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GM-CSF in inflammation
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Granulocyte–macrophage colony-stimulating factor (GM-CSF) has many more functions than its original in vitro identification
as an inducer of granulocyte and macrophage development from progenitor cells. Key features of GM-CSF biology need to
be defined better, such as the responding and producing cell types, its links with other mediators, its prosurvival versus
activation/differentiation functions, and when it is relevant in pathology. Significant preclinical data have emerged from GM-
CSF deletion/depletion approaches indicating that GM-CSF is a potential target in many inflammatory/autoimmune conditions.
Clinical trials targeting GM-CSF or its receptor have shown encouraging efficacy and safety profiles, particularly in rheumatoid
arthritis. This review provides an update on the above topics and current issues/questions surrounding GM-CSF biology.

Introduction
GM-CSF (CSF2) was originally defined as a hemopoietic growth
factor due to its ability to form colonies of granulocytes and
macrophages in vitro by proliferation and differentiation of bone
marrow progenitor cells (Burgess and Metcalf, 1980). It later be-
came apparent that GM-CSF could act on mature myeloid cells
(Handman and Burgess, 1979; Hamilton et al., 1980), such as
macrophages and neutrophils, as a prosurvival and/or activating
factor with a potential role in inflammation (Hamilton et al.,
1980). Consistent with these other roles, GM-CSF gene–deficient
mice showed minimal changes in steady state myelopoiesis but
developed pulmonary alveolar proteinosis (PAP) as the major
phenotype indicating GM-CSF involvement in lung surfactant
homeostasis (Dranoff et al., 1994; Stanley et al., 1994); this finding
indicated a role for GM-CSF in alveolar macrophage development,
which has been found to be dependent on the transcription factor
PPARγ (Schneider et al., 2014). It has been proposed recently that
GM-CSF is required for cholesterol clearance in alveolar macro-
phages, with a reduction in this clearance being the primary
macrophage defect driving PAP (Sallese et al., 2017; Trapnell et al.,
2019). This lung data suggest a fundamental role for GM-CSF in
lipid (cholesterol) metabolism consistent with a proposed pro-
tective role in atherosclerosis (Ditiatkovski et al., 2006; see below).

In addition to providing an update on GM-CSF–dependent
cell biology and signaling pathways, this review highlights
preclinical data confirming a role for GM-CSF in inflammation
and pain. Finally, a summary of the latest clinical trial findings
targeting GM-CSF and its receptor in inflammatory/autoimmune
disease is provided. Throughout the article, attempts are made to

indicate outstanding issues/controversies as well as to suggest
new directions for research to address these. The reader is re-
ferred to earlier reviews on GM-CSF biology for additional in-
formation (for example, Hamilton, 2008; Hamilton and Achuthan,
2013; Becher et al., 2016; Wicks and Roberts, 2016; Hamilton et al.,
2017; Dougan et al., 2019).

GM-CSF cell biology and signaling
Receptor structure
The GM-CSF receptor (GM-CSFR) is a type I cytokine receptor
comprising, in a multimeric complex, a binding (α) subunit and a
signaling (β) subunit, the latter shared with the IL-3 and IL-5 re-
ceptors (Hansen et al., 2008; Broughton et al., 2016). The various
myeloid cellular responses (survival, proliferation, activation, and/
or differentiation) that occur at different GM-CSF concentrations
appear to be explained by a dose-dependent sequential model of
GM-CSFR activation with a hexamer binding the ligand, followed
by assembly into a dodecamer configuration for the initiation of
receptor signaling (Hansen et al., 2008; Broughton et al., 2016).

Signaling pathways
Key downstream signaling of the GM-CSFR has been shown to
involve JAK2/STAT5, ERK, NF-κB, and phosphoinositide 3-
kinase–AKT pathways (Lehtonen et al., 2002; Hansen et al.,
2008; Perugini et al., 2010; van de Laar et al., 2012; Achuthan
et al., 2018), with ERK activity linked to GM-CSF promotion of
human monocyte survival in vitro (Achuthan et al., 2018).

