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Abstract: The outbreak of airborne pathogens, such as methicillin-resistant Staphylococcus aureus
(MRSA) through bioaerosol, and their molecular characterization around domestic poultry farming
areas, was not completely understood. This imposes risk of a MRSA-associated health threat for the
relevant livestock food production units. To address this issue, the present study investigated the
role of bioaerosol in transmitting MRSA strains in poultry house settings by combining molecular
typing, phylogenetic classification, antibiotic susceptibility, and virulence gene distribution patterns.
The present study highlights that all 18 bioaerosol and stool samples collected were MRSA positive,
with a unique set of virulence factors. Out of 57 isolated MRSA isolates, 68.4% and 19.3% consisted
of SCCmec I and IV elements, respectively, which are commonly linked with hospital-acquired and
livestock-associated MRSA strains. It is worth noting that the exfoliative toxin eta and etb genes were
carried by 100% and 70.2% of all isolates, respectively. Only 17.5% of strains showed the presence of
enterotoxin entC. These MRSA isolates were resistant to chloramphenicol (C), ciprofloxacin (CIP),
clindamycin (DA), erythromycin (E), and tetracycline (T), signifying their multi-drug resistance
traits. A cluster of phylogenetic analysis described that 80.7% and 15.8% of total isolates belonged to
Staphylococcus aureus protein A (spa) type t002 and t548. Whereas 3.5% were reflected as a new spa
type. Additionally, as per the chi-squared test score value, these two spa types (t002 and t548) have a
distribution correlation with HA-MRSA and LA-MRSA in all the samples (p < 0.005, chi-squared test;
degree of freedom = 1). Ultimately, this study highlights the prevalence of MRSA colonization in the
conventional poultry farm environment, showing the risk of bioaerosol transmission, which needs
epidemiological attention and prevention strategies.

Keywords: methicillin-resistant Staphylococcus aureus (MRSA); chicken farm; bioaerosol; molecular
typing; toxin genes; multidrug resistance (MDR)

1. Introduction

Methicillin-resistant Staphylococcus aureus (MRSA) is a Gram-positive pathogen that
could proliferate to a virulent level in the air, and the utmost opportunistic ESKAPE
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(Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii,
Pseudomonas aeruginosa, and Enterobacter spp.) group of pathogens reported worldwide,
including Asia [1]. These pathogens are linked to nosocomial infection, and present in
versatile natural environments and domestic livestock farming niches [2,3]. The severity
and prevalence of MRSA are highly correlated due to the acquisition of antimicrobial
resistance characteristics against various groups of drugs, such as β-lactam [4]. MRSA can
cause disease in a healthy individual via animate and inanimate vectors, such as infected
persons and livestock carriers, contaminated soil, water, and air (e.g., bioaerosols), or
through other direct contact [5]. Bioaerosol transmission has significantly been reported as
the most potential transmission mode for spreading infection where these native pathogens
could disseminate at a level virulent enough in the air [6–8]. Under this transmissive mode,
airborne MRSA could spread and dominate around neighboring live-stock settings to pose
a serious threat for personnel working in farms and livestock, or both [8–10]. This could
escalate the possibility of economic loss. Eventually, the risk of MRSA colonization within
a livestock-associated food production system is also an emerging biosafety and safe-
production challenge [11]. Therefore, there is an urgent need to prioritize the identification
of MRSA from the chicken source, to define this occupational and public health concern [12].
Besides that, due to multidrug efflux pump and enzymatic degradation mechanisms, MRSA
colonies have shown diverse multidrug resistance properties (MDR), which is the highest
therapeutic obstacle to their infection treatment [13].

