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To explore the complementary relationship between magnetic resonance imaging (MRI) radiomic 
and plasma biomarkers in the early diagnosis and conversion prediction of Alzheimer’s disease (AD), 
our study aims to develop an innovative multivariable prediction model that integrates those two for 
predicting conversion results in AD. This longitudinal multicentric cohort study included 2 independent 
cohorts: the Sino Longitudinal Study on Cognitive Decline (SILCODE) project and the Alzheimer Disease 
Neuroimaging Initiative (ADNI). We collected comprehensive assessments, MRI, plasma samples, and 
amyloid positron emission tomography data. A multivariable logistic regression analysis was applied to 
combine plasma and MRI radiomics biomarkers and generate a new composite indicator. The optimal 
model’s performance and generalizability were assessed across populations in 2 cross-racial cohorts. 
A total of 897 subjects were included, including 635 from the SILCODE cohort (mean [SD] age, 64.93 
[6.78] years; 343 [63%] female) and 262 from the ADNI cohort (mean [SD] age, 73.96 [7.06] years; 140 
[53%] female). The area under the receiver operating characteristic curve of the optimal model was 
0.9414 and 0.8979 in the training and validation dataset, respectively. A calibration analysis displayed 
excellent consistency between the prognosis and actual observation. The findings of the present study 
provide a valuable diagnostic tool for identifying at-risk individuals for AD and highlight the pivotal role 
of the radiomic biomarker. Importantly, built upon data-driven analyses commonly seen in previous 
radiomics studies, our research delves into AD pathology to further elucidate the underlying reasons 
behind the robust predictive performance of the MRI radiomic predictor.

Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative 
disease that impacts tens of millions of people worldwide and 
places important medical burdens on the public health system 
[1]. Due to the absence of an effective strategy to delay or cease 
the progression [2,3], the irreversibility nature of AD attracts 
significant attention to early diagnosis and conversion out-
come prediction during the preclinical stage, commencing 15 
to 20 years prior to the onset of clinical symptoms [2,4]. Since 
the publication of the 2018NIA-AA research framework [2], 
disease-targeted therapies have received regulatory approval, 

and plasma biomarkers with great diagnostic performance 
have been developed. As a result, the research framework that 
was originally designed for research purposes now needs to 
be revised to guide both research and administering clinical 
treatment.

In the 2018 Alzheimer’s Association International Conference 
(AAIC), a research framework for AD including 3 biomarker 
groupings was presented: aggregated Aβ (A), aggregated tau (T), 
and neurodegeneration or neuronal injury (N) [2]. The research 
framework was abbreviated as ATX(N), where X denoted pos-
sibilities to incorporate new biomarkers [2]. Excitingly, in the 
2023 AAIC, a new biomarker categorification was introduced for 
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staging and AD prognosis: biomarkers of inflammatory/immune 
processes (I), currently only reflected by body fluid, e.g., plasma 
or cerebrospinal fluid (CSF) glial fibrillary acidic protein (GFAP) 
[5]. Fluid markers and imaging markers are accurately measured 
by CSF-based biomarkers and positron emission tomography 
(PET), respectively. However, these 2 methods are incompatible 
with community health centers [6] due to their high costs and 
safety concerns [7,8]. As an alternative, plasma biomarkers and 
magnetic resonance imaging (MRI) are more clinically feasible 
and accessible to the public. Plasma biomarkers for Aβ42/40, 
p-tau 181, neurofilament light chain (NfL), and GFAP are sug-
gested to be informative in addition to CSF [5], and specific MRI 
radiomics features may offer thorough and sensitive information 
about various brain regions, revealing AD pathological mecha-
nisms and facilitating early diagnosis [9]. While both plasma 
biomarkers and MRI markers are informative in reflecting differ-
ent aspects of AD pathology, relying solely on plasma or MRI 
biomarkers when other techniques are not available may raise 
concerns: the limited exchange of proteins between plasma and 
brain extracellular fluid [10] makes it challenging to precisely 
track longitudinal changes of AD pathology, and neurodegenera-
tion reflected by MRI is not specific to AD compared to the core 
biomarker (A and T) [2,5].

Alternatively, a combination of plasma and MRI biomark-
ers holds great potential for improving the accuracy of predict-
ing AD conversion outcomes, given their complementary 
nature in capturing different aspects of the disease progres-
sion. Therefore, this paper proposes a novel multivariable 
prediction model combining plasma and MRI radiomics bio-
markers. By exploring the combination of these 2 techniques, 
we hope to provide a more accurate and efficient diagnostic 
tool for AD, ultimately leading to better patient outcomes. The 
present study aims to (a) follow the ATN framework of plasma 
in combination with MRI to trace longitudinal changes from 
cognitively unimpaired (CU) to cognitive impairment (CI); 
(b) validate the clinical efficacy of the composite indicator by 
using longitudinal data and explore the underlying pathologi-
cal mechanism through correlation analysis; and (c) build 
upon previous radiomics studies and delve beyond data-driven 
analyses to elucidate the underlying mechanisms behind Rad’s 
robust predictive performance.