The hemopoietic-specific transcription factor, interferon
regulatory factor 4 (IRF4), is a key signaling molecule regulating
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the adoption of dendritic cell (DC)–like properties in GM-
CSF–treated precursors such as monocytes (Lehtonen et al.,
2005; Gao et al., 2013; Williams et al., 2013; Yashiro et al.,
2018). We recently reported that in GM-CSF–treated mono-
cytes/macrophages in vitro, IRF4 regulates the formation of
CCL17 as a critical pathway with possible relevance to the
proinflammatory and algesic actions of GM-CSF (Achuthan
et al., 2016; see Fig. 1 and below); mechanistically, GM-CSF up-
regulates IRF4 expression by enhancing JMJD3 demethylase

activity. These data are surprising, since IRF5, rather than IRF4,
has been reported to be important for GM-CSF–mediated mac-
rophage polarization (Krausgruber et al., 2011). The data are also
surprising in that IRF4 is usually considered to have an antiin-
flammatory role inmacrophages because it down-regulates their
production of proinflammatory cytokines such as TNF and IL-
1β (Honma et al., 2005; Negishi et al., 2005; Eguchi et al., 2013)
and indicate that the GM-CSF→CCL17 pathway is separate from
the GM-CSF–driven pathways in monocytes/macrophages,
leading to the expression of these other cytokines (Achuthan
et al., 2016). Thus GM-CSF can be included in the list of cyto-
kines, such as IL-4 and thymic stromal lymphopoietin, that can
up-regulate CCL17 expression in monocytes/macrophages. GM-
CSF–IRF4 signaling also up-regulates MHC class II expression in
mouse bone marrow cultures (Suzuki et al., 2004b; Van der
Borght et al., 2018) and macrophages (Lee et al., 2019; Fig. 1).
In contrast to pathways associated with potential proin-
flammatory functions of GM-CSF, a time- and dose-dependent
licensing process by GM-CSF in mouse and human monocytes
in vitro has been described that disables their inflammatory
functions and promotes their conversion into suppressor cells
(Ribechini et al., 2017): this two-step licensing requires activa-
tion of the AKT/mTOR/mTORC1 signaling cascade by GM-CSF,
followed by signaling through the IFNγR/IRF-1 pathway.

Consistent with the dose-dependent signaling responses
noted above, dose-dependent effects of a neutralizing anti–GM-
CSF mAb on monocyte-derived cell activation/polarization
versus cell number levels were found in an inflammation model
(Louis et al., 2015); also, monocytes/macrophages generated
in vitro from bone marrow precursors with different doses of
GM-CSF differed in function, with possible implications for
GM-CSF–dependent pathology (Sun et al., 2018). Most signal
transduction studies for GM-CSF have been in monocytes/
macrophages, but more should be performed with other re-
sponsive cell types such as neutrophils and eosinophils
(Hamilton, 2008; Griseri et al., 2015; Hamilton et al., 2017). More
signal transduction information, particularly that linked with
the role of GM-CSF in inflammation, is described below.

Cellular sources of GM-CSF and GM-CSF networks
Both hemopoietic (e.g., lymphocytes and innate lymphoid cells
[ILCs]) and nonhemopoietic cell populations (e.g., fibroblast,
endothelial, and epithelial populations; see below) can produce
GM-CSF, although they usually require an activating stimulus
(Hamilton, 2008; Campbell et al., 2011; Rauch et al., 2012; Willart
et al., 2012; Becher et al., 2016; Pearson et al., 2016; Anzai et al.,
2017; Sheih et al., 2017; Chen et al., 2018; Hu et al., 2019). Con-
sistent with this requirement, in the steady state, GM-CSF cir-
culates at low levels and is usually expressed basally in
nonsterile tissues such as lung, gut, and skin (Metcalf and
Nicola, 1995; Hamilton and Achuthan, 2013). Even though in
inflammation, GM-CSF can serve as a communication conduit
between tissue-invading lymphocytes and myeloid cells, there is
some controversy as to which factors can induce GM-CSF pro-
duction in T helper (Th) cells (Becher et al., 2016). In murine
models of autoimmunity, such as experimental autoimmune
encephalomyelitis (EAE), GM-CSF has been shown to be the

