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Abstract

Prostatitis is a common condition in adult men of all ages. Uropathogenic Escherichia coli

(UPEC) are most frequent pathogen involved in bacterial prostatitis by refluxing the infected

urine into prostatic ducts and resulting in an ascending urethral infection. However, the

study about the mechanisms of UPEC to invade, replicate and persist in normal prostate

epithelial cell is only few. Given the fact that UPEC is pathogen most frequently involved in

prostatitis and that testosterone has been demonstrated to attenuate prostate inflammation

caused by other etiologies. In this study we investigated whether the testosterone reduces

the prostatitis and related mechanism by regulating IFN-γ/STAT1 signaling pathway. In the

current study aimed to clarify whether testosterone influences the process of UPEC-induced

prostate inflammation and invasion into the prostate epithelial cells. In addition, we set up a

normal prostate cell model for UPEC infection to evaluate the ability to invade the urothelial

cells as well as the colonization of intercellular bacterial communities in vitro. By using the

model, we examine the effects of testosterone to suppress effectively the invasion and sur-

vival of UPEC in the prostate cells, and inhibit LPS-induced inflammatory responses through

the JAK/STAT1 pathway have also been indicated. Our results demonstrated testosterone

not only suppressed the invasion and colonization of UPEC, but also inhibited the expres-

sion of pro-inflammatory IL-1β, IL-6 and IL-8 cytokines expression induced by UPEC in a

dose-dependent manner. We found the effective dose of testosterone to suppress UPEC

infect prostate cells may be appropriate under 40μg/ml. Our data also revealed 20μg/ml tes-

tosterone treated PZ-HPV-7 cells significantly suppressed the LPS-induced JAK/STAT1

pathway and inflammatory responses, and reached to maximal effects at 40μg/ml treat-

ment. These results indicate that testosterone plays an anti-inflammatory role in LPS-

induced prostate cell inflammation by down-regulating JAK/STAT1 signaling pathway.
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Interestingly, the JAK inhibitor and testosterone for 24hr pretreatment rather markedly

induced the colonization of UPEC in the PZ-HPV-7 cells. Based on the above data, the sup-

pression of UPEC colonization in the prostate cells by testosterone seems to be unrelated

with JAK/STAT signaling pathway, whereas the JAK may involve into the UPEC infection.

Summing up these data, our findings have demonstrated the suppressive effects of testos-

terone on the invasion and survival of UPEC and induced inflammation in prostate epithelial

cells. These findings indicate the action mechanism of testosterone as an anti-inflammatory

mediator in the prostate cells is regulated through JAK/STAT1 signaling pathway, may be

beneficial in treating prostate inflammation. Altogether, this study has provided the possibil-

ity that using testosterone in the prevention and clinical treatment of prostatitis is a new

direction.

Introduction

Uropathogenic Escherichia coli (UPEC) is the most common causative microorganism of uri-

nary tract infection and accounts for the majority of acute and chronic bacterial prostatitis.

With the expression of multiple virulence factors, such as fimbriae, lipopolysaccharide (LPS),

and toxins, UPEC can trigger a series of host inflammatory responses, including cytokine pro-

duction, neutrophil influx, and the exfoliation of uroepithelial cells [1]. Moreover, a substantial

body of evidence has demonstrated that UPEC is capable of invading the epithelial cells of uri-

nary bladder and forming a biofilm-like intracellular bacterial community [2]. This mecha-

nism enables UPEC to evade host defense and antibiotic therapy and serves as a reservoir for

recurrent or chronic infection. The intracellular colonization of UPEC has also been also dem-

onstrated in prostate epithelial cells [3]. A recent study demonstrated the ability of as many as

58 UPEC strains to adhere to and invade normal human prostate cells with high efficiency [4].

These strains are capable of activating mitogen-activated protein kinase and NF-κB signaling

pathways in the prostate RWPE-1 cell line, inducing release of proinflammatory cytokines, IL-

6 and IL-8. [4]. An animal study demonstrated a high prevalence of UPEC persistence in the

prostate tissue after 14 day of bacterial infection, suggesting UPEC colonization could be a fre-

quent sequela of acute prostatitis [5].