Results

Participants
Demographic and clinical characteristics at baseline and during 
follow-ups (4.86 ± 2.58 years) of 635 participants can be found 
in Table. Because 92 participants were in the CI at baseline, they 
were excluded from the subsequent prediction model (Fig. 1). 
Between CU and CI subgroups, differences in mean age and edu-
cation time were found to be important at baseline (P < 0.001), 
but during follow-ups, only the difference in education time 
remained marked and a significant gender difference emerged 
(P < 0.05). As expected, at any time point, substantial differences 
were found in plasma biomarkers (Aβ42/40, P-tau 181, NfL, and 
GFAP) between CU and CI groups (P < 0.05). In neuropsycho-
logical evaluations (Mini-Mental State Examination [MMSE], 
Montreal Cognitive Assessment Scale [MoCA], Auditory Verbal 
Learning Test [AVLT], Shape Trail Test [STT], memory and 
executive screening [MES], Verbal Fluency Test [VFT], Boston 
Naming Test [BNT], and Clinical Dementia Rating scale [CDR] 
scores), participants in the CI group got significantly lower scores 

than those in the CU group (P < 0.05). However, no obvious dif-
ference was found between the 2 groups in some other psycho-
logical evaluations (Hamilton Anxiety Scale [HAMA], GDS, etc.) 
(P > 0.05). Within the CI group, the carrier rate of the APOE ε4 
allele in the participants significantly increased from baseline 
to follow-up. Additionally, the SUVR values between the 2 
groups show great differences (P < 0.001) in both baseline and 
follow-up.

MRI radiomics biomarkers extraction
In the radiomics features, among 3,870 features in the main 
cohort (Figs. S2A and B), those with non-zero coefficients were 
included in the least absolute shrinkage and selection operator 
(LASSO) regression model. Therefore, 12 imaging genomics 
features were included and their spatial locations are detailed in 
Fig. 2. All 12 features, in accordance with the Rad score calcula-
tion formula as well as the scores for all patients, are provided 
in the Supplementary Materials (Fig. S3). To decipher the selec-
tion process, we conducted correlation analyses between each 
genomics feature and plasma biomarkers. The results showed 
that various features are significantly correlated with plasma 
biomarkers, providing strong pathological justification for why 
those 12 genomics features could be potential components for 
the Rad biomarker (Fig. S4). For example, GFAP was found to 
be significantly correlated with the following 4 genomics fea-
tures: HIP.L-RLN (Hippocampus-Run-Length Non-uniformity), 
HIP.L-Complexity (Hippocampus-Complexity), PCG.R-SZE 
(Posterior cingulate gyrus-Small Zone Emphasis), and ITG.L-
SZHGE (Inferior temporal gyrus-Small Zone High Gray-level 
Emphasis). In addition, PCG.R-SZE and ITG.L-SZHGE were 
found to be significantly correlated to plasma p-tau181 and 
Aβ42/Aβ40, respectively.

We calculated the Rad scores for each of the 262 subjects in 
the imaging data to verify our Rad biomarker using data from 
the Alzheimer Disease Neuroimaging Initiative (ADNI), and 
we found that the area under the receiver operating character-
istic (ROC) curve (AUC) for this dataset was 0.6950, which was 
lower than the training dataset’s AUC of 0.7678 (Fig. S5). In 
addition, a Delong test suggested that no obvious difference 
was found between the 2 datasets. The calibration plots also 
demonstrated effective model calibration, as evidenced by the 
outstanding agreement between the anticipated likelihood of 
prognosis and actual observation (Fig. S6).

Plasma and MRI radiomics biomarkers combined 
prediction models
Rad alone had an accuracy rate of 0.7678 in predicting the con-
version outcome of CU, while Aβ42/40 alone had a rate of 0.6430, 
NfL had a rate of 0.6744, GFAP had a rate of 0.6672, APOE ε4 
had a rate of 0.6382, and p-tau181 had a rate of 0.7528 (Fig. 3A). 
In addition, the accuracy of AVLT-N5 and -N7 in predicting the 
outcome of CU was 0.7859 and 0.7091, respectively. The accu-
racy rate of the combined ROC of plasma (all) was 0.7835, which 
was not significantly different from the Rad model (Delong test, 
P > 0.05). The AUC was 0.8118, 0.8212, and 0.9414 (sensitivity: 
0.8, specificity: 0.98), respectively, after successively integrating 
Plasma (Aβ42/40, p-tau181, and GFAP) (Fig. S7), APOE ε4, and 
AVLT (Fig. 3C). Thus, after comparing the Akaike information 
criterion (AIC) and Bayesian Information Criteria (BIC) [11], 
Aβ42/40, p-tau181, GFAP, APOE ε4, AVLT-N5, and Rad were 
selected as the optimal model. We used data from ADNI to 
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validate the predictive power of the optimal model. Unfortunately, 
due to the lack of GFAP data, only Aβ42/40, p-tau181, APOE 
ε4, AVLT-N5, and Rad data were used for the validation process. 
In the validation cohort, our optimal model’s AUC (without 
GFAP) for the external validation cohort was 0.8979 (sensitivity: 
0.74, specificity: 0.84) (Fig. S8), which is a respectable indicator 
of its predictive power.