Figure 1. A GM-CSF–IRF4–CCL17 pathway in inflammation and pain.
During an inflammatory reaction, GM-CSF, generated following TNF-
dependent and -independent stimulation, induces in monocytes and mac-
rophages the formation of CCL17 through a signaling pathway involving the
induction of the transcription factor, IRF4, via the activity of the demethylase,
JMJD3 (Achuthan et al., 2016). By unknown mechanisms, secreted CCL17 can
result in inflammation and tissue remodeling, for example, in arthritic joints,
as well as drive the development of pain; the latter response appears to
require a contribution from an eicosanoid (for example, PGE2). GM-CSF–IRF4
signaling can in addition control expression in monocytes and macrophages
of other potential proinflammatory effectors, such as surface-bound MHC
class II. GM-CSF and TNF, potentially produced by numerous cell types (not
shown) in response to various stimuli, including damage-associated molec-
ular patterns (DAMPs), can engage in a cytokine loop, thus potentially linking
TNF biology to the GM-CSF–CCL17 pathway (Cook et al., 2018b).
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critical effector cytokine produced by IL-23-stimulated Th17
cells in mice, leading to the concept that GM-CSF is a Th17-
related cytokine (Sonderegger et al., 2008; Codarri et al., 2011;
El-Behi et al., 2011; Hamilton et al., 2017); however, it has been
put forward that a novel subset of Th cells (Th-GM) predomi-
nantly produces GM-CSF but not IL-17 and is essential for EAE
development (Sheng et al., 2014; Komuczki et al., 2019), and IL-
12–polarized Th1 cells produce GM-CSF and induce EAE inde-
pendently of IL-23 (Carbajal et al., 2015; Grifka-Walk et al.,
2015). Also, (i) in humans a distinct subset of CD4+ T cells that
produces only GM-CSF has recently been identified (Noster
et al., 2014), (ii) Th1 cells have been claimed to be the predom-
inant Th cell subset that produces GM-CSF in the rheumatoid
arthritis (RA) joint (Yamada et al., 2017), and (iii) Th1 CD4+

T cells have been proposed to trigger chronic autoimmune val-
vulitis in patients with acute rheumatic fever (Kim et al., 2018).
In addition, an expansion of GM-CSF–producing CD4+ and CD8+

T cells in the blood and synovial fluid of patients with axial
spondyloarthritis has been observed, with possible therapeutic
implications (Al-Mossawi et al., 2017). GM-CSF–producing au-
toreactive CD4+ T cells have been identified in type 1 diabetes
patients (Knoop et al., 2018).

A GM-CSF–producing B cell population, termed innate re-
sponse activator B cells, has been identified and appears capable
of protecting against sepsis and pneumonia (Rauch et al., 2012;
Weber et al., 2014; Hamilton et al., 2017). Patients with multiple
sclerosis (MS) have been reported to have elevated numbers of
GM-CSF–secreting B cells (Li et al., 2015). Splenic ILCs release
GM-CSF, thereby coopting neutrophils, leading to increased
antibody production from marginal zone B cells (Magri et al.,
2014). These unexpected links to B cell biology could be bene-
ficial when fighting infections but are potentially detrimental in
chronic inflammatory and/or autoimmune diseases (Hamilton
et al., 2017). GM-CSF–producing ILCs can initiate experimental
autoimmune arthritis and are present in the inflamed joints of
RA patients (Hirota et al., 2018). IL-17A+ GM-CSF+ neutrophils
have been reported to be the major infiltrating cells in inter-
stitial lung disease in an autoimmune arthritis model (Kwon
et al., 2018), while basophils are believed to have a role in
lung macrophage imprinting via their GM-CSF production
(Cohen et al., 2018).

In contrast, in line with resident tissue cells being potential
GM-CSF sources (Hamilton, 1993a,b, 2008), GM-CSF produc-
tion by fibroblast-like synoviocytes helps initiate experi-
mental autoimmune arthritis (Hirota et al., 2018), and its
expression by cardiac fibroblasts has been implicated in the
pathogenesis of Kawasaki disease (Stock et al., 2016) as well as
in experimental autoimmune myocarditis and myocardial
infarction (Chen et al., 2018). Epithelial cells have been pro-
posed to produce GM-CSF in response to allergenic stimuli as
a critical early signal during allergic sensitization (Willart
et al., 2012; Sheih et al., 2017).