It is well known that testosterone deficiency is associated with increased systemic inflam-

mation and predisposes to many disorders related to inflammation [6, 7]. It was shown that

low testosterone increases the risk of male accessory gland infection, including prostatovesicu-

litis and prostate-vesiculo-epididymitis [8], and transdermal testosterone supplement has a

favorable effect on sperm quality in these men with male accessory gland infection and con-

comitant hypogonadism [9]. A more recent study also demonstrated that men with testoster-

one deficiency have a higher prevalence of chronic prostatitis/chronic pelvic pain syndrome

[10]. On the other hand, animal studies demonstrated that high fat diet-induced testosterone

deficiency leads to prostate inflammation, which can be reversed by testosterone supplementa-

tion [11, 12].

The Janus kinase (JAK) and signal transducer and activators of transcription (STAT) path-

way is critical for the signaling of the modulatory mechanism by which cytokines contribute to

the progression of inflammatory diseases [13]. Previous studies have proved that through sup-

pressing the activation of IFN-γ/JAK/STATs pathway, LPS-induced inflammation could be

effectively reduced via attenuating the Reactive oxygen species (ROS) and cytokines produc-

tion. [14–16]. Many pathogenic infections can induce inflammation by activating the JAK /
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STAT pathway [17], and even more, they by mediating these pathways to evade the immune

responses. Recent reports showed H. pylori may via negative regulator of IFN-γ/STAT1 signal-

ing to developing resistance to escape from IFN-g–mediated bacterial clearance [18]. Another

report also showed Newcastle disease virus V protein can target phospho-STAT1 degradation

to block IFN-α signaling [19]. It has been indicated the levels of IFN-γ, TNF-α and IL-1β were

elevated in the semen of CP / CPPS-suffering patients [20]. IFN-γ/STAT1 signaling pathway

has also been shown plays an important role in the immune responses to prostatitis in experi-

mental autoimmune prostatitis mouse model [21]. However the researches about whether the

testosterone reduces the prostatitis and the regulated mechanism relate to IFN-γ/STAT1 sig-

naling pathway both remain lacked.

Given the fact that UPEC is pathogen most frequently involved in prostatitis and that tes-

tosterone has been demonstrated to attenuate prostate inflammation caused by other etiolo-

gies, the current study aimed to clarify whether testosterone influences the process of UPEC-

induced prostate inflammation and the invasion into the prostate epithelial cells. In addition,

we built a specific GFP-UPEC-infected prostate cell model to provide a platform for evaluating

the effects of testosterone or other medicine on prostatitis treatment in the future.

Materials and methods

Cell culture

PZ-HPV-7 cell line is a normal human prostate epithelial cell line acquired from the American

Type Tissue Culture Collection (ATCC, Rockville, MA, USA). Cells were maintained in Kera-

tinocyte-serum-free medium (K-SFM) supplemented with bovine pituitary extract (50 μg/ml)

and epidermal growth factor (5 ng/ml) (Gibco/Invitrogen, Grand Island, NY, USA) at 37˚C in

a humidified atmosphere of 5% CO2. The medium was replaced every 2 or 3 days.

Bacterial strains

As the model, we used uropathogenic E. coli (UPEC) CFT073 from ATCC 700928 [22]. UPEC

was expressed green fluorescent by transformation with the pGFP plasmid (Clontech, Palo

Alto, CA). Bacterial strains were cultured in LB broth supplemented with ampicillin (100 μg/

ml) and incubated at 37˚C overnight. Bacterial growth was determined spectrophotometrically

at an optical density of 600 nm (OD600). Green fluorescent of pGFP was induced by addition

of 5μM isopropyl-β-D-thiogalactoside (IPTG) to the growth medium [23]. For in vitro infec-

tions, bacteria were suspended in culture medium at multiplicity of infection (MOI).

Drug treatments

In the UPEC infection model, PZ-HPV-7 cells were seeded into 12-well dishes (5 x 106 cells/

mL) and pretreated the next day with 20, 40, 60 μg/mL testosterone (5α-androstan-3β-ol-17β-

one; Sigma-Aldrich, St. Louis, MO, USA) for 24 h prior to the bacterial infection. Drugs did

not affect the viability or growth of E. coli. Each condition was measured in duplicate, and

each experiment was performed at least thrice. For studying LPS-induced inflammation, cells

were plated at a density of 1 × 106 cells per well and treated with 5 μg/mL LPS (from E. coli
0111:B4; Sigma-Aldrich, St. Louis, MO, USA; protein content, < 1%) after co-incubating in

the presence or absence of various concentrations (10, 20, 40 μg/mL) of testosterone for 24 h.