The nomogram in this study (Fig. 4) shows the calculation 
of the final probability of the adverse outcome of CU converting 
to CI in the future. First, a vertical line was extended from each 
predictor’s axis to the “points” axis to receive an individual pre-
dictor point, all of which were then summed up to form the total 
points. Then, another vertical line was drawn from the “total 
points” axis to the “risk” axis to finally get the probability of 
conversion from CU to CI. The total points for the majority of 
the participants in this research ranged from 180 to 360. For 
example, a randomly selected patient has a Rad score of −201.09, 

carrying APOE ε4, an AVLT-N5 of 1, a GFAP of 276.46, a 
P-tau181 of 4.30, and an Aβ42/40 of 0.06; hence, the points for 
each predictor would be 52.3, 45, 92, 49.6, 55.6, and 41.5, respec-
tively. Thus, we could obtain a total point of 336, and for this 
particular patient, the predicted probability of converting from 
CU to CI in the future is approximately 71.07%.

Clinical performance of the model
Figure 3B and D show the decision curve analyses of each bio-
marker and various radiomics models [12]. Compared to treat-
ing all patients or none, we observed an increase in net benefits 
when using the radiomics nomogram to predict the conversion 
from CU to CI with a threshold probability over 8% (Fig. 3D). 
For instance, if a patient has an individual threshold probability 
of 60% (meaning that the patient has a greater than 60% chance 
of converting from CU to CI), the net benefit of using the opti-
mal radiomics nomogram to decide whether to undergo 

Table. Demographic information and clinical characteristics at baseline and follow-up time

Baseline Follow-up

CU CI P value CU CI P value

Sex (female, n, %) 343, 63.17% 53, 57.72% 0.251 275, 59.71% 91, 51.79% <0.001

Age (years) 64.93 ± 6.78 70.47 ± 9.25 <0.001 66.62 ± 6.63 68.35 ± 9.64 0.188

Education (years) 11.89 ± 3.78 10.01 ± 4.98 <0.001 11.97 ± 3.77 10.75 ± 3.89 0.032

Plasma Aβ42/40 0.06 ± 0.02 0.05 ± 0.01 0.021 0.06 ± 0.01 0.05 ± 0.01 0.035

Plasma P-tau 181 (pg/ml) 1.85 ± 0.75 3.07 ± 1.31 <0.001 2.23 ± 1.13 4.92 ± 0.71 0.003

Plasma NfL (pg/ml) 14.81 ± 6.76 21.14 ± 10.37 0.002 16.70 ± 8.20 37.32 ± 14.90 <0.001

Plasma GFAP (pg/ml) 115.07 ± 55.81 210.55 ± 121.85 <0.001 129.58 ± 61.96 270.80 ± 70.69 <0.001

HAMD 4.05 ± 4.19 6.16 ± 6.98 0.017 3.27 ± 3.63 4.00 ± 2.60 0.551

HAMA 4.45 ± 3.97 5.84 ± 5.54 0.086 3.81 ± 3.45 4.22 ± 2.95 0.727

MMSE 28.41 ± 1.75 22.48 ± 4.72 <0.001 28.49+1.66 22.96 ± 5.18 <0.001

AVLT-N5 6.96 ± 2.06 2.82 ± 2.48 <0.001 7.66 ± 2.24 1.67 ± 2.19 <0.001

AVLT-N7 22.20 ± 1.90 18.05 ± 3.65 <0.001 22.41 ± 1.67 17.75 ± 3.31 <0.001

STT-A 61.30 ± 19.01 100.96 ± 54.21 <0.001 59.01 ± 20.44 102.89 ± 44.47 <0.001

STT-B 138.55 ± 39.85 236.42 ± 142.65 <0.001 142.79 ± 45.64 182.44 ± 46.95 <0.001

VFT 18.91 ± 4.62 13.91 ± 4.68 <0.01 19.01 ± 4.38 14.80 ± 4.26 0.012

BNT 24.79 ± 3.12 19.41 ± 4.92 <0.001 25.39 ± 2.87 21.50 ± 2.17 <0.001

GDS 2.50 ± 2.46 3.35 ± 3.06 0.081 2.34 ± 2.10 3.30 ± 2.91 0.168

MES 90.26 ± 7.02 69.35 ± 15.26 <0.001 91.05 ± 7.01 74.80 ± 22.13 <0.001

PSQI 5.04 ± 3.46 3.89 ± 2.68 0.05 4.81 ± 3.20 6.90 ± 4.65 0.051

RBDSQ 1.35 ± 1.86 0.85 ± 1.54 0.132 1.11 ± 1.50 2.20 ± 2.44 0.033

ESS 7.34 ± 4.80 4.72 ± 4.99 0.018 6.76 ± 4.65 7.00 ± 4.42 0.871

MoCA-B 25.57 ± 2.55 18.87 ± 4.79 <0.001 25.78 ± 2.61 20.17 ± 4.30 <0.001

CDR 0.03 ± 0.13 0.72 ± 0.47 <0.001 0.03 ± 0.11 0.75 ± 0.57 <0.001

APOEε4 (carrier, n, %) 78, 22.10% 64, 42.95% <0.001 61, 21.94% 104, 46.43% <0.001

