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Abstract: Non-coding RNA (ncRNA), released into circulation or packaged into exosomes, plays
important roles in many biological processes in the kidney. The purpose of the present study is to
identify a common ncRNA signature associated with early renal damage and its related molecular
pathways. Three individual libraries (plasma and urinary exosomes, and total plasma) were prepared
from each hypertensive patient (with or without albuminuria) for ncRNA sequencing analysis. Next,
an RNA-based transcriptional regulatory network was constructed. The three RNA biotypes with
the greatest number of differentially expressed transcripts were long-ncRNA (lncRNA), microRNA
(miRNA) and piwi-interacting RNA (piRNAs). We identified a common 24 ncRNA molecular
signature related to hypertension-associated urinary albumin excretion, of which lncRNAs were
the most representative. In addition, the transcriptional regulatory network showed five lncRNAs
(LINC02614, BAALC-AS1, FAM230B, LOC100505824 and LINC01484) and the miR-301a-3p to play a
significant role in network organization and targeting critical pathways regulating filtration barrier
integrity and tubule reabsorption. Our study found an ncRNA profile associated with albuminuria,
independent of biofluid origin (urine or plasma, circulating or in exosomes) that identifies a handful
of potential targets, which may be utilized to study mechanisms of albuminuria and cardiovascular
damage.

Keywords: urinary albumin excretion; hypertension; exosomes; plasma; non-coding RNA

1. Introduction

Hypertension is a multifactorial disease that affects cardiovascular and renal sys-
tems [1,2], and persistently increased urinary albumin excretion (UAE) is a marker of
cardiovascular risk progression and renal impairment [3,4]. The mechanisms leading to
progression of renal disease and albuminuria are incompletely understood.

Non-coding RNA (ncRNA) species comprise more than 90% of all transcripts and
have attracted increasing attention in a broad range of biological processes over the last
decade [5–7]. NcRNAs can be divided into three categories based on their length: ncRNAs
longer than 200 nucleotides (nt), including ribosomal RNA (rRNA) and long non-coding
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RNA (lncRNA); ncRNAs between 40 nt and 200 nt, such as transfer RNA (tRNA), small
nucleolar RNA (snoRNA) and small nuclear ribonucleic acid RNA (snRNA); and ncRNA
shorter than 40 nt, such as microRNA (miRNA), piwi-interacting RNA (piRNA) and small
interfering (siRNA) [8,9]. NcRNAs’ expression is tissue and cell-type specific under physio-
logical conditions and plays an important role in many biological processes by regulating
gene expression at epigenetic, transcriptional and post-transcriptional levels [10–12].

Among these macromolecules, the role of miRNAs in the kidney has been studied
extensively, and preliminary evidence indicates that they may regulate progression of
glomerular and tubular diseases [13–16]. Current knowledge on lncRNAs has attracted
attention over the last few years in both glomerular and tubulointerstitial kidney diseases,
such as in diabetic nephropathy [17]. Competitive binding between lncRNAs, target mR-
NAs and miRNAs is thought to regulate gene expression, forming a wide RNA-based
transcriptional regulatory network (lncRNA–miRNA–mRNA) in a broad group of dis-
eases [18–20]. Another class of small non-coding regulatory RNAs are piRNA, a recently
discovered class whose many aspects in terms of biogenesis, relevance to health and disease,
and overall gene regulatory mechanisms remain elusive [21]. Previous evidence suggests
that piRNA serve as upstream mediators of epigenetic control and may also be involved in
transcriptional gene silencing [22,23].

NcRNAs can be released into circulation bound to RNA-binding proteins or packaged
into extracellular vesicles (EVs), such as exosomes, and may function as paracrine effectors
in the crosstalk between different cell types in the kidney [24,25]. Recent studies have
demonstrated the role of exosomal ncRNAs as biomarkers in urological malignancies,
chronic kidney disease, cancer or psoriasis [26–28]. Our group has recently found that
urinary- and plasma-derived exosomes reveal a distinct miRNA signature associated
with albuminuria in hypertension, reflecting changes taking place in the kidney [29].
Nevertheless, a study that analyzes the global ncRNA profile associated with early renal
damage in hypertension remains largely unknown.