In addition, another group of control cells were co-cultured in the presence of the same

concentrations (10, 20, 40 μg/mL) of testosterone alone for 24 h for observing the effects of tes-

tosterone on JAK/STAT1 pathway. Signaling block experiments were performed by pre-incu-

bation with 50 mM JAK inhibitor (Ruxolitinib; MedChem Express, Princeton, NJ, USA) or 50
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mM STAT1 inhibitor (Fludarabine; Selleck Chemicals Inc., Houston, TX, USA) and testoster-

one for 24 h before the UPEC treatment [24, 25]. We also treated the cells with 50 mM JAK

inhibitor or 50 mM STAT1 inhibitor alone for 24 h before UPEC treatment for observing the

effects of UPEC infection.

Bacterial infections and quantifying invasion and intracellular

colonization

PZ-HPV-7 cells after testosterone treatment were infected with bacteria (MOI of 100) and

incubated for 3 hr at 37˚C with 5% CO2. After 3 hr infection, infected monolayers were washed

4 times with phosphate-buffered saline (PBS) and incubated for 30 min in growth medium

containing gentamicin (100μg/ml; Sigma-Aldrich, St. Louis, MO). To measure bacterial inva-

sion, cells were lysed and harvested by 0.5% trypsin (Gibco)–0.1% Triton X-100 (Amresco,

Solon, OH, USA) than plated onto LB agar. Colonies were counted to quantify bound bacteria

[26–28]. In colonization assay, UPEC-infected cells were be incubated 24hr after invasion, fol-

lowed by washing, lysing, bacterial plating as described previously.

Fluorescence microscopy for UPEC detection

To detect green fluorescent of UPEC, PZ-HPV-7 cells seeded onto 18mm coverslips were

infected with pGFP-UPEC(MOI of 100) as previous described [26]. Coverslip were observed

by fluorescence microscopy. To quantify invasion and colonization, images of 50 random

fields of each coverslip were acquired.

Flow cytometry

Cells after colonization assay were harvested by 0.25% trypsin-EDTA (Gibco/ Invitrogen,

Grand Island, NY, USA) which was neutralized with 0.1% soybean trypsin inhibitor (Gibco/

Invitrogen, Grand Island, NY, USA). These cells were transferred in eppendorf tubes and cen-

trifugated at 1000xg for 10 min at 4˚C. Samples were washed and resuspended in 0.22 μm fil-

tered PBS. We monitored intracellular pGFP-UPEC at 488nm using BD-FACS VERSE (BD

Biosciences, CA, USA).

RNA isolation and RT-PCR

Total RNA was isolated from PZ-HPV-7 cells using TRIzol™ reagent (Life Technologies, Carls-

bad, CA, USA). After treatment, cells were scraped with 1000μl of TRIzol™ reagent then mixed

with 200μl chloroform. After centrifugation at 13,000xg for 15 min, the aqueous phase was col-

lected and mixed with 500μl isopropanol. The supernatant was removed and the RNA precipi-

tate dissolved in deionized water for quantification. Then, total RNA was converted to cDNA

using a High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Foster City,

CA).Each cDNA pool was stored at -20˚C until further real-time PCR. Real-time PCR, per-

formed with 2X SensiFAST™ SYBR1 No-ROX Kit (Bioline, UK), was analyzed using the

Roche LightCycler1 480 instrument (Roche Applied Science, Indianapolis, Ind.). qPCR reac-

tions were carried out in a total reaction volume of 20 μl, containing 2x SensiFAST™ SYBR1

No-ROX Mix, 8 μM each of forward and reverse primers and 5 μl template cDNA. The prim-

ers used are: janus kinase 1(JAK 1), forward:5’-AGACTTGTGAATACGTTAAAAGAAGGA-3’,

reverse:5’-AAAGCTTGTCCGATTGGA TG-3’; janus kinase 2(JAK 2),forward: 5’-GATGGA
TGCCCAGATGAGAT-3’, reverse:5’-TTGATCCACTCGAAGAGCTAGA-3’; signal transducer

and activator of transcription 1 (STAT1), forward:5’- GGAACTTGATGGCCCTAAAGGA-3’,

reverse:5’- ACAGAGCCCACTATCCGAGACA-3’; Interferon gamma (IFN-γ), forward: 5’-C
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TTCCTCATGGCTGTTTCTG-3’, reverse:5’-TGTCACCATCCTTT GCCAG-3’;interleukin-6

