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To explore the complementary relationship between magnetic resonance imaging (MRI) radiomic
and plasma biomarkers in the early diagnosis and conversion prediction of Alzheimer’s disease (AD),
our study aims to develop an innovative multivariable prediction model that integrates those two for
predicting conversion results in AD. This longitudinal multicentric cohort study included 2 independent
cohorts: the Sino Longitudinal Study on Cognitive Decline (SILCODE) project and the Alzheimer Disease
Neuroimaging Initiative (ADNI). We collected comprehensive assessments, MRI, plasma samples, and
amyloid positron emission tomography data. A multivariable logistic regression analysis was applied to
combine plasma and MRI radiomics biomarkers and generate a new composite indicator. The optimal
model’s performance and generalizability were assessed across populations in 2 cross-racial cohorts.
A total of 897 subjects were included, including 635 from the SILCODE cohort (mean [SD] age, 64.93
[6.78] years; 343 [63%] female) and 262 from the ADNI cohort (mean [SD] age, 73.96 [7.06] years; 140
[563%] female). The area under the receiver operating characteristic curve of the optimal model was
0.9414 and 0.8979 in the training and validation dataset, respectively. A calibration analysis displayed
excellent consistency between the prognosis and actual observation. The findings of the present study
provide a valuable diagnostic tool for identifying at-risk individuals for AD and highlight the pivotal role
of the radiomic biomarker. Importantly, built upon data-driven analyses commonly seen in previous
radiomics studies, our research delves into AD pathology to further elucidate the underlying reasons
behind the robust predictive performance of the MRI radiomic predictor.
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Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative
disease that impacts tens of millions of people worldwide and
places important medical burdens on the public health system
[1]. Due to the absence of an effective strategy to delay or cease
the progression [2,3], the irreversibility nature of AD attracts
significant attention to early diagnosis and conversion out-
come prediction during the preclinical stage, commencing 15
to 20 years prior to the onset of clinical symptoms [2,4]. Since
the publication of the 2018NTA-AA research framework [2],
disease-targeted therapies have received regulatory approval,
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and plasma biomarkers with great diagnostic performance
have been developed. As a result, the research framework that
was originally designed for research purposes now needs to
be revised to guide both research and administering clinical
treatment.

In the 2018 Alzheimer’s Association International Conference
(AAIC), a research framework for AD including 3 biomarker
groupings was presented: aggregated AP (A), aggregated tau (T),
and neurodegeneration or neuronal injury (N) [2]. The research
framework was abbreviated as ATX(N), where X denoted pos-
sibilities to incorporate new biomarkers [2]. Excitingly, in the
2023 AAIC, a new biomarker categorification was introduced for
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staging and AD prognosis: biomarkers of inflammatory/immune
processes (I), currently only reflected by body fluid, e.g., plasma
or cerebrospinal fluid (CSF) glial fibrillary acidic protein (GFAP)
[5]. Fluid markers and imaging markers are accurately measured
by CSF-based biomarkers and positron emission tomography
(PET), respectively. However, these 2 methods are incompatible
with community health centers [6] due to their high costs and
safety concerns [7,8]. As an alternative, plasma biomarkers and
magnetic resonance imaging (MRI) are more clinically feasible
and accessible to the public. Plasma biomarkers for AB42/40,
p-tau 181, neurofilament light chain (NfL), and GFAP are sug-
gested to be informative in addition to CSF [5], and specific MRI
radiomics features may offer thorough and sensitive information
about various brain regions, revealing AD pathological mecha-
nisms and facilitating early diagnosis [9]. While both plasma
biomarkers and MRI markers are informative in reflecting differ-
ent aspects of AD pathology, relying solely on plasma or MRI
biomarkers when other techniques are not available may raise
concerns: the limited exchange of proteins between plasma and
brain extracellular fluid [10] makes it challenging to precisely
track longitudinal changes of AD pathology, and neurodegenera-
tion reflected by MRI is not specific to AD compared to the core
biomarker (A and T) [2,5].

Alternatively, a combination of plasma and MRI biomark-
ers holds great potential for improving the accuracy of predict-
ing AD conversion outcomes, given their complementary
nature in capturing different aspects of the disease progres-
sion. Therefore, this paper proposes a novel multivariable
prediction model combining plasma and MRI radiomics bio-
markers. By exploring the combination of these 2 techniques,
we hope to provide a more accurate and efficient diagnostic
tool for AD, ultimately leading to better patient outcomes. The
present study aims to (a) follow the ATN framework of plasma
in combination with MRI to trace longitudinal changes from
cognitively unimpaired (CU) to cognitive impairment (CI);
(b) validate the clinical efficacy of the composite indicator by
using longitudinal data and explore the underlying pathologi-
cal mechanism through correlation analysis; and (c) build
upon previous radiomics studies and delve beyond data-driven
analyses to elucidate the underlying mechanisms behind Rad’s
robust predictive performance.