SUVR 0.97 ± 0.97 1.32 ± 0.29 <0.001 0.99 ± 0.10 1.36 ± 0.27 <0.001

HAMD, Hamilton Depression Scale; HAMA, Hamilton Anxiety Scale; MMSE, Mini-Mental State Examination test; AVLT-N5: Auditory Verbal Learning Test-
Huashan version long-delayed free recall (20 min); AVLT-N7: AVLT-Huashan version long-delayed recognition (20 min); STT-A: Shape Trail Test A; STT-B: 
Shape Trail Test B; VFT, Verbal Fluency Test (animal); BNT, Boston Naming Test; GDS, Geriatric Depression Scale; MES, memory and executive screening; 
PSQI, Pittsburgh Sleep Quality Index; RBDSQ, Rapid-eye-movement Sleep Behavior Disorder Screening Questionnaire; ESS, Epworth Sleepiness Scale, 
MoCA-B, Montreal Cognitive Assessment Scale; CDR, Clinical Dementia Rating scale; Rad, Radiomics score.
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treatment is 0.03, indicating additional benefits compared to 
treating all patients or none of them. We also conducted deci-
sion curve analysis on the optimal model using data from the 
ADNI cohort and found that net benefits rise as the threshold 
probability exceeds 10% (Fig. S9).

Correlation and mediating analysis
We carried out a series of correlation analyses presented as heat-
maps in Fig. 5A to D. In Fig. 5A, in addition to the substantial 
correlation between age and all plasma biomarkers, we observed 

that both APOE ε4 and Rad were correlated with GFAP and 
that Rad was also correlated with MMSE, STT, AVLT, MoCA, 
and other cognitive and behavioral measures. Figure 5B and C 
present the correlation heatmaps for patients categorized by 
high and low Rad scores, indicating that the Rad+ group had 
significantly stronger correlations than the Rad− group. In the 
Rad+ group, Rad was strongly correlated with GFAP (P < 0.001) 
and correlated with NfL (P < 0.05). Figure 5D shows the cor-
relations after accounting for sex, age, and education.

Rad was found to mediate the effects of GFAP on the conver-
sion outcome of CU, accounting for 21.43% of the overall 
impact in the mediating effect analysis (Fig. 5E). In addition, 
Rad also mediates the effects of GFAP on the results of MMSE, 
contributing 18.60% to the overall impact (Fig. S10). Rad was 
also found to be able to mediate the effects of NfL on the con-
version outcome of CU, accounting for 21.35% of the overall 
impact (Fig. S11). Interestingly, the effect of APOE ε4 on Rad 
was completely mediated by SUVR, accounting for 48.29% of 
the total effect (Fig. 5F).

Discussion
Due to AD’s high heterogeneity and irreversible nature, it is 
essential to accurately predict the future conversion in at-risk 
populations. The ATNI system, as a biomarker system for stag-
ing and prognosis, offers substantial help to customize the AD 
risk profile by sorting pathologic changes into 4 categories [13]. 
In light of that, our study presents an optimal model that incor-
porates Rad, APOE ε4, Aβ42/40, P-tau18, GFAP, and AVLT-N5. 
Our model retains an AUC of 0.9414 in predicting the conver-
sion from CU to CI, increasing the accuracy compared to ear-
lier research.

A highlight of the optimal model is the construction of the 
Rad biomarker, which had the highest AUC of 0.7678. In 
radiomics, 3,870 features of the whole brain were combined to 
create Rad factors, which indicate changes in high-dimensional 
aspects of the whole brain. The final Rad biomarker included 
features that match the appropriate brain areas potentially 

Fig. 1. Flow diagram of the primary study. CU, cognitively unimpaired; CI, cognitive impairment; APOE, apolipoprotein E; NfL, neurofilament light chain; GFAP, glial fibrillary 
acidic protein; MoCA-B, Montreal Cognitive Assessment Scale; MMSE, Mini-Mental State Examination test.