(IL-6), forward: 5'-AACAAGAAAGACAAAGCCAGAGTCC-3', reverse: 5'-TGATTTCAAGA
TGAATTGGATGGTC-3'; interleukin-1beta(IL-1β), forward:5'-GCTG AAAGCTCTCCACCTC
AA-3',reverse:5'-GTATTGCTTGGGATCCACACTCT-3';interleukin-8(IL-8), IL-8, forward:

5'-CACCTCAAGAACATCCAGAGCT-3', reverse: 5'-CAAGCAGAACTGAACTACCATCG-3',

.18s were used as endogenous reference genes. 18s, forward: 5'-ACAATACAGGACTCTTTC
GAG -3', reverse: 5'-AGCTTTTTAACTGCAGCAAC-3'. The real time PCR condition was 3

min at 95˚C; 45 cycles for 10 seconds at 95˚C, 30 seconds at 57˚C. At the end of the program, a

melt curve analysis was done. The relative expression of mRNA was calculated by using 2–ΔΔ
threshold cycle (Ct) (Livak) method [29]. The RT-PCRs were performed in triplicate for each of

the three independent samples.

Cytometric bead array immunoassay

Medium of cells was centrifuged (13,000xg, 20 min, 4˚C), and the supernatant was assessed

using human inflammatory cytokines cytometric bead array (CBA, BD Biosciences, San

Diego, USA) for the cytokines IL-8, IL-1β and IL-6. The cytokine capture bead, phycoerythrin

Fig 1. Effect of testosterone on UPEC invasion in PZ-HPV-7 cells. PZ-HPV-7 cells were pretreated with testosterone (T) for 24 h, and then infected with

pGFP-UPEC (MOI; 100) as described in the Materials and methods. pGFP-UPEC were observed using fluorescence microscopy 3 h post-infection of

prostate cells (objective 100x, scale bars 100 μm) (A), plated on LB agar (B), and the numbers of infected cells in (A) and (B) were quantified using Image J

software (C, D). Sites of UPEC invasion in cells are shown with arrows. Colony forming units (CFU) were acquired after plating out ten-fold dilutions of

infected cells after lysis. Data are expressed as the mean ± SD of three independent experiments. * p < 0.05, compared to the respective positive control

groups.

https://doi.org/10.1371/journal.pone.0180244.g001
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(PE) detection reagent and recombinant standards or test samples were incubated together for

3hr at room temperature. Using FACSCanto flow cytometer (BD Biosciences, San Diego, USA)

to acquire the data and analyzing by BD CBA Analysis Software to receive the graph [30, 31].

Western blotting analysis

After treatment, cells were washed and rinsed with cold phosphate buffered saline (PBS).

Proteins were harvested in RIPA lysis buffer (0.5 M Tris-HCl, pH 7.4, 1.5 M NaCl, 2.5% deoxy-

cholic acid, 10% NP-40, 10 mM EDTA). Cell suspensions were centrifuged at 10,000 x g for 20

Fig 2. Effect of testosterone on UPEC colonization in PZ HPV-7 cells. PZ-HPV-7 cells were pretreated with testosterone (T) for 24 h and then infected

with pGFP-UPEC (MOI; 100) as described in the Materials and methods. pGFP-UPEC colonization was observed using fluorescence microscopy (objective

100x, scale bars 100 μm) (A), plated on LB agar (B), and the measured values (C, D) within prostate cells of (A) and (B) were detected 24 h post-infection.

Sites of UPEC invasion in cells are shown with arrows. Flow cytometry (E, F) was also used to analyze the cell ratios of UPEC colonization. Data from three

separate experiments are shown as dot-blots for all analyzed samples, and one representative per experiment is shown. Numbers in the right lower quadrant

show the frequency of cells expressing GFP in the quadrant of total cells. Colony forming units (CFU) were acquired after plating ten-fold dilutions of the

infected cells post-lysis. Data are expressed as the mean ± SD of three independent experiments. * p < 0.05 compared to the positive control group.

https://doi.org/10.1371/journal.pone.0180244.g002
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min at 4˚C. The Bradford protein assay kit was used (BioRad, Hercules, CA, USA) to estimate

the total protein content. Equal amounts of protein samples were electrophoresed in 12%

sodium dodecyl sulfate-polyacrylamide gels and transferred to polyvinylidene difluoride mem-

branes (Millipore, Billerica, MA, USA). Nonspecific binding sites on the membranes were

blocked using 15 mM Tris/150 mM NaCl buffer (pH 7.4) containing 5% nonfat milk overnight

at 4˚C. Membranes were probed with 1:1000 dilutions each of anti-JAK1 (R & D Systems), anti-