Our aim was to identify a combined signature of various ncRNA biotypes in liquid
biopsy, independent of biofluid origin, in urine, plasma or exosomes from hypertensive
patients with albuminuria, using high-throughput sequencing analysis, which may more
closely reflect the overall biology of underlying early damage than use of single markers.
Finally, we constructed an lncRNA–miRNA–mRNA regulatory network with the ncRNA
signature combining bioinformatics and correlation analyses associated with development
of UAE in hypertension.

2. Results
2.1. Characteristics of Study Patients

The study population included 48 essential hypertensive subjects, 22 subjects with
increased UAE and 26 normoalbuminurics (non-UAE). General patient characteristics and
antihypertensive medication are shown in Table 1.

2.2. Proportions of RNA Types in Each Biological Fraction and Patient Groups

Small RNA-sequencing single-end technology was used to detect RNA types in the
three different biofluid fractions (total plasma, urinary and plasma-derived exosomes) from
hypertensive patients with or without increased UAE. When we analyzed all mapped
reads as a whole, we observed that the most frequent RNA biotypes in proportion were
piRNA with 38%, miRNA with 32% and miscellaneous RNA (miscRNA) with 16%. This last
group included Y-RNA and Vault-RNA, where Y-RNA represented 99% of mapped reads.
LncRNA represented 63% of other mapped read groups (Supplemental Material, Figure
S1A). In addition, when all genes included in the analysis were examined and separated by
RNA type, those encoding small fragments of RNA showed the highest variety of genes (a
total of 10,603), followed by lncRNA (718), piRNA (293) and miRNA (159) (Figure S1B).
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Table 1. Clinical characteristics of hypertensive patients by study group.

Variables Albuminuria (UAE)
(n = 22)

Normoalbuminuria
(Non-UAE)

(n = 26)

Age (years) 52.2 ± 8.3 55.0 ± 5.3
Gender (male) 68.2% 65.4%
SBP (mmHg) 136± 15 136 ± 24
DBP (mmHg) 85 ± 10 87 ± 14
PP (mmHg) 51 ± 12 48 ± 17
Glucose (mg/dL) 122 ± 46 119 ± 41
Glycated hemoglobin (%) 6.6 ± 1.2 6.0 ± 0.9
Total cholesterol (mg/dL) 200 ± 34 ** 173 ± 29
LDL (mg/dL) 128 ± 30 ** 108 ± 25
HDL (mg/dL) 51 ± 14 50 ± 10
Triglycerides (mg/dL) 153 ± 78 127 ± 60
Plasma creatinine (mg/dL) 0.87 ± 0.30 0.90 ± 0.22
GFR (mL/min/1.73 m2) 96 ± 27 87 ± 19
Body mass index (kg/m2) 32 ± 7 30 ± 5
Obesity grade (%)

Grade I 29 20
Grade II 9 12
Grade III 14 8

Diabetes (%) 41 35
Dyslipidemia (%) 86 85
Smoking (%) 55 48
UAE/Creatinine (mg/g) 146.4 ± 144.3 *** 3.1 ± 1.7
Antihypertensive treatment (%)

ARB 95 92
CCB 36 38
Diuretics 68 62
Statins 32 8

ARB: angiotensin receptor blockers; CCB: calcium channel blockers; DBP: diastolic blood pressure; eGFR: estimated
glomerular filtration rate; PP: pulse pressure; SBP: systolic blood pressure; UAE: urinary albumin excretion.
** p value < 0.001; *** p value < 0.0001.

We next sought to analyze the proportion of RNA biotypes present in each of the three
biological biofluids, finding miRNA to be the predominant biotype with mapped reads in
urinary exosome fraction, representing approximately 65% of total mapped reads in both
hypertensive patient types (with or without UAE). Nonetheless, piRNAs were also the
most representative RNA type in both patient groups, with 40% in plasma exosomes and
51% in plasma (Figure 1). Of the remaining RNA types identified, mRNA, rRNA, miscRNA
and others (where lncRNA represented between 75% to 90% of reads) showed similar
percentages in the three biofluids, regardless of the presence of UAE. These data indicate
that biofluid origin, mainly if stemming from urine or plasma samples, influences RNA
type distribution. In addition, non-significant differences were observed in all biofluids
when comparing patient groups with and without UAE.