Due to the presence of a tiny mobile genetic element called mecA in different classes of
Staphylococcal cassette chromosome mec (SCCmec I to XIV) in the whole genome, this trans-
lates to the PBP2a protein (penicillin-binding protein 2a), which defines these Staphylococcal
aureus isolates as MRSA strains with methicillin resistance [14,15]. Moreover, widespread vir-
ulence factor genes, such as Panton-Valentine leukocidin (PVL) and enterotoxins (entA~E),
toxic shock syndrome toxin-1 (tsst-1), and exfoliative toxin (eta and etb) could escalate
their severity of infection [16]. Broadly, these MRSA strains are categorized into three
major epidemiolocal categories, (I) HA-MRSA (hospital-associated MRSA), (II) CA-MRSA
(community-associated MRSA), (III) LA-MRSA (livestock-associated MRSA) [10,17]. Briefly,
HA-MRSA strains typically carry SCCmec elements I–III, whereas CA-MRSA SCCmec ele-
ments are comprised of type IV, V, or VII + PVL genes as genetic signatures [18]. Whether
several LA-MRSA strains can convey any of the SCCmec elements’ categorical classes (that
are allied with CA-MRSA or HA-MRSA) is still an ongoing investigation [19].

Recently, various molecular characterizations that can differentiate between different
types of epidemiologically dominant MRSA strains are being widely used. Among these
emerging molecular methods, the S. aureus protein A (spa) encrypting gene typing is
a low-cost rapid tool that has the prominent ability to categorize the epidemiology of
MRSA [14]. The variable region (X-region) of the spa gene is always targeted for its sequence
analysis [20]. MRSA isolates’ profiling through the mecA gene is another commonly used
genotyping method known as SCCmec typing. It is specifically used for the detection of
nosocomial infections [21]. Furthermore, the virulence factor linked genes identification
can provide some explanation on the strain of infection by S. aureus. Cumulatively, all of
this information could be vital for the action plan of curbing MRSA spread [22].

Compared to other pathogens, recent reports have suggested a significant trans-
mission of MRSA through the air, which were sampled at a hospital and other health
care facilities, animal husbandry units, and domestic waste-water treatment plants [23].
Bioaerosols from traditional and modern farms are known to play a role in the spread
of emerging pathogens [24,25]. Although previous reports have shown bioaerosol-based
MRSA transmission from the animal husbandry units [26–31], there is a lacuna about the
characterization of poultry farm bioaerosol-associated MRSA, especially in the case of
MRSA-associated risk in traditional farms of Taiwan. Such traditional farms are in close
and continuous dynamic interactions with the human population and allow sporadic
infection throughout different seasons, and could lead to an outbreak. In this context, this
study primarily emphasizes molecular and virulence gene signatures distribution and
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epidemiology of MRSA strains in the bioaerosol samples around poultry farm area in
South-Taiwan. We used SCCmec and spa typing including MDR pattern, and PCR-based
virulence genes identification tools to identify unique molecular distribution as well as
prevalence of HA-type in the poultry settings of Taiwan.

2. Results
2.1. Odorous Compounds and MRSA Prevalence in the Environment

The anemometer data showed that the frequent direction of wind in pre-and post-
winter seasons was from the southeast at the sampling sites (Table 1). Whereas in winter,
the direction was from the northwest. The wind speed range around the sampling period
was 0.4–2.2 m/s. The concentration range of ammonia and methylamine gas in the chicken
shed 1 and 2 (indoor environment) was 2–7 ppm and 5–7 ppm, respectively, and outer
exposure area had low concentrations (Supplementary Table S1). The concentration of
hydrogen sulfide and mercaptan was below the detection limit at both sites. Furthermore,
the total airborne bacteria load range in the chicken shed 1 and 2 indoor areas differed
from 1.53 × 103 to 2.63 × 103 CFU/m3 and 1.63 × 103 to 2.65 × 103 CFU/m3, while at
the exposure environment, the range was found as 3.04 × 102 to 7.67 × 102 CFU/m3. The
positive results of MRSA detection revealed that all collected bioaerosol and fecal samples
from the chicken farm area were severely contaminated throughout different time point.

Table 1. MRSA prevalence and odorous compounds detection results.