JAK2, anti-STAT1 (Cell Signaling, Beverly, MA), anti-IL-6 (Cell Signaling), anti-IL-1β, and

anti-β-actin (Cell Signaling) antibodies at room temperature for 1 h. After incubation with the

appropriate secondary horseradish peroxidase-conjugated IgG antibody (R & D Systems) for 30

min at room temperature, the protein bands on the membrane were detected using ECL-Plus

western blot detection system (GE Healthcare UK Ltd., UK) according to the manufacturer’s

instructions. All experiments were replicated at least thrice. The results of typical experiments

are shown. Graphical analysis of band density was performed using the ImageJ software (ver-

sion 1.41o) (National Institutes of Health, Bethesda, MD) (http://rsb.info.nih.gov/ij/).

Statistics

Data were expressed as mean ± standard deviation (SD). Analysis of variance was used to ana-

lyze the differences in surface marker expression between various treatment groups and con-

trols. Statistical differences between groups were determined using Student’s t test. A p value

of, <0.05 was considered significantly.

Results

Testosterone suppresses the invasion and colonization of UPEC

Green fluorescent UPEC were observed by fluorescence microscopy, which confirmed that

UPEC-infected cells are useful for examining UPEC invasion and colonization of prostate

cells. We examined the role of testosterone in invasion and colonization of UPEC. The expres-

sion of pGFP-UPEC decreased significantly when cells were pretreated with 40 μg/mL testos-

terone for 24 h (p< 0.05 compared to the positive control) (Fig 1A–1D). Consistent with these

results, testosterone was also able to significantly reduce UPEC colonization within prostate

cells 24 h post-infection (p< 0.05 compared to the positive control) (Fig 2A–2D). Flow cytom-

etry was used to precisely quantify UPEC colonization of prostate cells. Results showed that

pretreatment with testosterone strongly suppressed UPEC colonization in prostate cells

(p< 0.05) (Fig 2E and 2F). In summary, these results demonstrated that testosterone is able to

effectively reduce the invasive and colonization abilities of UPEC in the prostate cells.

Testosterone suppresses the colonization and inflammatory cytokine

expressions induced by UPEC in dose-dependent manner

To determine the effective doses for reducing UPEC colonization, cells were incubated with

20, 40, and 60 μg/mL testosterone prior to the infection. Pre-addition of 20–60 μg/mL

Fig 3. Effect of testosterone pretreatment on UPEC colonization and inflammation induction in prostate cells. PZ-HPV-7

cells were pretreated different doses of testosterone (T) (20, 40, and 60 μg/mL) for 24 h and then infected with UPEC as

described above. Twenty-four hours post-infection, all groups of infected cells were lysed and plated on LB agar (A, B) or

detected by flow cytometry (C, D) to analyze the cell ratios of UPEC colonization. Colony forming units (CFU) were acquired after

plating ten-fold dilutions of infected cells post-lysis. Data from three separate experiments are shown as dot-blots for all analyzed

samples, and one representative per experiment is shown. Numbers in the right lower quadrant show the frequency of GFP-

expressing cells in the quadrant of total cells. The mRNA levels of IL-6, IL1B, and IL-8 cytokines were measured using

quantitative polymerase chain reaction (qPCR) in cells treated with different doses of T (E). Data from 3 separate experiments

are expressed as the mean ± SD. * p < 0.05, compared to the respective positive controls.

https://doi.org/10.1371/journal.pone.0180244.g003
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Fig 4. Testosterone affected the secretion of inflammatory cytokines in the LPS-stimulated prostate

cells. After treating with different doses of testosterone (T) (10, 20, and 40 μg/mL) for 24 h and 48 h, the levels
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testosterone suppressed UPEC colonization compared to that of the positive control (p<

0.05) (Fig 3A–3D). However, treatment with 60 μg/mL testosterone affected the physiology of

the prostate cells and drastically reduced the cell number. Therefore, the effective dose of tes-

tosterone that suppresses UPEC infection in prostate cells was� 40 μg/mL. The induction of

inflammation significantly increased the expression of pro-inflammatory cytokines IL-6, IL1B,

and IL-8 from the prostate cells. To determine whether testosterone can also affect the inflam-

mation induced by UPEC infection, PZ-HPV-7 cells were infected with UPEC as described

above after dose-dependent testosterone treatment. Twenty-four hours post-infection, the

mRNA levels of IL-6, IL1B, and IL-8 were lower in the testosterone-pretreated cells in a dose-

dependent manner (p< 0.05) compared to those of the positive control (Fig 3E). These results

showed that testosterone treatment reduced both UPEC colonization and the post-infection

inflammatory response.