2.3. Differentially Expressed RNAs in Microalbuminuria in Each Biological Fraction

As shown in the volcano plot (Figure 2), analysis of RNA subtypes in all patients for
each biofluid identified more significant RNAs differentially expressed (DE) (FDR < 0.05)
in exosome fraction than in plasma, regardless of whether exosomes came from urine or
plasma. Significant RNA showed higher fold change (FC) and FDR in urinary and plasma
exosomes than in those circulating in plasma (Figure 2A,B vs. Figure 2C). Analyzing the
number of DE transcripts (considering p-value < 0.05), 4336 were found in urinary exosomes
(U-Exo), 4645 in plasma exosomes (p-Exo) and 1415 in plasma samples (Supplemental
Material, Figure S2A). In the three biofluids, the protein-coding genes correspond to
approximately 85% of the total transcripts (Figure S2B), followed by 7% lncRNA and
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2% miRNA. Interestingly, transcript type distributions obtained among the biological
compartments showed very limited overlapping between exosomal and plasma fractions,
with only 199 out of 10,396 common to all three groups (Supplemental Material, Figure S2A),
of which 88% were protein-coding genes (175 transcripts).
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Figure 1. Proportions of RNA types in each biological fraction and patient group. The unit used was 
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mRNA: messenger RNA; piRNA: PIWI-interacting RNA; rRNA: ribosomal RNA. 
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Figure 1. Proportions of RNA types in each biological fraction and patient group. The unit used was
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biological fluid in hypertensive patients with urinary albumin excretion (UAE). (D–F) represent each
biological fluid in non-UAE patients. miscRNA: miscellaneous RNA; miRNA: microRNA; mRNA:
messenger RNA; piRNA: PIWI-interacting RNA; rRNA: ribosomal RNA.
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Figure 2. Differentially expressed RNAs in hypertensive patients with UAE in each biological fraction.
Volcano plot depicts significantly altered RNAs found in (A), plasma exosomes; (B), urinary exosomes;
and (C), in plasma. Each dot represents an RNA; non-significant false discovery rate (FDR > 0.05) and
log2 fold-change ≤2 or ≥−2) in black, with log2 fold-change ≥2 or ≤−2 in brown, with significant
FDR in blue and with significant FDR and log2 fold-change ≥2 or ≤−2 in green. The threshold
dotted line for log2 fold-change was ≤2 or ≥−2, and for −log10(FDR) it was <0.05.
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2.4. Differentially Expressed Non-Coding RNAs by Origin

Analyzing DE ncRNA among hypertensive patients with or without UAE, we ob-
served that the three RNA biotypes with the greatest number of statistically significant
transcripts were lncRNA (52% in exosome fractions and 44% in plasma), miRNA (20% in
U-Exo, 26% in P-Exo and 13% in plasma) and piRNA (15% in U-Exo and plasma, 10% in
P-Exo) (Figure 3A). Next, the Venn diagram obtained from among the biological compart-
ments showed very limited overlapping between exosomal and plasma fractions, with 24
of these 835 DE ncRNAs common to all three groups. Ten of them were lncRNA (42%), six
pseudogenes (25%), four snoRNAs (17%), two miRNAs (8%) and two piRNAs (8%). These
24 ncRNAs represent the molecular signature related with hypertension-associated UAE,
independent of biofluid (U-Exo, P-Exo or circulating in plasma) (Figure 3B).
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FAM230B, LOC100505824 and LINC01484) and one miRNA (miR-301a-3p) were observed 
to be topological hub nodes whose betweenness, network degree and closeness centrality 
were significantly higher in comparison with other common RNAs (Table 2). In addition, 
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Figure 3. Differentially expressed non-coding RNAs by biofluid origin. (A), Characterization of
differentially expressed non-coding RNA type in hypertensive patients with UAE in exosome urine,
exosome plasma and plasma biofluids. (B), Venn diagram shows the overlap among biological frac-
tions. (C), Diverging bar charts give the fold-change expression of the 24 common non-coding RNAs
in each biological fraction: upregulated are in green and downregulated in red. logFC: logarithm
2 base fold change; lncRNA: long non-coding RNA; miRNA: microRNA; miscRNA: miscellaneous
RNA; piRNA: PIWI-interacting RNA; rRNA: ribosomal RNA; scaRNA: small Cajal body-specific RNA;
snRNA: small nuclear RNA; snoRNA: small nucleolar RNA; TEC: to be experimentally confirmed.