Results

Participants

Demographic and clinical characteristics at baseline and during
follow-ups (4.86 + 2.58 years) of 635 participants can be found
in Table. Because 92 participants were in the CI at baseline, they
were excluded from the subsequent prediction model (Fig. 1).
Between CU and CI subgroups, differences in mean age and edu-
cation time were found to be important at baseline (P < 0.001),
but during follow-ups, only the difference in education time
remained marked and a significant gender difference emerged
(P < 0.05). As expected, at any time point, substantial differences
were found in plasma biomarkers (Ap42/40, P-tau 181, NfL, and
GFAP) between CU and CI groups (P < 0.05). In neuropsycho-
logical evaluations (Mini-Mental State Examination [MMSE],
Montreal Cognitive Assessment Scale [MoCA], Auditory Verbal
Learning Test [AVLT], Shape Trail Test [STT], memory and
executive screening [MES], Verbal Fluency Test [VFT], Boston
Naming Test [BNT], and Clinical Dementia Rating scale [CDR]
scores), participants in the CI group got significantly lower scores
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than those in the CU group (P < 0.05). However, no obvious dif-
ference was found between the 2 groups in some other psycho-
logical evaluations (Hamilton Anxiety Scale [HAMA], GDS, etc.)
(P> 0.05). Within the CI group, the carrier rate of the APOE &4
allele in the participants significantly increased from baseline
to follow-up. Additionally, the SUVR values between the 2
groups show great differences (P < 0.001) in both baseline and
follow-up.

MRI radiomics biomarkers extraction

In the radiomics features, among 3,870 features in the main
cohort (Figs. S2A and B), those with non-zero coefficients were
included in the least absolute shrinkage and selection operator
(LASSO) regression model. Therefore, 12 imaging genomics
features were included and their spatial locations are detailed in
Fig. 2. All 12 features, in accordance with the Rad score calcula-
tion formula as well as the scores for all patients, are provided
in the Supplementary Materials (Fig. S3). To decipher the selec-
tion process, we conducted correlation analyses between each
genomics feature and plasma biomarkers. The results showed
that various features are significantly correlated with plasma
biomarkers, providing strong pathological justification for why
those 12 genomics features could be potential components for
the Rad biomarker (Fig. S4). For example, GFAP was found to
be significantly correlated with the following 4 genomics fea-
tures: HIPL-RLN (Hippocampus-Run-Length Non-uniformity),
HIP.L-Complexity (Hippocampus-Complexity), PCG.R-SZE
(Posterior cingulate gyrus-Small Zone Emphasis), and ITG.L-
SZHGE (Inferior temporal gyrus-Small Zone High Gray-level
Emphasis). In addition, PCG.R-SZE and ITG.L-SZHGE were
found to be significantly correlated to plasma p-taul81 and
AP42/AP40, respectively.

We calculated the Rad scores for each of the 262 subjects in
the imaging data to verify our Rad biomarker using data from
the Alzheimer Disease Neuroimaging Initiative (ADNI), and
we found that the area under the receiver operating character-
istic (ROC) curve (AUC) for this dataset was 0.6950, which was
lower than the training dataset’s AUC of 0.7678 (Fig. S5). In
addition, a Delong test suggested that no obvious difference
was found between the 2 datasets. The calibration plots also
demonstrated effective model calibration, as evidenced by the
outstanding agreement between the anticipated likelihood of
prognosis and actual observation (Fig. S6).

Plasma and MRI radiomics biomarkers combined

prediction models

Rad alone had an accuracy rate of 0.7678 in predicting the con-
version outcome of CU, while Ap42/40 alone had a rate of 0.6430,
NfL had a rate of 0.6744, GFAP had a rate of 0.6672, APOE €4
had a rate 0f 0.6382, and p-taul81 had a rate of 0.7528 (Fig. 3A).
In addition, the accuracy of AVLT-N5 and -N7 in predicting the
outcome of CU was 0.7859 and 0.7091, respectively. The accu-
racy rate of the combined ROC of plasma (all) was 0.7835, which
was not significantly different from the Rad model (Delong test,
P> 0.05). The AUC was 0.8118, 0.8212, and 0.9414 (sensitivity:
0.8, specificity: 0.98), respectively, after successively integrating
Plasma (AP42/40, p-taul81, and GFAP) (Fig. S7), APOE €4, and
AVLT (Fig. 3C). Thus, after comparing the Akaike information
criterion (AIC) and Bayesian Information Criteria (BIC) [11],
AP42/40, p-taul81, GFAP, APOE €4, AVLT-N5, and Rad were
selected as the optimal model. We used data from ADNI to
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Table. Demographic information and clinical characteristics at baseline and follow-up time