Sampling Sampling Wind Speed Wind BioStage MRSA MRSA

Period Sites (m/s) Direction (CFU/m3) Air Stool

1st (June 2019)
Chicken shed 1 N/A southeast 2.63 × 103 + +
Chicken shed 2 N/A southeast 1.63 × 103 + +
Exposure plaza N/A southeast 3.04 × 102 + +

2nd (December 2019)
Chicken shed 1 0.4–0.6 northwest 2.36 × 103 + +
Chicken shed 2 0.4–0.6 northwest 2.65 × 103 + +
Exposure plaza 0.4–0.6 northwest 6.86 × 102 + +

3rd (March 2020)
Chicken shed 1 1.9–2.2 northwest 1.53 × 103 + +
Chicken shed 2 1.9–2.0 north 1.81 × 103 + +
Exposure plaza 1.0–1.2 west 7.67 × 102 + +

(N/A = not applicable) (m/s = meter/second).

2.2. Distribution of SCCmec Elements and MRSA Grouping

SCCmec typing was performed on 57 MRSA isolates obtained from sampling (Table 2).
Among them, 68.4% of isolates possessed SCCmec I, designated as the most dominant
SCCmec element. Out of the total, 19.3% and 12.3% of isolates contained SCCmec IV and
SCCmec VIII. A total of 39 isolates were linked with HA-MRSA, whereas 11 and 7 strains
belonged to LA-MRSA and other MRSA groups, respectively. Out of the 16 isolates from
shed 1, 10 were HA-MRSA, carrying only SCCmec elements I. Only one belonged to LA-
MRSA having SCCmec IV, and five strains were from other MRSA classes. Chicken shed
2 possessed a total of 12 isolates that were linked with SCCmec I containing HA-MRSA
strains, and four isolates had SCCmec elements IV, considered LA-MRSA. Exposure plaza
environment samples led to a total of 11 strains having SCCmec I, which were connected
with HA-MRSA; four isolates had SCCmec IV of LA-MRSA. For stool samples, a total of
10 MRSA isolates were obtained, out of which six isolated were SCCmec I-linked HA-MRSA,
2-SCCmec IV of LA-MRSA, and 2-SCCmec VII, as other MRSA strains.
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Table 2. SCCmec PCR typing results of the 57 MRSA isolate.

Sampling
Sites

SCCmec
I

SCCmec
II

SCCmec
III

SCCmec
IV

SCCmec
V

SCCmec
VIII PVL

HA-
MRSA

(I, II, III)

CA-
MRSA

(IV + PVL,
V + PVL)

LA-
MRSA
(IV, V)

Others

Chicken shed 1
(n = 16)

10
(62.5%) 0 (0%) 0 (0%) 1 (6.3%) 0 (0%) 5

(31.25%) 0 (0%) 10
(62.5%) 0 (0%) 1 (6.3%) 5

(31.25%)
Chicken shed 2

(n = 16)
12

(75%) 0 (0%) 0 (0%) 4 (25%) 0 (0%) 0 (0%) 0 (0%) 12 (75%) 0 (0%) 4 (25%) 0 (0%)

Exposure plaza
(n = 15)

11
(73.3%) 0 (0%) 0 (0%) 4

(26.7%) 0 (0%) 0 (0%) 0 (0%) 11
(73.3%) 0 (0%) 4 (26.7%) 0 (0%)

Stool
(n = 10) 6 (60%) 0 (0%) 0 (0%) 2 (20%) 0 (0%) 2 (20%) 0 (0%) 6 (60%) 0 (0%) 2 (20%) 2 (20%)

Total MRSA
isolates
(n = 57)

39
(68.4%) 0 (0%) 0 (0%) 11

(19.3%) 0 (0%) 7
(12.3%) 0 (0%) 39

(68.4%) 0 (0%) 11
(19.3%) 7 (12.3%)

2.3. Toxin Genes Profiling of MRSA Isolates

The toxic gene test results of 57 isolated MRSA strains are shown in Table 3. All of
the isolated strains possess the exfoliative toxin eta, of which 70.2% (40/57) possessed
etb gene, and 17.5% MRSA strains had enterotoxin C (entC). None of the MRSA isolates
from stool samples carried the enterotoxin C toxin gene. For the exfoliative toxin gene b
(etb) distribution, the highest detection value was found in the chicken shed 1 indoor air
samples (87.5%), as well as 70% of stool sample isolates, and 66.7% isolates from outdoor
air samples.