Diverging bar charts showed the fold-change expression of the 24 common ncRNAs
in each biological fraction (Figure 3C). The majority of lncRNAs were downregulated in
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hypertensive patients with UAE in all three biofluids. In both urine and plasma exosome
fractions, hsa-piR-32157 was upregulated and downregulated in plasma samples, and
the other hsa-piRNA-33056 was upregulated in P-Exo and plasma but downregulated in
U-Exo from patients with UAE. Likewise, both miRNAs (miR-208a and miR-301a) were
significantly augmented in U-Exo, despite being highly downregulated in plasma fraction.
All four snoRNAs were downregulated in U-Exo fraction but were upregulated in plasma.
Finally, the vast majority of pseudogenes were downregulated in both exosome and plasma
fractions from hypertensive patients with UAE (Figure 3C).

2.5. Common Differentially Expressed lncRNA–miRNA–mRNA Network from Hypertensive
Patients with Urinary Albumin Excretion

The ten DE lncRNAs and two miRNAs established in the molecular signature were
selected and potential predicted target mRNAs were identified, creating the common DE
lncRNA–miRNA–mRNA network (Figure 4). Hub nodes, characterized by their high
degree of connectivity to other nodes in the network, can be used to assess the significance
of genes in the network. In the present study, five lncRNAs (LINC02614, BAALC-AS1,
FAM230B, LOC100505824 and LINC01484) and one miRNA (miR-301a-3p) were observed
to be topological hub nodes whose betweenness, network degree and closeness centrality
were significantly higher in comparison with other common RNAs (Table 2). In addi-
tion, the Over-Representation Analysis using GO annotation showed that clathrin heavy
chain binding, store-operated calcium channel activity, mitogen-activated protein kinase
(MAPK) binding and extracellular matrix structural constituent were among other path-
ways that could play an important role in development of albuminuria, but more evidence
is necessary. The Over-Representation Analysis further reported that among the most
significant pathways were IL-17 signaling, sphingolipid signaling and metabolism, type II
diabetes mellitus, endocytosis and vascular endothelial growth factor (VEGF) signaling
(Figure 4B,C).

Table 2. List of common transcripts in the lncRNA–miRNA–mRNA network with high degree node.

RNA Degree Betweenness
Centrality

Closeness
Centrality

LINC02614 49 0.321215546 0.447368421
hsa-miR-301a-3p 34 0.223753645 0.354166667

BAALC-AS1 32 0.127310962 0.392307692
FAM230B 31 0.136936472 0.375

LOC100505824 28 0.128194316 0.387341772
LINC01484 20 0.090634319 0.350114416
LOC654841 14 0.020020697 0.348519362
LINC01229 14 0.015796606 0.334792123

EHHADH-AS1 13 0.036008241 0.34537246
SPANXA2-OT1 9 0.01894646 0.31875
LOC107984784 7 0.003982221 0.330453564

hsa-mir-208a-5p 6 0.037362168 0.263339071

2.6. Protein–Protein Interaction Network of Differentially Expressed mRNA in Common to All
Biofluids Associated with Albuminuria

To further clarify the biological roles of the common short fragments of protein-coding
DE RNA in the three biofluids from hypertensive patients with UAE, we performed the
gene set Over-Representation Analysis (ORA) with the following findings: 144 common
transcripts in the three biofluids and four networks related to pathogenesis of hypertension
and presence of UAE were identified, showing a central node with more than six edges.