Baseline Follow-up

Cu Cl P value CU Cl P value
Sex (female, n, %) 343,63.17% 53,57.72% 0.251 275,59.71% 91,51.79% <0.001
Age (years) 64.93 +6.78 7047 +9.25 <0.001 66.62 + 6.63 68.35 +9.64 0.188
Education (years) 11.89 +3.78 10.01 +4.98 <0.001 11.97 + 3.77 10.75 + 3.89 0.032
Plasma Ap42/40 0.06 + 0.02 0.05+0.01 0.021 0.06 +0.01 0.05+0.01 0.035
Plasma P-tau 181 (pg/ml) 1.85+0.75 3.07+£131 <0.001 223+113 492 +0.71 0.003
Plasma NfL (pg/ml) 14.81 + 6.76 21.14 +10.37 0.002 16.70 + 8.20 3732 +£14.90 <0.001
Plasma GFAP (pg/ml) 115.07 + 55.81 210.55 +121.85 <0.001 129.58 + 61.96 270.80 + 70.69 <0.001
HAMD 405+4.19 6.16 +6.98 0.017 3.27 +3.63 4.00 +2.60 0.551
HAMA 445+ 397 584 +5.54 0.086 3.81+ 345 422 +2.95 0.727
MMSE 2841+ 175 2248 +4.72 <0.001 28.49+1.66 22.96 +5.18 <0.001
AVLT-N5 6.96 + 2.06 2.82+248 <0.001 766 + 2.24 167 +2.19 <0.001
AVLT-N7 22.20+1.90 18.05 + 3.65 <0.001 2241 +167 1775+ 331 <0.001
STT-A 61.30 +19.01 100.96 + 54.21 <0.001 59.01 +20.44 102.89 + 44.47 <0.001
STT-B 138.55 + 39.85 23642 +142.65 <0.001 142.79 + 4564 182.44 + 46.95 <0.001
VFT 18.91 + 4.62 13.91 + 4.68 <0.01 19.01 +4.38 14.80 + 4.26 0.012
BNT 2479 +3.12 1941 +4.92 <0.001 2539 +2.87 2150 +2.17 <0.001
GDS 2.50 +2.46 3.35+3.06 0.081 2.34+210 3.30+2.91 0.168
MES 90.26 + 7.02 69.35 + 15.26 <0.001 91.05+701 74.80 + 22.13 <0.001
PSQI 504 + 346 3.89+268 0.05 4.81+3.20 6.90 + 4.65 0.051
RBDSQ 1.35+1.86 0.85+154 0.132 111+ 1.50 220+244 0.033
ESS 734 +4.80 4.72 +4.99 0.018 6.76 + 4.65 700 + 442 0.871
MoCA-B 25.57 + 2.55 18.87 +4.79 <0.001 2578 + 261 20.17 +4.30 <0.001
CDR 0.03+0.13 0.72 + 047 <0.001 003+011 0.75 +0.57 <0.001
APOQEe4 (carrier, n, %) 78,22.10% 64, 42.95% <0.001 61, 21.94% 104, 46.43% <0.001
SUVR 0.97 +0.97 132 +0.29 <0.001 0.99+0.10 136 +0.27 <0.001

HAMD, Hamilton Depression Scale; HAMA, Hamilton Anxiety Scale; MMSE, Mini-Mental State Examination test; AVLT-N5: Auditory Verbal Learning Test-
Huashan version long-delayed free recall (20 min); AVLT-N7: AVLT-Huashan version long-delayed recognition (20 min); STT-A: Shape Trail Test A; STT-B:
Shape Trail Test B; VFT, Verbal Fluency Test (animal); BNT, Boston Naming Test; GDS, Geriatric Depression Scale; MES, memory and executive screening;
PSQI, Pittsburgh Sleep Quality Index; RBDSQ, Rapid-eye-movement Sleep Behavior Disorder Screening Questionnaire; ESS, Epworth Sleepiness Scale,
MoCA-B, Montreal Cognitive Assessment Scale; CDR, Clinical Dementia Rating scale; Rad, Radiomics score.

validate the predictive power of the optimal model. Unfortunately,
due to the lack of GFAP data, only AP42/40, p-taul81, APOE
€4, AVLT-N5, and Rad data were used for the validation process.
In the validation cohort, our optimal model's AUC (without
GFAP) for the external validation cohort was 0.8979 (sensitivity:
0.74, specificity: 0.84) (Fig. S8), which is a respectable indicator
of its predictive power.

