0.035
ENSP00000386165 CEBPD 38 0.035
ENSP00000348307 SIRPA 34 0.036
ENSP00000344666 NF2 1 0.037
ENSP00000219255 PARD6A 72 0.038
ENSP00000204961 EFNB1 5 0.039
ENSP00000172229 NGFR 72 0.043
ENSP00000344115 CDH5 24 0.043
ENSP00000405041 POU5F1 6 0.045
ENSP00000360532 CDC5L 6 0.046
ENSP00000295897 ALB 72 0.047
ENSP00000340944 PTPN11 112 0.047

67 candidate genes, which were available in Supplementary
Material IV.

It can be seen that 227 GO terms were enriched by these
67 genes. Top 10 Go terms sorted by 𝑃 value are investigated
and discussed as below. Among the top 10, 4 GO terms
are biological process (BP) which included GO: 0007169:
transmembrane receptor protein tyrosine kinase signaling
pathway, GO: 0007167: enzyme linked receptor protein sig-
naling pathway, GO: 0042127: regulation of cell proliferation,
and GO: 0000904: cell morphogenesis involved in differen-
tiation. From the results, we found that all these processes
are connected with receptor-dependent signaling pathways.
The cancer genome atlas (TCGA) group has revealed that the
receptor tyrosine kinase (RTK) pathway was deregulated in
88%of the patients with glioblastoma [42]. After deregulation
of the RTK, its downstream genes could function uncontrol-
lably in the cellular proliferation and morphogenesis which
are very pivotal for the growth of gliomas. In the top 10
GO terms, we also find 4 molecular function (MF) GO
terms: GO: 0004714: transmembrane receptor protein tyro-
sine kinase activity, GO: 0005003: ephrin receptor activity,
GO: 0046875: ephrin receptor binding, and GO: 0004713:
protein tyrosine kinase activity. The MF classification also
suggests the importance of RTK signaling pathways especially
the Ephs/EPH pathway in the tumorigenesis of gliomas.
As the previous reports, RTK pathways could regulate cell
proliferation and migration which were indispensable for the
development of gliomas [42, 43]. Besides BP and MF GO
terms, 2 cellular component (CC)GO terms are also enriched
in the top 10 GO terms: GO: 0044459: plasma membrane
part and GO: 0005887: integral to plasma membrane. As we
know, the transformation of cell membrane is necessary for
the migration and invasion process during tumorigenesis of
gliomas.Our results pave theway for understanding potential
pathogenic mechanism of gliomas.

3.4. Analysis of Some Candidate Genes. Among the 67 genes,
several genes are intriguing which may play pivotal role
in tumorigenesis of glioma. This section gave the detailed
discussion of some candidate genes.

VEGFA, also known as the vascular endothelial growth
factor (VEGF), is a member of a large family of growth
factors that also includes VEGFB, VEGFC, VEGFD, and
placental growth factor (PLGF). VEGF is the only mitogen
that specifically acts on endothelial cells and also a tumor
angiogenesis factor in human glioma in vivo [44]. Knizetova
et al. have demonstrated that the autocrine VEGF signaling
is mediated via VEGFR2 (KDR), another gene in our list.
They found that blockade of VEGFR2 would abrogate the
VEFG-mediated enhancement of astrocytoma cell growth
and viability [37]. In the in vivo level, Millauer et al. found
that disrepair of VEGFR2/VEGF system in angiogenesis
could prevent tumor growth in nude mice [45]. Another
VEGF receptor found in our list is VEGFR3 (also known
as FLT4). In contrast to VEGFR1/2, VEGFR3 does not
bind VEGFA and mainly functions in lymphangiogenesis
as a receptor of VEGFC and VEGFD [46, 47]. Jenny et al.
reported that VEFGR3 was expressed in some tumor types
such as haemangioblastoma and glioblastoma, despite their
lack of lymphatic vessels [48]. Although the roles of VEGF
signaling pathway in the tumorigenesis of glioma have been
well studied, new findings have been explored in succession
recently.

CTNNB1, with more famous name of catenin beta 1,
encodes 𝛽-catenin protein which plays important roles in
cellular morphogenesis, differentiation, and proliferation via
regulating theWnt signaling [49]. Yano et al. induced glioma
in rat using N-ethyl-N-nitrosourea display aberrant nuclear
accumulation of 𝛽-catenin in contrast to normal brains
[50]. Moreover, Pu et al. found that the downregulation
of 𝛽-catenin by siRNA could suppress malignant glioma
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cell growth [36]. To elucidate the connection between 𝛽-
catenin and glioma, Liu and his colleagues performed a
systemic research. They found a higher expression level of
𝛽-catenin in astrocytic glioma patients with high grade in
comparison with the normal controls. Furthermore, they
also illustrated that the overexpression of 𝛽-catenin may be
an important contributing factor to glioma progression by
means of facilitating proliferation and inhibiting apoptosis
[51]. After Wnt pathway is activated, 𝛽-catenin accumulates
and enters the nucleus where it can act as a coactivator for
TCF/LEF-mediated transcription [52]. As the downstream
of beta-catenin, LEF1, another gene in our list, also plays a
crucial role in the Wnt signaling pathway. LEF1, with full
name of lymphoid enhancer-binding factor 1, tends to be
mutated in the tumors. Liu et al. have investigated that MiR-
218 could reduce the invasiveness of glioblastoma cells by
targeting LEF1 [53].

SRC, whose corresponding protein is a tyrosine-protein
kinase, could play a pivotal role in the regulation of embry-
onic development and cell growth [54]. Besides functioning
in the embryonic development, SRC could also regulate
the tumorigenesis of various types of cancers like breast
cancer, colon cancer, and brain cancer [55, 56]. Src protein
always maintains an inactive state until its Y530 residue is
dephosphorylated by protein tyrosine phosphatase-𝛼 [57].
Src could also be activated by direct binding of its SH2 and
SH3 domains to intracellular proteins or activated tyrosine
kinase growth factor receptors [58]. Stettner et al. have found
elevated SRC activity in GBM compared with normal brain
[59]. On the other hand, Lund et al. found that the infiltration
of glioma reduced in Src-deficient mice [60]. It is reported
that the increased SRC activity in GBM may be due to
increased activation of cell surface growth factor receptors
and integrins that activate SRC-family kinases (SFKs) rather
than the amplification or mutation of SFK genes [42, 61].

4. Conclusion

In biomedicine and genomics, identification of disease genes
is an important topic. This contribution proposed a graphic
method to identify novel disease genes and the method was
applied to glioma, one kind of cancers. The findings indicate
that this method is quite effective. It is hopeful that the
contribution can provide help formedical workers to discover
effective treatments of glioma and give new insight to study
various diseases.
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