Table 3. Toxin genes PCR detecting results of the 57 MRSA isolates.

Sampling Sites entA entB entC entD entE eta etb tsst-1

Chicken shed 1 (n = 16) 0 (0%) 0 (0%) 5 (31.25%) 0 (0%) 0 (0%) 16 (100%) 14 (87.5%) 0 (0%)
Chicken shed 2 (n = 16) 0 (0%) 0 (0%) 2 (12.5%) 0 (0%) 0 (0%) 16 (100%) 9 (56.25%) 0 (0%)
Exposure plaza (n = 15) 0 (0%) 0 (0%) 3 (20%) 0 (0%) 0 (0%) 15 (100%) 10 (66.7%) 0 (0%)

Stool (n = 10) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 10 (100%) 7 (70%) 0 (0%)

Total MRSA isolates (n = 57) 0 (0%) 0 (0%) 10 (17.5%) 0 (0%) 0 (0%) 57 (100%) 40 (70.2%) 0 (0%)

2.4. Antimicrobial Susceptibility and MRD Pattern of MRSA Isolates

Antimicrobial susceptibility was assessed using the disk diffusion method. A total
of eight antimicrobial agents were checked for all of the isolates. The results are shown
in Table 4. All isolated strains were resistant to chloramphenicol (C), ciprofloxacin (CIP),
clindamycin (DA), erythromycin (E), and tetracycline (T) (100%). Only 33.3% (19/57) and
12.3% (7/57) were resistant to sulfamethoxazole-trimethoprim (S/T) and rifampicin (RA,
12.3%), respectively. As per Magiorakos et al. [32], multidrug-resistant bacteria (MDRB) is
defined as being non-susceptible to ≥ 1 agent in ≥ 3 antimicrobial categories; therefore, all
57 MRSA isolates were MDR strains. As shown in Table 5, there are 37 isolates had five
antimicrobial drugs resistance pattern denoted as C-CIP-DA-E-T. Moreover, 13 isolates with
C-CIP-DA-E-T-S/T and one isolate with a C-CIP-DA-E-RA-T resistance profile. Critically,
six strains showed seven antimicrobial drugs resistance denoted as C-CIP-DA-E-RA-T-
S/T pattern.
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Table 4. Antimicrobial susceptibility results of the 57 MRSA isolates.

Sampling Sites C CIP DA E G RA S/T T MDR

Chicken shed 1
(n = 16)

16
(100%)

16
(100%)

16
(100%)

16
(100%) 0 (0%) 0 (0%) 6 (37.5%) 16

(100%)
16

(100%)
Chicken shed 2

(n = 16)
16

(100%)
16

(100%)
16

(100%)
16

(100%) 0 (0%) 2 (12.5%) 5 (31.2%) 16
(100%)

16
(100%)

Exposure plaza
(n = 15)

15
(100%)

15
(100%)

15
(100%)

15
(100%) 0 (0%) 4 (26.7%) 6 (40%) 15

(100%)
15

(100%)
Stool

(n = 10)
10

(100%)
10

(100%)
10

(100%)
10

(100%) 0 (0%) 1 (10%) 2 (20%) 10
(100%)

10
(100%)

Total MRSA
isolates
(n = 57)

57
(100%)

57
(100%)

57
(100%)

57
(100%) 0 (0%) 7 (12.3%) 19

(33.3%)
57

(100%)
57

(100%)

C: chloramphenicol; CIP: ciprofloxacin; DA: clindamycin; E: erythromycin; G: gentamicin; RA: rifampicin; S/T: sulfamethoxazole-
trimethoprim; T: tetracycline; MDR: multidrug resistance.