The nomogram in this study (Fig. 4) shows the calculation
of the final probability of the adverse outcome of CU converting
to CIin the future. First, a vertical line was extended from each
predictor’s axis to the “points” axis to receive an individual pre-
dictor point, all of which were then summed up to form the total
points. Then, another vertical line was drawn from the “total
points” axis to the “risk” axis to finally get the probability of
conversion from CU to CI. The total points for the majority of
the participants in this research ranged from 180 to 360. For
example, a randomly selected patient has a Rad score of —201.09,
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carrying APOE €4, an AVLT-N5 of 1, a GFAP of 276.46, a
P-taul81 of 4.30, and an AP42/40 of 0.06; hence, the points for
each predictor would be 52.3, 45, 92, 49.6, 55.6, and 41.5, respec-
tively. Thus, we could obtain a total point of 336, and for this
particular patient, the predicted probability of converting from
CU to CI in the future is approximately 71.07%.

Clinical performance of the model

Figure 3B and D show the decision curve analyses of each bio-
marker and various radiomics models [12]. Compared to treat-
ing all patients or none, we observed an increase in net benefits
when using the radiomics nomogram to predict the conversion
from CU to CI with a threshold probability over 8% (Fig. 3D).
For instance, if a patient has an individual threshold probability
of 60% (meaning that the patient has a greater than 60% chance
of converting from CU to CI), the net benefit of using the opti-
mal radiomics nomogram to decide whether to undergo
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Fig. 1. Flow diagram of the primary study. CU, cognitively unimpaired; Cl, cognitive impairment; APOE, apolipoprotein E; NfL, neurofilament light chain; GFAP, glial fibrillary
acidic protein; MoCA-B, Montreal Cognitive Assessment Scale; MMSE, Mini-Mental State Examination test.
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Fig. 2. The 12 imaging genomics features included in the LASSO analysis and their
spatial locations. PreCG.L-Variance, Precentral gyrus-Variance; IFGoperc.R-SZHGE,
Inferior frontal gyrus, opercular part-Small Zone High Gray-level Emphasis; INS.R-
Strength, Insula-Strength; ACG.L-LZHGE, Anterior cingulate and paracingulate gyri-
Large Zone High Gray-level Emphasis; DCG.L-GLV, Median cingulate and paracingulate
gyri-Gray-level Variance; PCG.R-Variance, Posterior cingulate gyrus-Variance; PCG.R-
SZE, Posterior cingulate gyrus-Small Zone Emphasis; HIP.L-RLN, Hippocampus-Run-
Length Non-uniformity; HIP.L-Complexity, Hippocampus-Complexity; AMYG.R-SZE,
Amygdala-Small Zone Emphasis; THA.L-LZHGE, Thalamus-Large Zone High Gray-
level Emphasis; ITG.L-SZHGE, Inferior temporal gyrus-Small Zone High Gray-level
Emphasis.

treatment is 0.03, indicating additional benefits compared to
treating all patients or none of them. We also conducted deci-
sion curve analysis on the optimal model using data from the
ADNI cohort and found that net benefits rise as the threshold
probability exceeds 10% (Fig. S9).

Correlation and mediating analysis

We carried out a series of correlation analyses presented as heat-
maps in Fig. 5A to D. In Fig. 5A, in addition to the substantial
correlation between age and all plasma biomarkers, we observed
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that both APOE &4 and Rad were correlated with GFAP and
that Rad was also correlated with MMSE, STT, AVLT, MoCA,
and other cognitive and behavioral measures. Figure 5B and C
present the correlation heatmaps for patients categorized by
high and low Rad scores, indicating that the Rad+ group had
significantly stronger correlations than the Rad— group. In the
Rad+ group, Rad was strongly correlated with GFAP (P < 0.001)
and correlated with NfL (P < 0.05). Figure 5D shows the cor-
relations after accounting for sex, age, and education.

Rad was found to mediate the effects of GFAP on the conver-
sion outcome of CU, accounting for 21.43% of the overall
impact in the mediating effect analysis (Fig. 5E). In addition,
Rad also mediates the effects of GFAP on the results of MMSE,
contributing 18.60% to the overall impact (Fig. S10). Rad was
also found to be able to mediate the effects of NfL on the con-
version outcome of CU, accounting for 21.35% of the overall
impact (Fig. S11). Interestingly, the effect of APOE €4 on Rad
was completely mediated by SUVR, accounting for 48.29% of
the total effect (Fig. 5F).