The first network identified is associated with transforming growth factor (TGF)-
signaling and includes SMAD3, WNT7B, BMP6 and PDGFRB proteins. The second im-
portant network is associated with kidney urinary concentration mechanisms, such as
kidney water reabsorption, salt reabsorption and K/Cl cotransporter (YWHAQ, STK24,
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SLC12P6, CLCNKA and CLCNKB proteins). The third network is linked to modulation
of MAPK signaling, including YWHAQ, PRKAG3, PRKAB2 and TRIB2 proteins. Finally,
the last network mediates membrane trafficking with YWHAQ, GRIP1, RAB3IL1, HOOK1
and CYTH1 proteins involved (Figure 5). In addition, the DE mRNA-related GO analysis
showed that voltage-gated chloride and anion channel activity, glucocorticoid receptor
binding, extracellular matrix (ECM) structured constituent and others could play an im-
portant role in development of albuminuria. The pathway analysis further revealed that
12 unique pathways were enriched, including the factor-regulated calcium reabsorption,
complement and coagulation cascades, tight junction and vasopressin-regulated water
reabsorption.
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Figure 4. Overview of the common lncRNA–miRNA–mRNA target interaction network related to
hypertension-associated UAE. (A), Each common ncRNA in the three biofluids is a square node;
ncRNA targets are triangle nodes. The node size increases in relation to the number of edges (network
degree), and a higher confidence score indicates a stronger edge between nodes. The predicted
interaction between the ncRNA and its target is shown in pink, representing the same confidence
for all cases. (B), The top 20 most significant Gene Ontology terms. (C), The top 20 most significant
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway terms.
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Figure 5. Protein–protein interaction network of common differentially expressed mRNAs in all
biofluids in microalbuminuria patients. (A), Each common mRNA in the tree biofluids is a node
(circle); edges indicate direct interactions between nodes, the node size increases according to the
number of edges (network degree), and a higher confidence score indicates a stronger edge between
nodes. Four main sub-networks related with the pathogenesis of hypertension and the presence of
UAE were identified: TGF-β signaling (pink), MAPK regulation (green), membrane trafficking (red)
and urinary concentration mechanisms (yellow). (B), The top 20 most significant Gene Ontology
terms. (C), The significant Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway terms.

Finally, we generated a new interaction network joined to the lncRNA–miRNA–mRNA
targets interaction network (Figure 4), with the protein–protein interaction network of
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common DE mRNA (Figure 5). The new network showed numerous interactions between
the nodes of the two sub-networks, mainly at secondary level (Figure S3). Among the 19
DE genes with node degree >10, we found nine of the ten common lncRNAs, one common
miRNA and ten protein-coding genes (Table S1).

3. Discussion

In the present study, we identified a 24-ncRNA signature associated with albuminuria
in hypertension, independent of biofluid, which is common to urinary exosomes, plasma ex-
osomes and circulating in plasma, containing predominantly lncRNA. We also constructed
a transcriptional regulatory network (common lncRNA–miRNA–mRNA targets) and pre-
dicted the target genes. We found five lncRNAs (LINC02614, BAALC-AS1, FAM230B,
LOC100505824 and LINC01484) and one miRNA (miR-301a-3p) with significantly higher
node degree and topological network values compared with the other nodes, implying
that these hub RNAs are essential in network organization and are potential key regulators
controlling UAE development in hypertension-related RNA network. In addition, we used
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
analysis to assess the enriched biological functions regulated by the ncRNA signature, most
of them implicated in mechanisms inducing renal damage.

A key feature of the present study was the strategy used. The vast majority of previous
studies have identified a unique ncRNA biotype, mainly miRNA, associated with hyperten-
sion renal damage in a specific biological fraction [30,31], whereas our multicompartment
approach aimed to provide a common global ncRNA profile associated with albuminuria,
independent of sample origin. By combining the differentially expressed ncRNAs found in
total plasma, urinary and plasma-derived exosomes, we sought to find an ncRNA signature
representative of albuminuria development in hypertension that could be identified in clin-
ical practice, regardless of the type of patient sample available (urine, plasma or exosomes).
We observed that the behavior of ncRNA levels differed from circulating in plasma or in
exosomes, several of them being downregulated in plasma and upregulated in exosomes
and vice-versa. Furthermore, common ncRNA level changes were dependent on urine or
plasma origin. Previous studies found selective sorting of specific miRNAs into exosomes
compared with the whole miRNA circulating pool in specific biological fractions [32,33].
Our data suggest that an increase in exosomal ncRNA expression levels to the detriment
of circulating levels could be due to a controlled, specific process related to a pathological
condition. These findings identify a common ncRNA profile in all three fractions, which
facilitates its identification in clinical practice, independent of sample origin, and biofluid
origin will only take into account the interpretation of albuminuria-related expression
changes (up- or down-regulation).

Analyzing DE ncRNA in hypertensive patients with or without UAE, the three most
representative ncRNA biotypes were lncRNA, miRNA and piRNA in all three biofluids.
Considerable research has been conducted over recent years into the molecular mechanisms
of hypertension-associated renal pathology; however, most previous studies have focused
mainly on protein-coding genes or miRNAs [30,31,34–36]. For example, our group revealed
an exosomal miRNA signature associated with albuminuria in hypertension [29]. The
lncRNA group has reached special relevance in the last years in health and diseases, but
few studies have reported on the role of lncRNA in renal pathology [12,17]. In recent years,
another ncRNA group, piRNAs, have gained prominence as modulators of disease patho-
genesis. A number of studies have reported that piRNA dysregulates expression in samples
of different diseases, and various potential mechanisms have been proposed [22,37]. The
present study contributes significantly to the literature due to our global analysis of ncRNA
profile in hypertensive patients to assess an ncRNA signature related to albuminuria.