To help understand mechanisms governing the chronicity of
certain inflammatory/autoimmune reactions, a “CSF network”
hypothesis was originally put forward in which there is an in-
terdependent coregulation of GM-CSF with proinflammatory
cytokines, such as IL-1 and TNF, as part of a positive feedback

loop between monocyte/macrophages and adjacent populations
such as fibroblasts, endothelial cells, etc. (Hamilton, 1993a,b,
2002, 2008). This concept has been enlarged to include cyto-
kines, such as IL-23 and IL-6, as components of an autocrine/
paracrine network involving macrophages, DCs, and Th cells
(Sonderegger et al., 2008; Codarri et al., 2011; Hamilton and
Achuthan, 2013). Recently, other positive feedback loops have
also been proposed involving GM-CSF in intestinal inflamma-
tion, inflammatory-dilated cardiomyopathy, and breast cancer
metastasis, with possible implications for disease maintenance
and progression (Su et al., 2014; Wu et al., 2014; Pearson et al.,
2016).

GM-CSF→CCL17 pathway in inflammation and pain
The chemokine, CCL17 (formerly called thymus and
activation-regulated chemokine [TARC]), was originally im-
plicated in the preferential attraction of Th2 lymphocytes and
thus considered a M2 cytokine (Alferink et al., 2003); how-
ever, it can also attract effector/memory Th1 lymphocytes and
regulatory T cells (Iellem et al., 2001; Alferink et al., 2003). It
was mentioned above that in monocytes/macrophages, GM-
CSF dramatically up-regulates CCL17 formation in an IRF4-
and JMJD3-dependent manner (Achuthan et al., 2016). This
pathway appears to be important in controlling GM-
CSF–mediated inflammatory arthritis and associated pain,
as well as GM-CSF–driven inflammatory pain (Achuthan
et al., 2016; Fig. 1). This new GM-CSF→CC17 pathway ap-
pears to be active in RA patients, since circulating CCL17
levels dramatically decline upon anti–GM-CSFR therapy (Guo
et al., 2019). More recently it has been reported that the GM-
CSF→CCL17 pathway can be linked with TNF activity (Cook
et al., 2018b; Fig. 1) as well as regulate experimental osteo-
arthritic pain and optimal disease as judged by histology score
(Lee et al., 2018). The latter data led to a clinical trial in hand
osteoarthritis (OA) using a CCL17 inhibitor (ClinicalTrials.gov
identifier NCT03485365; Conaghan et al., 2019).