Discussion

Due to AD’s high heterogeneity and irreversible nature, it is
essential to accurately predict the future conversion in at-risk
populations. The ATNI system, as a biomarker system for stag-
ing and prognosis, offers substantial help to customize the AD
risk profile by sorting pathologic changes into 4 categories [13].
In light of that, our study presents an optimal model that incor-
porates Rad, APOE €4, Ap42/40, P-taul8, GFAP, and AVLT-NG5.
Our model retains an AUC of 0.9414 in predicting the conver-
sion from CU to CI, increasing the accuracy compared to ear-
lier research.

A highlight of the optimal model is the construction of the
Rad biomarker, which had the highest AUC of 0.7678. In
radiomics, 3,870 features of the whole brain were combined to
create Rad factors, which indicate changes in high-dimensional
aspects of the whole brain. The final Rad biomarker included
features that match the appropriate brain areas potentially
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subject to AD pathology in earlier study findings. To be more
specific, studies have shown that the morphological changes in
mild cognitive impairment (MCI) brain amyloidosis include
distinctive spatial patterns that are highly susceptible to AD
pathology, such as the central pre-gyrus [14], the entorhinal
cortex [15], the right inferior frontal gyrus [16], the insula [17],
the posterior cingulate gyrus [18,19], the temporoparietal cor-
tex [20], the hippocampus [21-23], and the thalamus [24].
Additionally, in accordance with a recent clinical follow-up study
identifying atrophy in subregions of the amygdala as a potential
marker for future progression to CI [25], a subregion of the
amygdala was included in our Rad marker, emphasizing the
involvement of the amygdala in the early development of AD
[26,27] (Fig. 2). All the above discussion provided additional
explanations as to why Rad carries the highest AUC. Excitingly,
the predictive ability was raised to 0.9414 by incorporating the
Rad biomarker and plasma markers indicating A (Ap42/40), T
(P-taul81), I (GFAP), APOE €4, and cognitive function status
(AVLT-NS5) in the optimal model. For future applications of the
optimal model in clinical use, we have developed a personalized
nomogram for predicting conversion from CU to CI. The DCA
demonstrated that our nomogram for predicting survival rates was
more useful and practical than the traditional ATN [2] staging
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system. With advancements in neuroscience and brain sci-
ence, machine learning and various algorithms are continu-
ously evolving [28]. Overall, our nomogram may be a valuable
tool for prognosis prediction in the Chinese community.
Numerous factors were found to be mediating the conver-
sion after a mediator analysis was conducted (Fig. 6). One find-
ing that stands out is that the effect of APOE €4 on Rad was
entirely mediated by the deposition of AP in the brain, which is
in line with research done by Dincer et al. [29] and Salami et al.
[30], suggesting that the APOE genotype may have an influence
on longitudinal changes in radiomics such as MRI [31,32].
In addition, in accordance with past studies [33-35], plasma
GFAP and NfL were found to have an impact on conversion
outcomes both directly and indirectly via Rad. In particular,
Rad was strongly correlated to outcome in individuals with
positive plasma AP (Fig. 5B), highlighting the significance of
integrating AD-related imaging and plasma markers to com-
prehend the conversion process from CU to CI. In addition,
Rad served as a mediator between plasma Ap profile effects and
conversion outcome, suggesting that the effects pathway may
involve multiple brain regions, multiple dimensions, and even
global. Moreover, a highlight of the present study is that we
explored changes in Rad existing in high-dimensional space
and its impact on low-dimensional image data. Given these
factors, our exploration of the potential conversion process
from CU to CI in preclinical AD outlined in the present study
might aid future research and clinical practice diagnosis.
Additionally, we grouped individuals into high and low Rad
score before using Kaplan-Meier curves to examine differences
in time points at which conversion from CU to CI occurs
between the 2 groups. Results showed that conversion from
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CU to CI occurred significantly earlier in the high Rad score
group than in the low Rad score group (P = 0.006, Fig. S12),
indicating that even in hospitals in rural or remote areas, where
PET, CSE, and plasma tests cannot be performed, using only
MRI might be a possible way to identify at-risk individuals.
Further research is encouraged to elucidate complex processes
underlying the relationship between the MRI data and conver-
sion outcome.