Fig. 2. The 12 imaging genomics features included in the LASSO analysis and their 
spatial locations. PreCG.L-Variance, Precentral gyrus-Variance; IFGoperc.R-SZHGE, 
Inferior frontal gyrus, opercular part-Small Zone High Gray-level Emphasis; INS.R-
Strength, Insula-Strength; ACG.L-LZHGE, Anterior cingulate and paracingulate gyri-
Large Zone High Gray-level Emphasis; DCG.L-GLV, Median cingulate and paracingulate 
gyri-Gray-level Variance; PCG.R-Variance, Posterior cingulate gyrus-Variance; PCG.R-
SZE, Posterior cingulate gyrus-Small Zone Emphasis; HIP.L-RLN, Hippocampus-Run-
Length Non-uniformity; HIP.L-Complexity, Hippocampus-Complexity; AMYG.R-SZE, 
Amygdala-Small Zone Emphasis; THA.L-LZHGE, Thalamus-Large Zone High Gray-
level Emphasis; ITG.L-SZHGE, Inferior temporal gyrus-Small Zone High Gray-level 
Emphasis.
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subject to AD pathology in earlier study findings. To be more 
specific, studies have shown that the morphological changes in 
mild cognitive impairment (MCI) brain amyloidosis include 
distinctive spatial patterns that are highly susceptible to AD 
pathology, such as the central pre-gyrus [14], the entorhinal 
cortex [15], the right inferior frontal gyrus [16], the insula [17], 
the posterior cingulate gyrus [18,19], the temporoparietal cor-
tex [20], the hippocampus [21–23], and the thalamus [24]. 
Additionally, in accordance with a recent clinical follow-up study 
identifying atrophy in subregions of the amygdala as a potential 
marker for future progression to CI [25], a subregion of the 
amygdala was included in our Rad marker, emphasizing the 
involvement of the amygdala in the early development of AD 
[26,27] (Fig. 2). All the above discussion provided additional 
explanations as to why Rad carries the highest AUC. Excitingly, 
the predictive ability was raised to 0.9414 by incorporating the 
Rad biomarker and plasma markers indicating A (Aβ42/40), T 
(P-tau181), I (GFAP), APOE ε4, and cognitive function status 
(AVLT-N5) in the optimal model. For future applications of the 
optimal model in clinical use, we have developed a personalized 
nomogram for predicting conversion from CU to CI. The DCA 
demonstrated that our nomogram for predicting survival rates was 
more useful and practical than the traditional ATN [2] staging 

Fig. 3. A and C show the ROC and the decision curve analysis of using each biomarker; B and D show the ROC and the decision curve analysis of using various models 
combining plasma and radiomic indicators. In B and D, the Y-axis measures net benefits. The gray line represents the scenario in which all patients would transform to CI, 
and the thin black line represents the scenario in which no patient transforms to CI. The net benefit was calculated by subtracting the proportion of all false-positive patients 
from the proportion of true positives, weighted by the loss brought by no treatment to CI and unnecessary treatment.

Fig. 4. The nomogram shows the calculation of the final probability of the adverse 
outcome of CU converting to CI in the future. First, a total point was determined based 
on individual predictor points calculated using the nomogram: a vertical line was 
drawn from each predictor’s axis to the “point” axis to obtain an individual predictor 
point, all of which were then summed up to form the aforementioned total point. 
Then, another vertical line was drawn from the “total point” axis to the “risk” axis to 
finally get the probability of conversion from CU to CI.
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system. With advancements in neuroscience and brain sci-
ence, machine learning and various algorithms are continu-
ously evolving [28]. Overall, our nomogram may be a valuable 
tool for prognosis prediction in the Chinese community.

Numerous factors were found to be mediating the conver-
sion after a mediator analysis was conducted (Fig. 6). One find-
ing that stands out is that the effect of APOE ε4 on Rad was 
entirely mediated by the deposition of Aβ in the brain, which is 
in line with research done by Dincer et al. [29] and Salami et al. 
[30], suggesting that the APOE genotype may have an influence 
on longitudinal changes in radiomics such as MRI [31,32]. 
In addition, in accordance with past studies [33–35], plasma 
GFAP and NfL were found to have an impact on conversion 
outcomes both directly and indirectly via Rad. In particular, 
Rad was strongly correlated to outcome in individuals with 
positive plasma Aβ (Fig. 5B), highlighting the significance of 
integrating AD-related imaging and plasma markers to com-
prehend the conversion process from CU to CI. In addition, 
Rad served as a mediator between plasma Aβ profile effects and 
conversion outcome, suggesting that the effects pathway may 
involve multiple brain regions, multiple dimensions, and even 
global. Moreover, a highlight of the present study is that we 
explored changes in Rad existing in high-dimensional space 
and its impact on low-dimensional image data. Given these 
factors, our exploration of the potential conversion process 
from CU to CI in preclinical AD outlined in the present study 
might aid future research and clinical practice diagnosis.

Additionally, we grouped individuals into high and low Rad 
score before using Kaplan–Meier curves to examine differences 
in time points at which conversion from CU to CI occurs 
between the 2 groups. Results showed that conversion from 

CU to CI occurred significantly earlier in the high Rad score 
group than in the low Rad score group (P = 0.006, Fig. S12), 
indicating that even in hospitals in rural or remote areas, where 
PET, CSF, and plasma tests cannot be performed, using only 
MRI might be a possible way to identify at-risk individuals. 
Further research is encouraged to elucidate complex processes 
underlying the relationship between the MRI data and conver-
sion outcome.