CCL17 may not necessarily be acting as a T cell chemokine
in its control of inflammation and its associated pain; i.e., it
appears that CCL17 has other, hitherto undefined, functions
(Weber et al., 2011; Heiseke et al., 2012; Cook et al., 2018b; Lee
et al., 2018). In this connection CCL17-driven inflammatory
pain is cyclooxygenase 2 dependent, suggesting eicosanoid
involvement (Fig. 1; Achuthan et al., 2016). There are con-
flicting data as to whether the CCL17 receptor, CCR4, is ex-
pressed in neurons (Oh et al., 2001; Thakur et al., 2014; Li
et al., 2016; Cook et al., 2018a); such expression would indi-
cate the possibility of their direct activation by CCL17. Human
microglial cells have been reported to express CCR4 (Etemad
et al., 2012), suggesting that CCL17 could act at this level in
pain development; however, blockade of arthritic pain by
systemic anti-CCL17 mAb administration suggests a periphe-
ral algesic action of CCL17, at least in the models studied
(Achuthan et al., 2016; Cook et al., 2018a; Lee et al., 2018).
Intriguingly, as regards the role of CCL17 in inflammation,
CCL17 depletion can result in regulatory T cell expansion in
atherosclerosis and colitis models, leading to disease reduc-
tion (Weber et al., 2011; Heiseke et al., 2012).
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GM-CSF biology: Current issues and questions
Monocytes, macrophages, and DC biology
There has been recent debate as to whether GM-CSF can give
rise to monocyte-derived DCs (MoDCs) in vivo (Greter et al.,
2012; Ko et al., 2014; Louis et al., 2015; Chow et al., 2016;
Hamilton et al., 2017), even though GM-CSF, often in combina-
tion with IL-4, is widely used to generate in vitro murine and
human DC populations from bone marrow precursors and blood
monocytes, respectively (Inaba et al., 1992; Suzuki et al., 2004a;
Conti and Gessani, 2008; van de Laar et al., 2012). However, cell
populations derived by GM-CSF in mouse bone marrow cultures
are heterogeneous (Lari et al., 2007; Helft et al., 2015; Na et al.,
2016; Rogers et al., 2017; Erlich et al., 2019), and their nomen-
clature is debated as to whether they should be called DCs or
macrophages (Lacey et al., 2012; Hume et al., 2013; Xue et al.,
2014; Erlich et al., 2019). The in vivo counterparts of these
various in vitro–generated populations need to be better de-
fined. Perhaps varying levels of GM-CSF to which responding
cells are exposed in the different in vitro and in vivo studies
contribute to the phenotypes of the resulting populations (Jiao
et al., 2014; Sun et al., 2018). It has been proposed that the ef-
fector functions of GM-CSF–expanded myeloid cells in vivo are
influenced by their tissuemicroenvironment (Spath et al., 2017).

In the EAE model of MS, it was concluded that GM-CSF re-
sponsiveness was required in Ly6Chi CCR2+ monocytes infil-
trating the central nervous system before their differentiation
into MoDC (Croxford et al., 2015a); however, it was concluded
that GM-CSF initiates mouse cardiac disease in resident tissue
macrophages (Stock et al., 2016). Murine CD103+ DCs from dif-
ferent tissues have distinct functional activities; there has been
disagreement about the contribution of GM-CSF in their devel-
opment in vivo (King et al., 2010; Edelson et al., 2011; Greter
et al., 2012; Hamilton et al., 2017), with varying levels of GM-CSF
perhaps helping to explain the discrepancies across different
studies (Jiao et al., 2014).

In chronic inflammation and autoimmunity, myeloid pop-
ulations (for example, monocyte/macrophages and neutrophils)
are the cell populations that are potentially responsive to GM-
CSF; they are thus likely candidates to be regulating tissue
damage and inflammation, being capable of releasing mediators,
such as cytokines, chemokines, proteases, and reactive oxygen
species, as part of this response (Hamilton, 2008; Croxford et al.,
2015a,b; Achuthan et al., 2016; Becher et al., 2016). Consistent
with a role in autoimmunity/inflammation, GM-CSF up-
regulates class II MHC (Alvaro-Gracia et al., 1989; Hornell
et al., 2003; Achuthan et al., 2018) and CD1 expression
(Kasinrerk et al., 1993; Reynolds et al., 2016) in human mono-
cytes in vitro. Even though increasedmRNA expression for TNF,
IL-1β, and IL-6 is noted in GM-CSF–treated monocytes/macro-
phages in vitro, unlike for CCL17 mentioned above (Achuthan
et al., 2016), significant cytokine secretion usually requires an-
other stimulus, such as LPS (Hart et al., 1988; Achuthan et al.,
2016; Borriello et al., 2017). Based only on the increased ex-
pression of such proinflammatory cytokines, GM-CSF–treated
monocytes/macrophages have been termed “M1-like” (Fleetwood
et al., 2007), but such cells have also been viewed to have features
of both M1 and M2 cells (Willart et al., 2012; Däbritz, 2015). It has

been recommended that M1/M2 polarization nomenclature not be
applied to GM-CSF–treated monocytes/macrophages (Lacey et al.,
2012; Murray et al., 2014; Achuthan et al., 2016; Hamilton et al.,
2017).