The common 24-ncRNA profile related to albuminuria in hypertension was composed
mostly of lncRNA, followed, in order, by pseudogenes, snoRNAs, miRNAs and piRNAs.
Ten DE lncRNAs were identified and in the RNA network constructed, five of these showed
the highest node degree and significant role in interacting with ncRNA targets, serving as
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hub nodes (LINC02614, BAALC-AS1, FAM230B, LOC100505824 and LINC01484) joined
to miRNA-301a. The GO and KEGG pathway analyses assessing biological functions
enriched in response to albuminuria highlighted several pathways: modulators in the renal
epithelial–mesenchymal transition (MAPK binding, TGF-β receptor and IL-17 signaling
pathway), renal fibrosis (Wnt-protein binding, sphingolipid signaling and metabolism),
endocytosis (clathrin heavy chain binding and store-operated calcium channel (SOCC)
activity) and ECM constituent (SOCC activity and laminin binding). Accumulating ex-
perimental evidence indicates that these enriched pathways have always been involved
in renal impairment. As an example, Chaudhari et al. emphasized SOCC as a crucial
regulator of ECM synthesis and deposition by glomerular mesangial cells, its dysregula-
tion being implicated in the pathogenesis of mesangial and interstitial fibrosis in diabetic
nephropathy [38–41]. Furthermore, four snoRNAS related to albuminuria in hypertension
were identified in the signature. A specific genome-wide array analysis of SNORD116
cluster showed that this small RNA changed the mRNA expression levels of over 200
genes, which was associated with clinical findings [42]. Finally, two piRNAs also showed
altered expression levels in the common ncRNA signature. PiR-33056 has the guanine
nucleotide exchange factor VAV3 as potential target gene, which is associated with the
nucleotide-free states of Rho GTPases that activate pathways leading to actin cytoskeletal
rearrangements [43]. As a result of these above-mentioned analyses, we identified an
ncRNA signature and molecular network that could play an important role, by way of
these pathways, in the development of hypertension-associated albuminuria.

Additionally, we predicted a common protein-coding gene network for the three
biofluids, finding among the nodes with highest degree several transcripts known to be
associated with albuminuria development and progression of kidney damage in hyper-
tension, such as: SMAD3, WNT7B, BMP6 and PDGFRB (TGF-β signaling) [44]; YWHAQ,
STK24, SLC12P6, CLCNKA and CLCNKB (kidney urinary concentration mechanisms) [45];
YWHAQ, PRKAG3, PRKAB2 and TRIB2 (MAPK regulation); and YWHAQ, GRIP1, RAB3IL1,
HOOK1 and CYTH1 (membrane trafficking) [46,47]. Next, the GO terms and enriched
KEGG pathways revealed voltage-gated chloride and anion channel activity, vasopressin-
regulated water reabsorption, complement and coagulation cascades and glucocorticoid
receptor binding as mechanisms related to renal impairment in hypertension. An extended
body of evidence supports the existence of pathways obtained in this study, some of which
occur at the glomerulus (podocytes, endothelial cells) and others in the renal tubules. For
example, ion channel (CLCNKA and CLCNKB) and transporter (SLC12P6) alteration,
which act in concert to regulate volume and ionic concentration by absorption or secretion
of ions into the urine, leads to renal disease [48,49]. Srivastava et al. demonstrated that
loss of podocyte glucocorticoids receptors leads to upregulation of Wnt signalling and
disruption in fatty acid metabolism, important for glomerular homeostasis [50]. The most
striking feature of tubulointerstitial fibrosis is excessive deposition of fibrillar material in
the widened interstitial space in fibrotic kidneys, and the condition is characterized by
production of fibrosis-promoting factors, such as TGF-β1 and PDGF [41], both identified in
our protein-coding network. Finally, previous works have shown that systemic endothelial
dysfunction is an initiating step in the development of vascular damage, and albuminuria
reflects widespread vascular damage [51], being a prognostic factor for cardiovascular
risk in hypertension [4]. Therefore, plasma ncRNA signature associated to albuminuria
could also indirectly reflect the cardiovascular risk progression in albuminuric hypertensive
patients.