Table 5. MDR pattern profile results of the 57 MRSA isolates.

Sampling Sites Chicken
Shed 1

Chicken
Shed 2

Exposure
Plaza Stool Total

MDR Isolates

C-CIP-DA-E-RA-T-S/T (7 antimicrobial drugs) 0 2 3 1 6

C-CIP-DA-E-T-S/T (6 antimicrobial drugs) 6 3 3 1
14C-CIP-DA-E-RA-T (6 antimicrobial drugs) 0 0 1 0

C-CIP-DA-E-T (5 antimicrobial drugs) 10 11 8 8 37

Total MDR isolates 16 16 15 10 57

C: chloramphenicol; CIP: ciprofloxacin; DA: clindamycin; E: erythromycin; RA: rifampicin; S/T: sulfamethoxazole-trimethoprim; T:
tetracycline; MDR: multidrug resistance.

2.5. Spa Typing and Phylogenetic Clustering of MRSA Isolates

Spa typing was performed on 57 MRSA isolates; the results are shown in Table 6.
Out of 57 MRSA isolates, 46 MRSA strains were nominated as Spa type t002 (80.7%), nine
(15.8%) isolates belonged to Spa type t548 strains, and two strains belonged to Spa new type
(3.5%). Figure 1 shows a comprehensive phylogenetic analysis of 57 isolated MRSA strains
based on Spa typing, sampling site and types, SCCmec typing, antibiotic resistance, and
toxin genes profiles. Furthermore, the phylogenetic classification of all isolates was divided
into three main sub-clusters: t002, t548, and new type. The Spa t002 type group is typically
related to HA-MRSA (SCCmec I and VIII), while the Spa t548 type group is primarily
related to LA-MRSA (SCCmec IV). According to the chi-squared test of independence, t002,
HA-MRSA vs. t548, LA-MRSA has a distribution correlation (p < 0.005, chi-squared test;
degree of freedom = 1).

Table 6. Spa typing results of the 57 MRSA isolates.

Sampling Sites t002 t548 New Type

Chicken shed 1
(n = 16) 14 (87.5%) 2 (12.5%) 0 (0%)

Chicken shed 2
(n = 16) 13 (81.25%) 3 (18.75%) 0 (0%)

Exposure plaza
(n = 15) 11 (73.3%) 4 (26.7%) 0 (0%)

Stool
(n = 10) 8 (80%) 0 (0%) 2 (20%)

Total MRSA isolates
(n = 57) 46 (80.7%) 9 (15.8%) 2 (3.5%)
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Figure 1. Genetic diversity of MRSA isolates by Spa typing combined with MDR pattern, SCCmec typing and toxin profile.