Testosterone decreases LPS-induced exogenous inflammatory cytokine

secretion

Next, we attempted to understand the role of testosterone in the induction of inflammatory

response in prostate cells. For this purpose, we investigated whether testosterone treatment

could reduce the exogenous secretion of LPS-induced inflammatory cytokines in prostate

cells. CBA analysis of the supernatants obtained from cells cultured with different doses of tes-

tosterone confirmed that testosterone inhibited LPS-stimulated inflammation (Fig 4). After

treatment with 40 μg/mL testosterone for 24 h, there was a significant decrease in the levels of

LPS-stimulated secretion of extracellular IL-8 (p< 0.05). The levels of extracellular IL-1β were

markedly reduced upon treatment with 40 μg/mL testosterone for 24 h and with 20 and 40 μg/

mL testosterone for 48 h (p< 0.05, 0.05, and 0.01, compared to LPS alone treatment). Secre-

tion of both cytokines was significantly reduced in a dose- and time-dependent manner after

testosterone treatment, whereas there was no statistical difference in IL-6 secretion in all the

treated groups compared to the positive control.

Testosterone reduces inflammatory cytokine expression by

downregulating the JAK/STAT1 signaling pathway

The inhibitory effects of testosterone on JAK/STAT1 signaling pathway and expression of pro-

inflammatory cytokines were evaluated using LPS-stimulated PZ-HPV-7 cells. Fig 5 shows

that testosterone treatment in a dose-dependent manner downregulated the expression of

JAK1, JAK2, STAT1 and IFNG in LPS-stimulated prostate cells (p< 0.05). Furthermore, the

LPS-induced production of the mRNAs of pro-inflammatory cytokines IL-6, IL1B, and IL-8
was significantly and dose-dependently reduced in testosterone-treated cells (p< 0.05). Tes-

tosterone also downregulated directly the INF-γ/JAK/STAT1 signaling pathway; especially, the

mRNA levels of STAT1 and IFNG were reduced in cells treated with testosterone alone (Fig 5,

p< 0.05, compared to the positive control). However, testosterone did not suppress the pro-

duction of pro-inflammatory cytokines except that of IL-6, the levels of which decreased

slightly. Western blotting confirmed that testosterone suppressed the production of not only

LPS-induced IFN-γ, JAK1/2, and STAT1, but it also substantially decreased the levels of pro-

inflammatory cytokines such as IL-1β and IL-6 (Fig 6). Our data also revealed that PZ-HPV-7

of cytokines IL-8, IL-1β, and IL-6 released from LPS-stimulated PZ-HPV-7 cells were measured using CBA.

Cells with LPS alone stimulation (5 μg/mL) were used as the positive control. Data are expressed as the

mean ± SD from 3 separate experiments. * p < 0.05, ** p < 0.01, compared to the positive control.

https://doi.org/10.1371/journal.pone.0180244.g004
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Fig 5. Testosterone downregulated the mRNA levels of JAK/STAT1 signaling pathway components in LPS-

stimulated inflammation of prostate cells. Total RNA isolated from treated cells was analyzed using qPCR. The mRNA
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cells treated with 20 μg/mL testosterone suppressed the LPS-induced JAK/STAT1 pathway

and inflammatory response, and maximal effect was observed with the 40 μg/mL treatment

(p< 0.05 compared to the positive controls of all the 40 μg/mL treatment groups). These

results indicated that testosterone plays an anti-inflammatory role in LPS-induced prostate cell

inflammation by downregulating the JAK/STAT1 signaling pathway.