The NIA-AA draft criteria for AD demonstrated that imag-
ing and fluid biomarkers are not interchangeable within the
same category [5]. Ideally, a complete biomarker profile should
include both fluid and imaging biomarkers as each captures dif-
ferent aspects of the AD pathology. However, each biomarker
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comes with different sensitivities and specificities for various use
cases, and building a diagnostic tool to identify at-risk individu-
als on a large scale must consider realistic constraints. In the
category A and T, compared to imaging markers, fluid markers
are considered more sensitive to early changes in AD, which
aligns with the aim of the present study to identify at-risk indi-
viduals and predict the conversion from CU to CI [5]. In category
N, our final model only included the imaging biomarker (Rad)
but not the fluid biomarker (NfL). We ran AIC and BIC analysis
on the optimal model and a more complicated model (the opti-
mal model + NfL). The optimal model (AIC: 81.99, BIC: 105.71)
was considered to be the most optimal compared to the compli-
cated model (AIC: 83.66, BIC: 110.77), as it prevented the model
from being overly complicated or overfitting.

For our current work, several limitations need to be addressed.
First, 8 patients converted from CU to CI in our most recent large-
scale follow-up; thus, some data in the CU group may pertain to
people who are in the pre-conversion stage to CI. In the future, we
will carry out continuing follow-ups to obtain more stable results.
In addition, the length of our study’s follow-up (4.86 + 2.58 years)
may limit the generalizability of our results because the develop-
ment of AD can persist for up to 10 years. However, given that
most AD imaging studies have comparable follow-up times and
that Rad score can identify significant pathological changes, we
believe that the impact of this relatively short follow-up period
may not be particularly important. Third, we were unable to collect
sufficient GFAP data from ADNI; thus, this indicator was left out
of the validation process. In addition, a recent longitudinal clinical
follow-up study showed that a significant proportion of ADNI
subjects classified as healthy controls showed significant signs of
amygdala atrophy at baseline [25]. Similarly, a subregion of the
amygdala is included in our Rad marker, providing additional
evidence for the potential association between early changes in the
amygdala and future cognitive changes. As a result, future research
is encouraged to further examine the association between the
structural integrity of the amygdala and cognitive decline. Finally,
the Simoa method for measuring ptaul81 began in 2020; thus,
plasma samples were available for only 219 patients, and the accu-
racy of long-term frozen plasma measurements has yet to be vali-
dated [36]. However, given the AUC (only AB42/40, p-taul8l,
APOE e4, AVLT-NS5, and Rad included) values, we are confident
in the current model’s propensity to accurately predict conversion
outcomes.

In conclusion, this study presents an optimal model for pre-
dicting the conversion from CU to CI, highlighting the impor-
tance of the Rad biomarker and its potential as a valuable tool to
identify individuals at risk of developing dementia. Furthermore,
the plasma biomarkers GFAP and NfL may also contribute to
the eventual onset of dementia by affecting Rad during this lon-
gitudinal process. In the future, with the availability of effective
AD treatments, our model can aid in identifying individuals who
would benefit the most from either primary or secondary pre-
vention. Overall, all the findings offer insight into the patho-
physiology of AD and explore the potential for personalized,
targeted interventions.

Methods
Study population

All participants finished written informed consent and autho-
rized the publication of their clinical details. Approval for the
study procedures was granted by relevant ethics committees.
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Neuropsychological scales, imaging data, and plasma tests
(Simoa in some) were assessed at enrollment and follow-up.

Sino Longitudinal Study on Cognitive Decline project
The present study is part of the Sino Longitudinal Study on
Cognitive Decline (SILCODE) project, an ongoing registered
multicenter AD research project on the Han Chinese commu-
nity population in mainland China [37]. Specific inclusion/
exclusion criteria can be discovered at https://www.clinicaltri-
als.gov/ct2/show/study/NCT03370744. From a total of 635
patients, clinical information, neuropsychological assessments,
blood samples, and imaging data were collected between
January 2010 and December 2022 (Fig. 1).

Subcategories of participants are described as follows:
Diagnosing Normal Control (NC) was based on excluding
individuals with MCI [13] and dementia [38]. The CU group
included individuals who met the NC criteria, and the CI group
included those with MCI or dementia. Detailed information
on each scale and eligibility criteria can be acquired from the
protocol that has been published [37] and studies conducted
earlier by us [39,40].

Alzheimer Disease Neuroimaging Initiative

As a multicentered longitudinal database, ADNI aims at devel-
oping clinical, radiomics, and biological indicators, which is
suitable for early diagnosis and measuring the progression dur-
ing the early stages of AD [41]. The dataset we used for valida-
tion included CU individuals (262 in total), 168 of whom
transformed into CI eventually (adni.loni.usc.edu). The inclu-
sion and exclusion criteria of individuals from the ADNI data-
base were as follows: (a) all individuals who were diagnosed
CU at the baseline visit and were followed up for at least 3 years
and the CI patients who had converted to MCI or dementia
within the follow-up interval were included; (b) individuals
with MRI, plasma samples, and amyloid PET data were likewise
included; and (c) individuals with a bidirectional change in
diagnosis (CU to CI, and back to CU) within the follow-up
period were excluded. (d) All individuals who underwent visual
assessment by an experienced imaging staff and individuals
with significant atrophy on baseline MR images, including
amygdala and hippocampus, were excluded. For more updates
on ADNI, please refer to www.adni-info.org. The enrollment

process of the ADNI data in this study is shown in Fig. SI.