The major goal of this study was to identify a combined signature of various ncRNAs,
such as lncRNAs, miRNAs and piRNAs, independent of biofluid origin, which may more
closely reflect the overall biology of underlying early damage in hypertension than use of
single markers. Another highlight was to assess the ncRNA targets to construct a regulatory
network and identify the hub nodes that play an important role in network organization.
These findings provide insights into the mechanisms involved in the architecture of the
glomerular filtration barrier and renal tubular reabsorption and provide potential targets
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for treating hypertension-associated albuminuria. As discussed above, these data are
supported by literature evidence in association with renal impairment. Hence, experimental
validation of these findings, identifying precise cellular sources and mechanisms underlying
common ncRNAs, are expected to set a benchmark for early renal damage research. Finally,
further research using larger and independent cohorts is warranted to confirm the ncRNA
signature found.

In summary, our study found an ncRNA profile associated with albuminuria, inde-
pendent of biofluid origin (urine or plasma, in exosomes or circulating), that targets critical
pathways of filtration barrier integrity, tubule reabsorption and vascular endothelial func-
tion, suggesting an important role for ncRNA signature in hypertension-associated early
renal damage and cardiovascular risk progression. Further experimental studies should be
performed to demonstrate the utility of these candidates as promising therapeutic targets
in albuminuria and widen opportunities in comprehensive renal damage research.

4. Materials and Methods
4.1. Subjects

This was an observational case-control study which included 21 patients with essential
hypertension (n = 21) and 22 patients without persistent elevated urinary albuminuria
(UAE) (≥30 mg/g urinary creatinine) [52]. All hypertensive patients received antihyperten-
sive treatment at the time of the study, and the mean duration of disease progression was
five years. Hypertensive patients with severe kidney disease, uncontrolled hypertension,
resistant hypertension or secondary hypertension, were excluded. The samples correspond
to small RNA-Seq single-end raw data from three different biofluid fractions (total plasma,
urinary and plasma-derived exosomes).

4.2. Biological Samples

Fresh first morning urinary samples (100 mL) were collected in sterile containers,
and human blood samples were collected in EDTA tubes and centrifuged to separate the
plasma fraction. All samples were processed within one hour after reception to isolate the
exosomal component, as explained below.

4.3. Exosome Isolation and Characterization

Exosomes were isolated from urine (Exo-U) and plasma (Exo-P), using a protocol
based on sequential ultracentrifugation. Exosome pellets were characterized by qNano
Gold instrument (Izon Science Ltd., Christchurch, New Zealand), transmission electron
microscopy and western blot. Detailed protocols are explained in our previous study
authored by Perez-Hernandez J et al. [29].

4.4. RNA Extraction, Small RNA Library Preparation and Next-Generation Sequencing

Total RNA was extracted from exosomes using the Total Exosome RNA and Protein
Isolation kit (Invitrogen, Life Technologies, Carlsbad, CA, USA); RNA was obtained using
the miRNeasy mini kit (Qiagen, Hilden, Germany) from plasma samples. Quantification
of total RNA, quality and size distribution were analyzed by capillary electrophoresis
(Agilent 2100 Bioanalyzer, Agilent Technologies, Santa Clara, CA, USA) with the RNA
6000 Pico chip.

Single-patient libraries were prepared from 2 µL of total RNA from each condition
(total plasma, urinary exosomes or plasma exosomes) using CleanTag Small RNA li-
brary preparation kit (TriLink Biotechnologies, San Diego, CA, USA), following a small
RNA library preparation protocol optimized to very low input samples, as previously
described [53]. Libraries were sequenced on the HiSeq 2000 platform (Illumina, San Diego,
CA, USA) at 8 pM final concentration with a 50-cycle single-read mode (CNAG, Barcelona,
Spain). The raw RNA-Seq dataset is available at the BioProject repository, accession:
PRJNA590749.
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4.5. Small RNA Sequencing Data Analysis