Testosterone-mediated UPEC colonization may not be related to the

JAK/STAT1 pathway

Our data showed that testosterone exhibits an anti-inflammatory activity in LPS-induced cells

by downregulating the JAK/STAT1 signaling pathway. To assess whether testosterone reduced

the invasion and colonization of UPEC within prostate cells using the same pathway, we pre-

treated cells with testosterone and JAK or STAT1 inhibitors (50 mM/mL) to block the signal-

ing pathway before UPEC infection as described above. Cells treated with JAK or STAT1

inhibitor alone were performed as controls. As shown in Fig 7, UPEC colonization in prostate

cells co-incubated with testosterone and JAK1 or STAT1 inhibitor did not decrease 24 h after

the infection. Interestingly, 24 h-pretreatment with the JAK inhibitor and testosterone rather

markedly induced UPEC colonization in PZ-HPV-7 cells (p< 0.05, compared to the testoster-

one-treated group). Similar result was also obtained with JAK1 inhibitor alone treatment

(p< 0.05, compared to the testosterone-treated group). Thus, testosterone-mediated suppres-

sion of UPEC colonization in prostate cell is not related to JAK/STAT signaling pathway,

although JAK may be involved in UPEC colonization.

Discussion

Uropathogenic Escherichia coli (UPEC) causes frequent bacterial prostatitis by refluxing the

infected urine into prostatic ducts, which results in an ascending urethral infection [32, 33].

However most urinary tract infection-related studies focus on bladder cells, and studies

regarding the ability of UPEC to invade, replicate, and persist in normal prostate epithelial cell

are limited [3]. In this study, we established a normal prostate cell model for evaluating the

ability of UPEC to invade the urothelium and colonize intercellular bacterial communities in

vitro. Using this model, we demonstrated that testosterone effectively suppresses the invasion

and survival of UPEC in prostate cells. In addition, testosterone-mediated inhibition of LPS-

induced inflammatory responses through the JAK/STAT1 pathway has also been indicated.

A recent study indicated that UPEC is able to effectively adhere, invade, survive, and induce

inflammation in an infection model of human prostate epithelial cells [4, 32]. Here we used a

similar prostate cell model to evaluate whether testosterone is able to reduce the number of

persistent UPEC within prostate cells 24 h post-infection. Most invading UPEC that adhere to

the epithelium are cleaned by soluble cell-derived mediators such as antimicrobial peptides

and chemokines [7, 34]. Our results clearly indicated that testosterone can suppress UPEC

invasion and persistent survival within prostate cells in a dose-dependent manner. Although

excess testosterone (above 60 μg/ mL) affected the cellular physiology and caused a significant

decline in the number of prostate cells, the effective dose of testosterone required to treat

levels of JAK1, JAK2, STAT1, IFNG, IL-6, IL1B, and IL-8 were detected in LPS-stimulated prostate cells treated with different

doses of testosterone (T) (10, 20, and 40 μg/mL) for 24 h. Testosterone alone (10, 20, and 40 μg/mL) treatments for 24 h

were performed as controls. Data from 3 separate experiments were expressed as mean ± SD when normalized to the

expression of the internal control gene for the 18S ribosomal RNA. * p < 0.05, compared to the respective positive control

groups; #: p < 0.05, when compared between two indicated groups. Cells stimulated with LPS alone (5 μg/mL) were as the

positive control. The expression of the untreated group was used as 1 to indicate the relative fold change in expression.

https://doi.org/10.1371/journal.pone.0180244.g005
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Fig 6. Testosterone downregulated the protein levels of JAK/STAT1 signaling pathway components in LPS-

stimulated inflammation of prostate cells. PZ-HPV-7 cells were treated with different doses of testosterone (T) (10, 20,
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UPEC infection in prostate cells is� 40 μg/mL. Previous reports revealed that UPEC infection

enhanced TLR4 expression and affected the cytoskeleton biology such as actin recruitment

and microtubule polymerization in prostate cells, which are critical for bacterial uptake and

intracellular persistence [4, 32]. TLR4 is also actively involved in bacterial invasion, and TLR4/

cAMP-mediated immune function can expel UPEC from infected uroepithelial cells [35].

Leimgruber et al. showed that the presence of testosterone could downregulate TLR4 activa-

tion and prevent the dedifferentiated (myofibroblast-like) phenotype of prostate smooth mus-

cle cells stimulated by bacterial LPS [36, 37]. They also demonstrated that testosterone reduces

cytokine secretion after LPS challenge, which is consistent with our results with UPEC-

infected testosterone-treated cells. This suggests that androgens might modulate the status of

prostate cells for maintaining a defensive cytophysiology against UPEC infection.