Neuropsychological assessment

In both cohorts, the cognitive performance of each participant
was assessed annually by several neuropsychological assess-
ments, and longitudinal data from both baseline and later
follow-ups were included in the analysis. In SILCODE, assess-
ments were designed to cover the main common cognitive
domains including memory, language, and executive function.
Included measurements were as follows: MMSE [42]; AVLT-N5:
AVLT-Huashan version long-delayed free recall (5 min); AVLT-
N7: AVLT-Huashan version long-delayed recognition (20 min)
[43]; STT-A: Shape Trail Test A; STT-B: Shape Trail Test B [44];
GDS, Geriatric Depression Scale [45]; MES [46]; MoCA-B [47];
CDR [48], etc. Among all, MMSE and MoCA scores were uti-
lized to evaluate overall cognition, and all the scores were
z-normalized during analysis to eliminate measurement bias.
The validation method in ADNI made use of existing longitu-
dinal data for the same metrics.
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Neuroimaging data acquisition and processing

In the context of SILCODE, neuroimaging data acquisition includ-
ing [18F] florbetapir (AV-45) PET and MRI scans were conducted
on a simultaneous 3.0T TOF PET/MR scanner (SIGNA PET/MR,
GE Healthcare, Milwaukee, WI, USA) at Xuanwu Hospital of
Capital Medical University, Beijing. Participants received an intra-
venous injection of 7 to 10 mCi [18F] florbetapir radiotracer, fol-
lowed by a 40-min rest period before undergoing a 20-min static
PET scan. The PET data were collected using a time-of-flight
ordered subset expectation maximization (TOF-OSEM) algorithm
with specific parameters: 8 iterations, 32 subsets matrix = 192 X
192, the field of view (FOV) = 350 x 350 mm?, and half-width
height = 3. In MRI scans, the parameters for T1-weighted 3D brain
structural images were as follows: SPGR sequence, FOV = 256 X
256 mm’, matrix = 256 X 256, slice thickness = 1 mm, gap = 0,
slice number = 192, repetition time (TR) = 6.9 ms, echo time
(TE) = 2.98 ms, inversion time (TI) = 450 ms, flip angle = 12°,
and voxel size = 1 X 1 x 1 mm”. The MRI images were processed
using SPM12 (http://www.fil.ion.ucl.ac.uk/spm/software/spm12).
In the pre-processing, (a) the quality of all images was assessed by
2 experienced radiologic technologists, and the considered
key metrics included the signal-to-noise ratio (SNR), spatial reso-
lution, and scan time; (b) the DICOM (Digital Imaging and
Communications in Medicine) file was converted into a NIfTT
(Neuroimaging Informatics Technology Initial) file using the y_
Call_dcm2nii function in the DPABI V6.1 toolkit; (c) the T1 image
was divided into gray matter, white matter, cerebrospinal fluid tis-
sue probability map, skull, and other tissues (corresponding to c1
to ¢5) using SPM12; (d) the (c1) space of the segmented cortical
images was spatially normalized to the Montreal Neurological
Institute (MNI) space, and the voxel size was 2 mm X 2 mm X
2 mm; and (e) the 8 mm X 8 mm X 8 mm isotropic Gaussian
smoothing kernel was used for smoothing. To evaluate possible
pathways of imagological influence, we used reference regions of
the entire cortex to generate a voxel 18F-AV-45 standardized
uptake value ratio (SUVR) image: the entire cerebellum, WM
(white matter) based on the MNI map, and topic-specific WM.
The SUVR of the cortex obtains the count ratio by averaging the
voxel SUVR images in the particular target area.

Model construction

The model was constructed through 3 steps: (a) plasma biomarker
extraction; (b) MRI radiomics biomarker extraction; and (c) the
optimal model construction that combined the 2 components
using the machine learning technique. The training dataset used
in the model constructing process is from our SILCODE cohort,
and the validation dataset was from ADNI (Fig. 1).