Endogenous mediators can contribute to the phenotypes of
GM-CSF–treated monocytes/macrophages (Lacey et al., 2012).
GM-CSF–induced polarization (Sierra-Filardi et al., 2011; Lacey
et al., 2012) and PPARγ expression (Nieto et al., 2018) in human
monocytes in vitro have been reported to be modulated by en-
dogenous activin A. Likewise, endogenous TGF-β has also been
invoked to have a similar role in the development and homeo-
stasis of alveolar macrophages (Yu et al., 2017). CSF-1 could be
another endogenous mediator contributing to the phenotype of
GM-CSF–treated humanmonocytes. Since mediators involved in
the host inflammatory response to injury and/or infection are
likely to be endeavoring to be beneficial by restoring homeo-
stasis (see below), it is important to explore such a role for GM-
CSF in its action on monocytes/macrophages.

The gene expression profile of human monocytes differen-
tiated for 7 d in GM-CSF has been compared with that for the
corresponding population treated with another CSF, namely
CSF-1 (M-CSF; Lacey et al., 2012). Their profiles differed sub-
stantially, and they also displayed distinct bioenergetic profiles
(Izquierdo et al., 2015). CSF-1 could be another endogenous
mediator contributing to the phenotype of GM-CSF–treated
human monocytes (Hamilton, 1994). Since in the steady state,
monocytes/macrophages are in general likely to be exposed to
CSF-1, it has been proposed that proinflammatory stimuli, such
as GM-CSF, IFNγ, and LPS, lead to a cellular state of CSF-1 “re-
sistance” or compromised CSF-1 signaling (Hamilton, 2008).

Neutrophils and eosinophils
GM-CSF can up-regulate neutrophil properties such as their
survival, adhesion and trafficking, oxidative burst, phagocytosis,
and formation of extracellular traps (Yong et al., 1992; Yousefi
et al., 2009; Cowburn et al., 2011; Goldmann and Medina, 2013;
Wright et al., 2013). Again, whether prosurvival/developmental
or activation/polarization responses are more important in vivo
may depend on the context and GM-CSF concentration. Like-
wise, many aspects of eosinophil biology, including their de-
velopment, survival, activation, and migration, have been
suggested to be controlled by GM-CSF in inflammation (Curran
and Bertics, 2012; Griseri et al., 2015; Liu et al., 2015; Willebrand
and Voehringer, 2016; Nobs et al., 2019).

GM-CSF, nervous system, and pain
GM-CSF has neuroprotective effects in models of neurological
diseases and injury which have been proposed to be a result of
direct action of GM-CSF on neurons (Schäbitz et al., 2008; Kelso
et al., 2015). GM-CSFR has been reported to be expressed on
neurons (Schweizerhof et al., 2009; Stösser et al., 2011; Ridwan
et al., 2012; Bali et al., 2013) and to sensitize nerves tomechanical
stimuli via a direct action on neurons (Schweizerhof et al., 2009;
Zhang et al., 2019). However, such expression has been ques-
tioned (Cook et al., 2018a; Nicol et al., 2018), and interestingly, in
one model of GM-CSF–driven arthritic pain, a cyclooxygenase
inhibitor could block such pain, suggesting the involvement of
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eicosanoids (Cook et al., 2013). Further research is needed to
clarify how GM-CSF interacts with the nervous system.

GM-CSF administration and targeting in preclinical models
Autoimmune/inflammatory disease models, in which GM-CSF
levels are modulated, potentially offer answers to some of the
questions raised above in the context of pathology and can be
used to test the concepts proposed above. Since the effects of
GM-CSF administration, depletion, or gene deletion in preclin-
ical models of inflammatory and autoimmune disease have been
reviewed recently (Hamilton, 2015; Becher et al., 2016; Wicks
and Roberts, 2016; Hamilton et al., 2017), these topics will be
briefly summarized below; however, very recent studies around
these topics are incorporated into the review.