3. Discussion

All nine bioaerosol and nine chicken stool samples were collected from three sampling
points (chicken 1, 2, and exposure plaza). The concentration of odor-forming gases (such
as ammonia and methylamine) were low in outdoor (exposure plaza) air compared to
the chicken sheds’ indoor air. Similarly, the total bacteria count in exposure plaza open
air was lower than both chicken sheds’ indoor air counts. The previous study detected
ammonia (16.8–66.7 mg/m3) and methylamine (up to 0.82 mg/m3) concentration in the air
samples, and 3.2 × 109 CFU/g of total bacteria load in settled dust samples from poultry
farm environment [32]. In the present study, the ammonia and methylamine concentrations
were in the range of 7–2 ppm and 7–2.5 ppm, respectively. While airborne bacteria were
in range of 2.65 × 103–3.04 × 102 CFU/m3, which is comparable to other studies from
Asia and Europe [33,34]. Ammonia deteriorates the air quality of animals and poultry
farms, where it was detected in the range of 0.7–20 ppm [35]. High ammonia concertation
could negatively impact livestock production by increasing the severity of disease [36–39].
Out of the total bacterial load in the farming air, Liu et al. showed that 5.37% of the total
149 S. aureus isolates from indoor and outdoor bioaerosol samples were identified to be
MRSA [29]. Nasal swab sampling in poultry found that 56.8% of flocks were positive
for S. aureus, among them 30% were harboring MRSA strains [31]. Likewise, Zhong et al.
showed that S. aureus can exist in chicken feces and indoor air samples of chicken farm areas
at a significant level, and MRSA isolates were also detected in all air and stool samples,
which corroborates with our observations [38].
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For instance, throughout Europe and North America, the CC398 is a dominant clonal
complex of a MRSA strain carrying predominantly SCCmec element types IV, V, and
occasionally NT [40,41]. Especially in poultry farms, CC9 is regularly detected in the
LA-MRSA strain, which is found in pig and poultry houses of Asian countries [40,42]. The
sequencing data of strain CC9 indicated that highly versatile types of SCCmec elements (III,
IV, V, including novel and NT) could exist in their whole genome compared to CC398 [40].
Such genetic diversity of MRSA strains obtained from poultry in Taiwan, which is also
uniquely linked to bioaerosol transmission, is studied for the first time in this investigation.
SCCmec typing results of this study showed a co-occurrence between SCCmec type I and
IV with HA-MRSA and LA-MRSA. The typical genotype classification of S. aureus, such
as SCCmec I, is linked with HA-MRSA and SCCmec IV elements linked to CA-MRSA [43].
However, SCCmec type IV and V carrying LA-MRSA lineage are more dominant in the East
Asian livestock units [23,40,44]. Recent studies also showed a high prevalence of SCCmec
IV in the MRSA isolates from poultry and livestock foods, which supports the present
study [44,45]. Our previous report about the Chiayi’s river basin and nearby livestock
areas revealed that SCCmec IV and I were distributed as 64.1% and 15.4%, respectively,
wherein LA and HA-MRSA were predominant isolates from water samples, whereas CA
and HA-MRSA were predominant isolates from hospital and long-term care facilities
environments [46,47]. In the present case, SCCmec type I (HA-MRSA) was present in the
bioaerosol and stool samples, which could be a future threat to the human population.
Likewise, the presence of SCCmec IV containing LA-MRSA could colonize livestock animals.
Poultry-associated MRSA strain predominantly belonged to CC398 spa types, other types
of clones were also detected in the diverse geographic region [11]. Here, the spa typing and
its cluster analysis highlighted that t002 and t548 type strains were linked to SCCmec type
I and IV elements, respectively. Such distribution of spa types was reported from swine
farm, indicating t002 and t548 spa-type MRSA strains reported from 106 nasal, swabs, and
environmental samples [48].

Virulence factors, such as exfoliative toxins (ETs), are epidermolytic in nature. They
are serine proteases secreted by S. aureus [49]. Around 10% of the MRSA strains possess eta;
however, a report by Marek et al. showed a limited presence [50,51]. ETs could contribute
to the exfoliative epidermitis in pig and Staphylococcal scaled-skin syndrome in humans;
however, ETs A, B, and D, originating the human S. aureus strain when inoculated in
chickens, showed limited or no exfoliative activity [52–54]. Our detection results exhibited
that 100% of total isolates in this study carried exfoliative toxin eta and 70.2% possess etb.
On contrary, for chicken and duck fecal swab and livestock foods, isolated strains were
found negative for exfoliative toxin genes [55,56]. Exfoliative toxin genes were reported
in mastitis-infected cow milk samples from Bangladesh [57]. Although a limited risk
to poultry, since eta and etb were linked to human pathogenic MRSA strains, this study
highlights a potential occupational and community health challenge [49,58,59]. Therefore,
bioaerosol could play a significant role in the transmission of MRSA from livestock farms to
adjacent community settings. A total of 17.5% isolates possess entC that might increase the
risk of Staphylococcal scalded skin or toxic shock syndrome or food poisoning issues [60].