The NIA-AA draft criteria for AD demonstrated that imag-
ing and fluid biomarkers are not interchangeable within the 
same category [5]. Ideally, a complete biomarker profile should 
include both fluid and imaging biomarkers as each captures dif-
ferent aspects of the AD pathology. However, each biomarker 

Fig. 5. A series of correlation analyses presented as heatmaps in A to D. A presents the correlation heatmaps for all patients; B and C present the correlation heatmaps for 
patients grouped by high and low Rad scores; D shows the correlations after correcting for sex, age, and education. The correlation coefficient r is given in the heatmaps and 
the asterisks (*, **, and ***) indicate statistical significance at P < 0.05, P < 0.01, and P < 0.001, respectively. E and F present the mediator analysis associated with Rad.

Fig. 6. Possible pathways for the conversion from CU to CI.
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comes with different sensitivities and specificities for various use 
cases, and building a diagnostic tool to identify at-risk individu-
als on a large scale must consider realistic constraints. In the 
category A and T, compared to imaging markers, fluid markers 
are considered more sensitive to early changes in AD, which 
aligns with the aim of the present study to identify at-risk indi-
viduals and predict the conversion from CU to CI [5]. In category 
N, our final model only included the imaging biomarker (Rad) 
but not the fluid biomarker (NfL). We ran AIC and BIC analysis 
on the optimal model and a more complicated model (the opti-
mal model + NfL). The optimal model (AIC: 81.99, BIC: 105.71) 
was considered to be the most optimal compared to the compli-
cated model (AIC: 83.66, BIC: 110.77), as it prevented the model 
from being overly complicated or overfitting.

For our current work, several limitations need to be addressed. 
First, 8 patients converted from CU to CI in our most recent large-
scale follow-up; thus, some data in the CU group may pertain to 
people who are in the pre-conversion stage to CI. In the future, we 
will carry out continuing follow-ups to obtain more stable results. 
In addition, the length of our study’s follow-up (4.86 ± 2.58 years) 
may limit the generalizability of our results because the develop-
ment of AD can persist for up to 10 years. However, given that 
most AD imaging studies have comparable follow-up times and 
that Rad score can identify significant pathological changes, we 
believe that the impact of this relatively short follow-up period 
may not be particularly important. Third, we were unable to collect 
sufficient GFAP data from ADNI; thus, this indicator was left out 
of the validation process. In addition, a recent longitudinal clinical 
follow-up study showed that a significant proportion of ADNI 
subjects classified as healthy controls showed significant signs of 
amygdala atrophy at baseline [25]. Similarly, a subregion of the 
amygdala is included in our Rad marker, providing additional 
evidence for the potential association between early changes in the 
amygdala and future cognitive changes. As a result, future research 
is encouraged to further examine the association between the 
structural integrity of the amygdala and cognitive decline. Finally, 
the Simoa method for measuring ptau181 began in 2020; thus, 
plasma samples were available for only 219 patients, and the accu-
racy of long-term frozen plasma measurements has yet to be vali-
dated [36]. However, given the AUC (only Aβ42/40, p-tau181, 
APOE ε4, AVLT-N5, and Rad included) values, we are confident 
in the current model’s propensity to accurately predict conversion 
outcomes.

In conclusion, this study presents an optimal model for pre-
dicting the conversion from CU to CI, highlighting the impor-
tance of the Rad biomarker and its potential as a valuable tool to 
identify individuals at risk of developing dementia. Furthermore, 
the plasma biomarkers GFAP and NfL may also contribute to 
the eventual onset of dementia by affecting Rad during this lon-
gitudinal process. In the future, with the availability of effective 
AD treatments, our model can aid in identifying individuals who 
would benefit the most from either primary or secondary pre-
vention. Overall, all the findings offer insight into the patho-
physiology of AD and explore the potential for personalized, 
targeted interventions.

Methods

Study population
All participants finished written informed consent and autho-
rized the publication of their clinical details. Approval for the 
study procedures was granted by relevant ethics committees. 

Neuropsychological scales, imaging data, and plasma tests 
(Simoa in some) were assessed at enrollment and follow-up.

Sino Longitudinal Study on Cognitive Decline project
The present study is part of the Sino Longitudinal Study on 
Cognitive Decline (SILCODE) project, an ongoing registered 
multicenter AD research project on the Han Chinese commu-
nity population in mainland China [37]. Specific inclusion/
exclusion criteria can be discovered at https://www.clinicaltri-
als.gov/ct2/show/study/NCT03370744. From a total of 635 
patients, clinical information, neuropsychological assessments, 
blood samples, and imaging data were collected between 
January 2010 and December 2022 (Fig. 1).

Subcategories of participants are described as follows: 
Diagnosing Normal Control (NC) was based on excluding 
individuals with MCI [13] and dementia [38]. The CU group 
included individuals who met the NC criteria, and the CI group 
included those with MCI or dementia. Detailed information 
on each scale and eligibility criteria can be acquired from the 
protocol that has been published [37] and studies conducted 
earlier by us [39,40].