GM-CSF can exacerbate certain inflammatory/autoimmune
disease models (Campbell et al., 1997; Bischof et al., 2000; Llop-
Guevara et al., 2014; van Nieuwenhuijze et al., 2014); however,
its administration can also improve outcomes (Hamilton, 2008;
Ganesh et al., 2009; Egea et al., 2010; Hamilton and Achuthan,
2013; Alnek et al., 2015; Bhattacharya et al., 2015; Dougan et al.,
2019), with the promotion of tolerogenic DCs being the proposed
mechanism (Ganesh et al., 2009; Alnek et al., 2015). Conflicting
roles for GM-CSF have been observed in different pulmonary
fibrosis models, with its administration either promoting or
ameliorating the condition (reviewed in Fleetwood et al., 2005).
It is worth pointing out again that, even though it may do so, the
effect of high doses of systemically administered GM-CSF on a
particular disease may not necessarily inform about the role of
endogenous ligand in that condition (Hamilton, 2008; Hamilton
et al., 2017).

GM-CSF genetic deletion or mAb blockade was initially
found to ameliorate inflammatory arthritis and EAE(Campbell
et al., 1998; Cook et al., 2001; McQualter et al., 2001; Yang and
Hamilton, 2001). These strategies have subsequently been ef-
fective in inflammatory and autoimmune models, including
skin inflammation (Schön et al., 2000; Samavedam et al.,
2014; Scholz et al., 2017), lung inflammation and chronic ob-
structive pulmonary disease (Bozinovski et al., 2002;
Yamashita et al., 2002; Cates et al., 2004; Vlahos et al., 2006;
Shiomi et al., 2014; Nobs et al., 2019), renal injury/nephritis
(Kitching et al., 2002; Timoshanko et al., 2005), peritonitis
(Cook et al., 2003, 2004), EAE and neuroinflammation
(Ponomarev et al., 2007; Codarri et al., 2011; El-Behi et al.,
2011; Ifergan et al., 2017; Sterner et al., 2019), cardiovascular
disease (Shaposhnik et al., 2007; Ye et al., 2013; Hilgendorf
et al., 2014; Stock et al., 2016; Wu et al., 2016; Anzai et al.,
2017), colitis (Khajah et al., 2011; Griseri et al., 2015; Song
et al., 2015; Kabat et al., 2016), arthritis (Greven et al., 2015;
van Nieuwenhuijze et al., 2015), periodontal disease (Lam
et al., 2015), dry eye disease (Dohlman et al., 2017), graft-
versus-host disease (Tugues et al., 2018), and autoimmune
prostatitis (Liu et al., 2019). This area has been reviewed in
Hamilton (2008); Hamilton (2015); Hamilton and Achuthan
(2013); Hamilton et al. (2017); and Wicks and Roberts (2016).
Of course, data obtained using the Csf2−/− mouse may not
necessarily parallel that resulting from a neutralizing mAb
strategy. As mentioned earlier, GM-CSF is implicated in the

regulation of inflammatory and arthritic pain via its regula-
tion in turn of CCL17 (Achuthan et al., 2016; Cook et al., 2018b;
Lee et al., 2018).

In contrast to studies indicating benefit in models of ather-
osclerosis (Shaposhnik et al., 2007; Hilgendorf et al., 2014) and
colitis (Khajah et al., 2011; Griseri et al., 2012, 2015; Song et al.,
2015; Kabat et al., 2016), exacerbations have been noted when
GM-CSF neutralization/deletion strategies were adopted for
these indications (Ditiatkovski et al., 2006; Xu et al., 2008;
Hamilton et al., 2017). Also, aged GM-CSF–deficient mice have
been shown to develop a systemic lupus erythematosus–like
disorder associatedwith impaired phagocytosis of apoptotic cells
(Enzler et al., 2003). As mentioned elsewhere (Hamilton, 2015),
any conflicting model-specific findings are likely to be due to
different pathogenic mechanisms and/or variation in the degree
of GM-CSF depletion (Khajah et al., 2011).