Plasma biomarker extraction

In SILCODE, P-taul81 concentration was measured by the
Single Molecule array (Simoa) p-taul81 Advantage Kit, while
Ap40, AB42, NfL, and GFAP concentrations were measured by
the Simoa Human Neurology 4-Plex E (N4PE) assay (Quanterix).
All measurements for the 5 analytes exceeded the detection limit,
with an intra-assay variation coefficient of less than 10%. The
data were then matched to phenotype information.

In the ADNI cohort, plasma AB42/40 was detected by a high-
precision liquid chromatography-tandem mass spectrometry (LC—
MS/MS) [49], and plasma p-taul81 was analyzed by the validated
ultrasensitive Simoa technique at the Clinical Neurochemistry
Laboratory, University of Gothenburg, Sweden [36]. For p-tau181,
the lower limit of quantification was 1.0 pg/ml.
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MRI radiomics biomarker extraction

MRI radiomics features were extracted from the processed neu-
roimaging data with the tools developed by Vallieres et al. [50]
(https://github.com/mvallieres/radiomics). Based on the brain
atlas Automated Anatomical Labeling [51], 90 cortical regions
(Nos. 1 to 90) were used as regions of interest, and 43 features
(numbered in the order of 1 to 43 in the text) were extracted in
each brain region, thus making a total of 43 x 90 = 3,870 fea-
tures per subject (Supplementary Materials).

To reduce the dimension of features and to select potential
predictive factors, the LASSO-based proportional hazards model
(LASSO-COX), a model commonly used to evaluate the predic-
tive ability of selected features and to determine the optimal
subset of features [52], was constructed. To fully explore potential
predictive factors, the leave-one-out cross-validation method was
utilized, seeking the optimal solution for the regularization coef-
ficient (A-value) based on radiomic features within the LASSO-
COX model, and thus obtaining the corresponding optimal
radiomic features subset.

Finally, the Rad score (a radiomics scoring system that con-
solidates multiple radiomic features into a single comprehen-
sive index to reflect the biological information in medical
imaging) was calculated for each participant via a linear com-
bination of selected features weighted by the coeflicients, there-
fore concluding the image radiomics biomarker.

Plasma and MRI radiomics biomarkers combined

prediction model

In this study, multivariable logistic regression analysis was per-
formed to integrate plasma and radiomics biomarkers using
clinical candidate predictors including A$42/40, P-taul81, GFAP,
AVLT-N5, APOE4, and Rad. Following that, a prediction model
for the conversion of CU to CI was established using main
queues. The backward stepwise selection method was employed
using the likelihood ratio test and AIC as criteria for selecting
the optimal predictive model [53]. Using the “rms” package in
R, a predictive nomogram for prognosis combining the afore-
mentioned 6 indicators was created.

To validate the optimal model externally, we performed the
ROC curve analysis and calibration curve analysis using the
dataset from the ADNI cohort. In addition, a Delong test was
applied to assess the statistical significance of the difference in
AUC values between the SILCODE cohort (training dataset)
and the ADNI cohort (validation dataset).

Clinical performance of the model

We compared the efficacy of various combinations of single
predictors using the following approaches in order to vali-
date the usefulness of the aforementioned model in clinical
settings.

The predictive power of the indicators was assessed using
AUC, and the implementation of decision curve analysis (DCA)
allowed for the quantification of net benefits at various thresh-
old probabilities. Both SILCODE and ADNI cohorts were
included for external validation. Additionally, general linear
model repeated correlation analysis, controlling for covariates
(i.e., age, gender, and education), was conducted to make sure
that the associations between blood markers, Rad, clinical infor-
mation, and plasma biomarkers were not influenced by these
covariates.
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Statistical analysis

The categorical variables (gender and APOEe4 carrier status)
from demographic and neuropsychological data were summa-
rized and diszplayed as percentages, and evaluated using the
chi-square (y°) test to determine group difference. Continuous
variables, such as age and education level, calculated as means +
standard deviations, were compared using the independent
2-sample t test. The Kaplan—-Meier method was used to build
the survival curves to forecast the likelihood and timing of the
conversion, and the log-rank test (survminer R package) was
used for further comparison. Conducting mediation analysis
(utilizing R; Lavaan package) was the final step to investigate
the sequential relationships among the longitudinal changes of
the Rad score, plasma AB42/Ap40, p-taul81, NfL, and GFAP.
The above statistical analyses were performed in R version 4.1.3
(http://www.r-project.org/), and the significance threshold was
setat P < 0.05.

Ethics approval, consent to participate, and consent

for publication

This study was approved by the Medical Ethics Committee of
Xuanwu Hospital, Capital Medical University, and was conducted
in accordance with the Helsinki Declaration. All participants pro-
vided written informed consent and authorized the publication
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gov registry (SILCODE: NCT03370744). The authors take com-
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