It is noteworthy that all MRSA isolates were MRD. They can typically resist chloram-
phenicol, ciprofloxacin, clindamycin, erythromycin, and tetracycline. Lu et al. showed that
the MRSA isolates from the poultry farm environment can also be multi-drug resistant,
which supports present study results [24]. A bioaerosol from livestock farms possess
tetracycline and erythromycin resistance S. aureus [30]. Taiwan has amended the veterinary
drugs control act that restricts the use of multiple antibiotics in food-producing animals.
Most of the antibiotics tested in this study are used for human treatment or only for disease
control in livestock; therefore, any resistance to these specific antibiotics can be consid-
ered a critical epidemiological risk indicator [61]. Strikingly, all 57 MRSA isolates of this
study showed multidrug-resistance ability and their virulent profiling suggest that MRSA
colonization in the poultry farms have substantial potential to pose a health risk for both
human and nearby livestock via bioaerosol transmission.
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4. Materials and Methods
4.1. Study Area and Sampling Information

The geographical coordinates of the sampling area were 23◦35′11.7′′ N 120◦29′27.3′′ E
(Figure 2). Here, two chicken sheds, and in between one open exposure plaza, were targeted
for environmental bioaerosol collection via a BioStage air sampler. Three bioaerosol and
three chicken stool samples were collected at three different times from each targeted
sampling point (between June 2019 and March 2020). A total of 18 environmental and fecal
samples were collected for further analysis.

Figure 2. The location map of sampling sites.

4.2. Sampling Procedure and Environmental Parameters Analysis

For bioaerosol sampling, the BioStage single-stage cascade impactor (SKC Inc., Bland-
ford Forum Dorset, UK) was placed on a 1.2 m high platform to collect air that could simulate
the height of average human breathing. The air sampling flow rate was 28.3 L/min and the
sampling time was 10 min. A total 283 L volume of air was used at a time to collect bioaerosol
samples. Tryptic soy agar (TSA) with 100 mg/mL cycloheximide was inserted into a
BioStage sampler to detect the total number of bacteria count in the environment per volume
of air sample (meter cube), and a selective CHROMagar™ MRSA (Paris, France) was also
placed in the sampler to screen and isolate MRSA from these environments [62]. Simultane-
ously, for fecal samples, the stool was collected into sterile specimen bottles. The gas detector
tube system (Gastec Inc., Fukayanaka, Japan) was used as per the standard operating proce-
dure to analyze the concentration of odor-producing gases, such as ammonia, methylamine,
hydrogen sulfide, and mercaptan (https://www.gastec.co.jp/en/instructionmanual/, ac-
cessed on 1 June 2019). Wind speed and direction were also measured using an anemoscope
(Puxicoo P6-8232, Shenzhen, China).

4.3. Isolation and Selective Cultivation of MRSA Isolates

A total of 1 g of stool sample was taken and added into 9 mL of trypticase soy
broth (TSB) with 6.5% NaCl. It was incubated at 37 ◦C for 16 h. Using a loopful of the
TSB enrichment medium, MRSA colonies were isolated on CHROMagar™ MRSA plates
(incubated at 37 ◦C for 24 h). Simultaneously, CHROMagar™ MRSA plates placed in the
BioStage sampler system were incubated at 37 ◦C for 24 h. A single pure mauve color
colony from CHROMagar™ MRSA was picked for further analysis by transferring it to
Brain-Heart Infusion Broth (BHIB) and incubating at 37 °C for 24 h. Subsequently, for
confirmation, they were transferred to a moderately selective and differential medium of

https://www.gastec.co.jp/en/instructionmanual/
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Baird-Parker Agar and incubated at 37 ◦C for 24 h. Finally, these pure isolates were grown
in BHIB and preserved in 33% glycerol at −20 °C for further use. Staphylococcus aureus
(ATCC25923, ATCC29213) was used as a positive control in this study.