Androgen supplementation has been reported to reduce the expression of inflammatory

markers in prostatitis and attenuate the incidence and severity of prostatitis [38, 39]. Testoster-

one may reduce IL-6 and TNF-α production after LPS challenge by preventing Iκβ-alpha deg-

radation and NF-κβ nuclear translocation [36]. Although the anti-inflammatory effects of

testosterone in variety of tissues with microbial infection are well known, the mechanism of

androgen action on prostate inflammatory response to bacterial LPS was not very clear. A

recent study showed a critical role of the JAK/STAT1 pathway in mediating the release of

high-mobility group box 1 (HMGB1) from the nucleus to the cytoplasm, which is an impor-

tant inflammatory mediator for LPS-related infectious injury [40]. Effective inhibition of the

JAK/STAT1 signaling may represent a critical mechanism for controlling the severity of LPS-

induced inflammatory disease. In the present study, we demonstrated that testosterone effec-

tively inhibited the production and secretion of proinflammatory cytokines including IL-6, IL-

1β, and IL-8 via downregulation of JAK1/2 and STAT1 levels. A significant dose-dependent

relationship between testosterone and the expression of all these factors were verified using

qPCR or western blotting (Figs 5 and 6). Our data showed 40 μg/mL testosterone can effec-

tively inhibit the JAK/STAT1 pathway and attenuate the LPS-induced inflammatory response

in prostate cells. Helicobacter pylori, a Gram-negative bacterium, can negatively regulate IFN-

γ-activated JAK/STAT signaling to mediate an immune escape strategy for attenuating antimi-

crobial activity. This may involve interference with the IFN-γ/JAK/STAT signaling to cause

INF-γ resistance and support the persistent infection of H. pylori in gastric epithelial cells [18].

Whether UPEC uses the same mechanism of immunosuppression for persistent survival and

colonization in prostate epithelial cells requires further investigation.

Inhibition of the JAK/STAT1 signaling pathway can downregulate LPS-induced HMGB1

cytoplasmic accumulation, which promotes autophagy and the suppression of bacterial phago-

cytosis [40–42]. Autophagy normally causes bacterial degradation; however, UPEC can block

acidification and survive in lysosomes [7]. Here, we also studied whether testosterone-induced

inhibition of the JAK/STAT1 pathway involves reduction in the invasiveness and persistent

survival of UPEC within prostate cells. Our data revealed that blocking JAK significantly

enhanced the colonization of UPEC in the prostate cells compared to the testosterone alone

treatment group. Especially, treatment with the JAK inhibitor without testosterone drastically

increased UPEC internalization within the prostate cells. This suggests that invasion and sur-

vival of UPEC in prostate cells might require JAK/STAT1 signaling, whereas the testosterone-

and 40 μg/mL) and stimulated with LPS (5 μg/mL) for 24 h, followed by collection of the total protein of all the treatment

groups. The protein levels of JAK1, JAK2, STAT1, IFN-γ, IL-6, and IL-1βwere analyzed using western blotting. All data

were normalized to that of the internal reference β-actin. Results were assessed using densitometry and quantified using

the ImageJ software (NIH). The results are shown as the mean ± SD from three independent experiments. * p < 0.05,

compared to the respective positive control groups.

https://doi.org/10.1371/journal.pone.0180244.g006
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Fig 7. Effects of JAK and STAT1 inhibitor on testosterone-mediated suppression of UPEC colonization in PZ-HPV-7 cells. PZ-HPV-7 cells were

pretreated with 40 μg/mL testosterone (T) and 50 μM JAK inhibitor or 50 μM STAT1 inhibitor for 24 h, followed by UPEC infection (MOI; 100) as described

above. Cells pretreated with 50 μM JAK inhibitor or STAT1 inhibitor alone for 24 h followed by UPEC infection were used as controls. Twenty-four hours post-
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mediated suppression of UPEC invasion and survival in prostate cells does not appear to uti-

lize this pathway. A previous study showed that the level of the male-specific protein CYP2C11

is regulated by different hormones via the JAK/STAT pathway in a tissue-specific manner,

with growth hormone-mediated regulation in the liver and testosterone-mediated regulation

in the kidneys [43]. Subsequent experiments using a STAT1-overexpres sing prostate cell line

are required to further verify the role of JAK/STAT pathway in the UPEC invasion and

survival.

In conclusion, our findings have demonstrated the suppressive effects of testosterone on

the invasion and survival of UPEC and UPEC-induced inflammation in prostate epithelial

cells. These findings suggest that the mechanism of action of testosterone as an anti-inflamma-

tory mediator in prostate cells is regulated via the JAK/STAT1 signaling pathway, which may

be beneficial in treating prostate inflammation. Altogether, this study has shown that testoster-

one can be used in the prevention and clinical treatment of prostatitis.
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