Data quality control of the raw data was conducted with FastQC v0.11.8 [54]. Sub-
sequently, the data was filtered using FASTX-Toolkit v0.013 (http://hannonlab.cshl.edu/
fastx_toolkit, accessed on 13 October 2021), removing adapters, low quality reads and
nucleotides. Alignment was made with STAR v2.7.3a [55], following the recommendations
for use in small RNA-Seq data. GENCODE human genome release 38 (GRCh38.p13) was
used as a reference genome. SAM files were converted to BAM and sorted with SAMtools
v1.10 [56]. Sorted BAM files were included in R, and the count matrix was obtained using
GenomicFeatures [57], Rsamtools [58] and GenomicAlignments Bioconductor packages.
Two gtf annotation files were used: GENCODE reference annotation for the Human release
38 (comprehensive gene annotation) [59] and piRNA database Homo sapiens hg38 annota-
tion file v1.7.6 [60]. We therefore followed two pipeline analyses: one for ncRNA and the
other for piRNA (Figure 6 and Supplementary Methods File).
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4.6. Preprocessing, Annotation and Normalization

The count matrix was included in a DGEList object using the edgeR Bioconductor
package [61]. The metadata for samples was included, and the genes not expressed in
either experimental condition were discarded. Annotation was performed by org.Hs.eg.db
Bioconductor package [62], which provides a genome-wide annotation for Human (see
Figure 6 and Supplementary Material Methods). A matrix with filtered, normalized and
annotated counts per million (CPM) mapped reads was generated for piRNA pipeline and
another one for ncRNA pipeline to estimate the abundance of RNA types in each group of
samples, summing up the counts of these two matrices (Supplementary Methods file).

4.7. Statistical Analysis

The contrasts between hypertensive patients with (UAE) and without albuminuria
(non-UAE) were determined by performing a negative binomial generalized log-linear
model to analyze the read counts for each gene, adjusted for sex. The p-values were
adjusted using Benjamini–Hochberg method. p < 0.05 was considered statistically sig-
nificant. The edgeR Bioconductor package was used for all statistical analyses [61]. The
graphs were made using the R package ggplot2 [63] or VennDiagram [64], as appropriate
(Supplementary Methods File).

http://hannonlab.cshl.edu/fastx_toolkit
http://hannonlab.cshl.edu/fastx_toolkit
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4.8. Non-Coding RNA Target Predictions

The targets for lncRNAs were predicted using LncRRIsearch, a web server for compre-
hensive prediction of human and mouse lncRNA–lncRNA and lncRNA–mRNA interaction
(http://rtools.cbrc.jp/LncRRIsearch, accessed on 13 October 2021) [65]. The top ten tar-
gets for each isoform with an energy threshold ≤−100 kcal/mol were selected for each
lncRNA gene.

In the case of miRNA-targets, three web-based tools were used: TargetScan (http:
//www.targetscan.org/vert_72/, accessed on 13 October 2021) [66], miRDB (http://mirdb.
org/, accessed on 13 October 2021) [67] and miRTarBase (https://mirtarbase.cuhk.edu.
cn/~miRTarBase/miRTarBase_2022/php/search.php, accessed on 13 October 2021) [68].
The selection criteria by target was a cumulative weighted context++ score of <−0.5 for
TargetScan. For miRTarBase, the targets were selected with a number of papers greater
than 1 or if the sum of validation methods was greater than 1. For miRDB, all targets with
a Target Score of 90 or higher were selected. The targets predicted in common for at least
two tools were selected, except for hsa-mir-208a-5p, where only miRDB predicted targets,
i.e., all targets with a Target Score of 99 or higher, were selected.

4.9. Molecular Pathways Analyses

Gene set Over-Representation Analysis (ORA) was performed in WEB-based GEne
SeT AnaLysis Toolkit (http://www.webgestalt.org/, accessed on 15 October 2021), using
GO and KEGG databases [69]. The protein–protein interaction network was generated
using STRING database v11.0 [70]. All biological interactions with a confidence score of
0.2 or greater were included. The STRING database provides a confidence score (from 0 to
1), which estimates the likelihood that an annotated interaction between a pair of proteins
is biologically meaningful, specific and reproducible. The networks were analyzed and
displayed using the yFiles organic layout with Cytoscape v3.8.1 [71]. In this network, nodes
and edges represented biological data in a direct manner, in which each node represented a
biological molecule, and the edges represented interactions between nodes. The ncRNA-
target network was generated using STRING to obtain the interaction between targets,
following the same methodology as for the protein network. LncRNA-target and miRNA-
target interaction was included using Cytoscape, based on predictions by the web-based
tools described above (Section 4.9), using a manually generated sif file.
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