Alzheimer Disease Neuroimaging Initiative
As a multicentered longitudinal database, ADNI aims at devel-
oping clinical, radiomics, and biological indicators, which is 
suitable for early diagnosis and measuring the progression dur-
ing the early stages of AD [41]. The dataset we used for valida-
tion included CU individuals (262 in total), 168 of whom 
transformed into CI eventually (adni.loni.usc.edu). The inclu-
sion and exclusion criteria of individuals from the ADNI data-
base were as follows: (a) all individuals who were diagnosed 
CU at the baseline visit and were followed up for at least 3 years 
and the CI patients who had converted to MCI or dementia 
within the follow-up interval were included; (b) individuals 
with MRI, plasma samples, and amyloid PET data were likewise 
included; and (c) individuals with a bidirectional change in 
diagnosis (CU to CI, and back to CU) within the follow-up 
period were excluded. (d) All individuals who underwent visual 
assessment by an experienced imaging staff and individuals 
with significant atrophy on baseline MR images, including 
amygdala and hippocampus, were excluded. For more updates 
on ADNI, please refer to www.adni-info.org. The enrollment 
process of the ADNI data in this study is shown in Fig. S1.

Neuropsychological assessment
In both cohorts, the cognitive performance of each participant 
was assessed annually by several neuropsychological assess-
ments, and longitudinal data from both baseline and later 
follow-ups were included in the analysis. In SILCODE, assess-
ments were designed to cover the main common cognitive 
domains including memory, language, and executive function. 
Included measurements were as follows: MMSE [42]; AVLT-N5: 
AVLT-Huashan version long-delayed free recall (5 min); AVLT- 
N7: AVLT-Huashan version long-delayed recognition (20 min) 
[43]; STT-A: Shape Trail Test A; STT-B: Shape Trail Test B [44]; 
GDS, Geriatric Depression Scale [45]; MES [46]; MoCA-B [47]; 
CDR [48], etc. Among all, MMSE and MoCA scores were uti-
lized to evaluate overall cognition, and all the scores were 
z-normalized during analysis to eliminate measurement bias. 
The validation method in ADNI made use of existing longitu-
dinal data for the same metrics.

https://doi.org/10.34133/research.0354
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Neuroimaging data acquisition and processing
In the context of SILCODE, neuroimaging data acquisition includ-
ing [18F] florbetapir (AV-45) PET and MRI scans were conducted 
on a simultaneous 3.0T TOF PET/MR scanner (SIGNA PET/MR, 
GE Healthcare, Milwaukee, WI, USA) at Xuanwu Hospital of 
Capital Medical University, Beijing. Participants received an intra-
venous injection of 7 to 10 mCi [18F] florbetapir radiotracer, fol-
lowed by a 40-min rest period before undergoing a 20-min static 
PET scan. The PET data were collected using a time-of-flight 
ordered subset expectation maximization (TOF-OSEM) algorithm 
with specific parameters: 8 iterations, 32 subsets matrix = 192 × 
192, the field of view (FOV) = 350 × 350 mm2, and half-width 
height = 3. In MRI scans, the parameters for T1-weighted 3D brain 
structural images were as follows: SPGR sequence, FOV = 256 × 
256 mm2, matrix = 256 × 256, slice thickness = 1 mm, gap = 0, 
slice number = 192, repetition time (TR) = 6.9 ms, echo time 
(TE) = 2.98 ms, inversion time (TI) = 450 ms, flip angle = 12°, 
and voxel size = 1 × 1 × 1 mm3. The MRI images were processed 
using SPM12 (http://www.fil.ion.ucl.ac.uk/spm/software/spm12). 
In the pre-processing, (a) the quality of all images was assessed by 
2 experienced radiologic technologists, and the considered 
key metrics included the signal-to-noise ratio (SNR), spatial reso-
lution, and scan time; (b) the DICOM (Digital Imaging and 
Communications in Medicine) file was converted into a NIfTI 
(Neuroimaging Informatics Technology Initial) file using the y_
Call_dcm2nii function in the DPABI V6.1 toolkit; (c) the T1 image 
was divided into gray matter, white matter, cerebrospinal fluid tis-
sue probability map, skull, and other tissues (corresponding to c1 
to c5) using SPM12; (d) the (c1) space of the segmented cortical 
images was spatially normalized to the Montreal Neurological 
Institute (MNI) space, and the voxel size was 2 mm × 2 mm × 
2 mm; and (e) the 8 mm × 8 mm × 8 mm isotropic Gaussian 
smoothing kernel was used for smoothing. To evaluate possible 
pathways of imagological influence, we used reference regions of 
the entire cortex to generate a voxel 18F-AV-45 standardized 
uptake value ratio (SUVR) image: the entire cerebellum, WM 
(white matter) based on the MNI map, and topic-specific WM. 
The SUVR of the cortex obtains the count ratio by averaging the 
voxel SUVR images in the particular target area.

Model construction
The model was constructed through 3 steps: (a) plasma biomarker 
extraction; (b) MRI radiomics biomarker extraction; and (c) the 
optimal model construction that combined the 2 components 
using the machine learning technique. The training dataset used 
in the model constructing process is from our SILCODE cohort, 
and the validation dataset was from ADNI (Fig. 1).