4.4. DNA Extraction and PCR Detection of MRSA Isolates

For DNA extraction, first, the freshly grown bacterial cells in the BHIB medium were
harvested by centrifugation at 10,000× g for 5 min. DNA was extracted by a commercial
kit (MagPurix Bacterial DNA Extraction Kit, ZP02006, Taipei, Taiwan) as per their standard
protocol. For PCR experiments, the primers and master mix (Fast-RunTM Taq Master
Mix with Dye, Springwood, Australia) were mixed with genomic DNA (100–300 µg).
The total reaction volume for PCR was 25 µL, and the PCR program conditions of specific
detecting genes are described in Supplementary Table S2. Nuc and mecA genes were utilized
to confirmation of MRSA strains. Various molecular elements, such as mec, virulence-
genes including SCCmec, Panton-Valentine leukocidin (PVL), enterotoxins (entA~E), toxic
shock syndrome toxin-1 (tsst-1), and exfoliative toxin (eta and etb) were confirmed by PCR
amplification. The PCR-based Staphylococcus aureus Protein A typing (Spa typing) data
were analyzed by commercial software (BioNumerics, Sint-Martens-Latem, Belgium) for
the phylogenetic analysis. the amplicons were confirmed by electrophoresis using 1.5%
agarose gel at 110 V for 30 min.

4.5. Antibiotic Susceptibility Tests

The disk diffusion method was used for the antibiotic sensitivity test according to the
standard protocol by the Clinical and Laboratory Standards Institute (CLSI) [63]. S. aureus
strains were grown in cation-adjusted Mueller–Hinton broth (CAMHB) at 35 ◦C. After
adjusting to 0.5 McFarland, the medium was evenly spread on Mueller–Hinton agar (MHA)
having various antibiotic disks. Plates were incubated at 35 ◦C for 18–24 h. A total of
8 drugs were checked and their disk concentrations were: chloramphenicol (C, 30 µg),
ciprofloxacin (CIP, 5 µg), clindamycin (DA, 2 µg), erythromycin (E, 15 µg), gentamicin
(G, 10 µg), rifampicin (RA, 5 µg), sulfamethoxazole-trimethoprim (S/T, 23.75/1.75 µg),
and tetracycline (T, 30 µg). Multidrug-resistant bacteria (MDRB) were defined as non-
susceptible to ≥ 1 agent in ≥ 3 antimicrobial categories as per Magiorakos et al. [64].

4.6. Statistical Analysis

The chi-squared test was performed to prove the statistical significance of the distribu-
tional relationship between different isolated MRSA strain spa types with their sampling
site, sampling type, SCCmec typing, MRD pattern, and existing toxin gene profile groups.

5. Conclusions

This pilot study was carried out with different time-specific sampling at two tradi-
tional chicken farm sheds and an exposure plaza in South Taiwan, highlighting that all
of the bioaerosols collected contained MRSA strains, wherein the total airborne bacterial
load was comparatively higher inside the chicken shed environment. Isolated MRSA
strains were able to resist multiple antibiotics, such as chloramphenicol, ciprofloxacin
(CIP), clindamycin (DA), erythromycin (E), and tetracycline (T), underpinning their MDR
characteristics. This study found a high prevalence of exfoliative toxin genes, eta and etb,
in the MRSA isolated strains. The SCCmec element profiling showed the predominant
occurrence of SCCmec I-associated among 68.4% HA-MRSA strains, while only SCCmec IV
elements were prevalent in 19.3% LA-MRSA isolates. Phytogenic classification by spa typ-
ing revealed that 46 and 9 MRSA isolates were Spa type t002 and t548 strains, respectively.
Two isolates were categorized as the new spa-type. Additionally, t002 and t548 spa types
were positively correlated with hospital and livestock allied MRSA infections. Ultimately,
multidrug resistant HA-MRSA and LA-MRSA dominance in these samples have enough
potential to impose epidemiological risk via bioaerosol transmission through unhygienic
poultry practices.
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