Plasma biomarker extraction
In SILCODE, P-tau181 concentration was measured by the 
Single Molecule array (Simoa) p-tau181 Advantage Kit, while 
Aβ40, Aβ42, NfL, and GFAP concentrations were measured by 
the Simoa Human Neurology 4-Plex E (N4PE) assay (Quanterix). 
All measurements for the 5 analytes exceeded the detection limit, 
with an intra-assay variation coefficient of less than 10%. The 
data were then matched to phenotype information.

In the ADNI cohort, plasma Aβ42/40 was detected by a high-
precision liquid chromatography–tandem mass spectrometry (LC–
MS/MS) [49], and plasma p-tau181 was analyzed by the validated 
ultrasensitive Simoa technique at the Clinical Neurochemistry 
Laboratory, University of Gothenburg, Sweden [36]. For p-tau181, 
the lower limit of quantification was 1.0 pg/ml.

MRI radiomics biomarker extraction
MRI radiomics features were extracted from the processed neu-
roimaging data with the tools developed by Vallières et al. [50] 
(https://github.com/mvallieres/radiomics). Based on the brain 
atlas Automated Anatomical Labeling [51], 90 cortical regions 
(Nos. 1 to 90) were used as regions of interest, and 43 features 
(numbered in the order of 1 to 43 in the text) were extracted in 
each brain region, thus making a total of 43 × 90 = 3,870 fea-
tures per subject (Supplementary Materials).

To reduce the dimension of features and to select potential 
predictive factors, the LASSO-based proportional hazards model 
(LASSO-COX), a model commonly used to evaluate the predic-
tive ability of selected features and to determine the optimal 
subset of features [52], was constructed. To fully explore potential 
predictive factors, the leave-one-out cross-validation method was 
utilized, seeking the optimal solution for the regularization coef-
ficient (λ-value) based on radiomic features within the LASSO-
COX model, and thus obtaining the corresponding optimal 
radiomic features subset.

Finally, the Rad score (a radiomics scoring system that con-
solidates multiple radiomic features into a single comprehen-
sive index to reflect the biological information in medical 
imaging) was calculated for each participant via a linear com-
bination of selected features weighted by the coefficients, there-
fore concluding the image radiomics biomarker.

Plasma and MRI radiomics biomarkers combined 
prediction model
In this study, multivariable logistic regression analysis was per-
formed to integrate plasma and radiomics biomarkers using 
clinical candidate predictors including Aβ42/40, P-tau181, GFAP, 
AVLT-N5, APOE4, and Rad. Following that, a prediction model 
for the conversion of CU to CI was established using main 
queues. The backward stepwise selection method was employed 
using the likelihood ratio test and AIC as criteria for selecting 
the optimal predictive model [53]. Using the “rms” package in 
R, a predictive nomogram for prognosis combining the afore-
mentioned 6 indicators was created.

To validate the optimal model externally, we performed the 
ROC curve analysis and calibration curve analysis using the 
dataset from the ADNI cohort. In addition, a Delong test was 
applied to assess the statistical significance of the difference in 
AUC values between the SILCODE cohort (training dataset) 
and the ADNI cohort (validation dataset).

Clinical performance of the model
We compared the efficacy of various combinations of single 
predictors using the following approaches in order to vali-
date the usefulness of the aforementioned model in clinical 
settings.

The predictive power of the indicators was assessed using 
AUC, and the implementation of decision curve analysis (DCA) 
allowed for the quantification of net benefits at various thresh-
old probabilities. Both SILCODE and ADNI cohorts were 
included for external validation. Additionally, general linear 
model repeated correlation analysis, controlling for covariates 
(i.e., age, gender, and education), was conducted to make sure 
that the associations between blood markers, Rad, clinical infor-
mation, and plasma biomarkers were not influenced by these 
covariates.

https://doi.org/10.34133/research.0354
http://www.fil.ion.ucl.ac.uk/spm/software/spm12
https://github.com/mvallieres/radiomics


Yu et al. 2024 | https://doi.org/10.34133/research.0354 9

Statistical analysis
The categorical variables (gender and APOEε4 carrier status) 
from demographic and neuropsychological data were summa-
rized and displayed as percentages, and evaluated using the 
chi-square (χ2) test to determine group difference. Continuous 
variables, such as age and education level, calculated as means ± 
standard deviations, were compared using the independent 
2-sample t test. The Kaplan–Meier method was used to build 
the survival curves to forecast the likelihood and timing of the 
conversion, and the log-rank test (survminer R package) was 
used for further comparison. Conducting mediation analysis 
(utilizing R; Lavaan package) was the final step to investigate 
the sequential relationships among the longitudinal changes of 
the Rad score, plasma Aβ42/Aβ40, p-tau181, NfL, and GFAP. 
The above statistical analyses were performed in R version 4.1.3 
(http://www.r-project.org/), and the significance threshold was 
set at P < 0.05.

Ethics approval, consent to participate, and consent 
for publication
This study was approved by the Medical Ethics Committee of 
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in accordance with the Helsinki Declaration. All participants pro-
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