GM-CSF and preclinical models: Perspectives for clinical
studies
It is apparent from the data obtained from preclinical models
that GM-CSF can be a key driver of tissue inflammation and its
associated pain, acting mainly on myeloid cell numbers and/or
function locally but also perhaps systemically. In addition to
being able to preferentially control putative moDC numbers in
antigen-induced mouse peritonitis, GM-CSF could regulate
macrophage numbers in the inflamed peritoneal cavity (Cook
et al., 2004, 2016; Louis et al., 2015). Whether this regulation
of monocyte-derived populations was due to effects of GM-CSF
on cell trafficking in or out of a lesion and/or cell survival or
even proliferation is unknown (Louis et al., 2015; Cook et al.,
2016), although effects on survival in other inflammatory/au-
toimmune models have been discounted (Ko et al., 2014; Stock
et al., 2016). Interestingly, in this context, it has been suggested
that GM-CSF controls mouse DC survival in nonlymphoid tissues
as the mechanism for their homeostasis (Greter et al., 2012).
There is also evidence that during an inflammatory response,
GM-CSF may act systemically to promote hemopoietic cell mo-
bilization and development (King et al., 2009; Cook et al., 2011;
Griseri et al., 2012; Wang et al., 2014; Stock et al., 2016), as well
as the monocytosis that can be observed (Hamilton and Tak,
2009).

Given the potentially wide range of lymphoid and non-
lymphoid cellular sources of GM-CSF, human conditions that
involve acquired and/or innate immunity could fall within the
realm of GM-CSF influence. Nevertheless, presumably like other
similar mediators responding to insult or infection, GM-CSF will
be endeavoring to restore homeostasis. Evidence for this lies in
the beneficial role of GM-CSF in PAP and possibly in Crohn’s
disease and atherosclerosis. Therefore, as for all cytokine an-
tagonists, careful monitoring of relevant parameters, such as
lung function in this case, is needed in any clinical assessment of
GM-CSF targeting.

Clinical studies targeting GM-CSF and its receptor
As a result of some of the basic biology outlined above and GM-
CSF expression in the particular human condition, a number of
clinical trials using neutralizing mAbs to target GM-CSF or its

Hamilton Journal of Experimental Medicine 5

GM-CSF in inflammatory/autoimmune diseases https://doi.org/10.1084/jem.20190945

https://doi.org/10.1084/jem.20190945


receptor in inflammatory/autoimmune diseases have been
performed and are continuing. Since many of these trials have
been reviewed recently (Hamilton, 2015; Wicks and Roberts,
2016; Hamilton et al., 2017; Cook and Hamilton, 2018), a short
summary of this information is provided below as well as in-
formation on the most recent human studies (Table 1).

Mavrilimumab (KPL-301)
Mavrilimumab (formerly known as CAM-3001) is an IgG4 mAb
that was developed by MedImmune against the α-chain of the
GM-CSFR. Early small and short-term trials in RA were en-
couraging (Burmester et al., 2011, 2013; Takeuchi et al., 2015). A
subsequent 24-wk, phase IIb, randomized, double-blind, dose-
escalating, placebo-controlled study (ClinicalTrials.gov identi-
fier NCT01706926) was performed in RA patients (n = 326) and
on background methotrexate (Burmester et al., 2017; Table 1).
Mavrilimumab treatment significantly resulted in greater re-
ductions from baseline in the DAS28-CRP score at week 12 and a
greater percentage of ACR20 responders at week 24. The highest
dose (150 mg) was most effective, and the safety profile was
acceptable.

A 24-wk randomized, double-blind, phase IIb exploratory
study (ClinicalTrials.gov identifier NCT01715896) compared the
efficacy and safety of mavrilimumab with golimumab (anti-TNF
mAb), on top of methotrexate in RA patients (n = 68; Guo et al.,
2018; Weinblatt et al., 2018; Table 1). Once again, efficacy and an
acceptable safety profile were noted. Peripheral biomarkers and
pathophysiological pathways modulated by mavrilimumab and
golimumab were also assessed in the study. A number of me-
diators were suppressed by both mAbs. Interestingly, in the
context of the GM-CSF→CCL17 pathway discussed above, serum
levels of CCL17 and CCL22 (macrophage-derived chemokine
[MDC]), which share CCR4 as a common receptor, were sup-
pressed only by mavrilimumab, and only mavrilimumab was
able to induce sustained differential suppression of peripheral
disease markers in anti-TNF–inadequate responders. The au-
thors concluded that mavrilimumab treatment, but not treat-
ment with golimumab, may lead to greater long-term disease
control in anti-TNF–inadequate responders (Guo et al., 2018).

The long-term efficacy and safety of mavrilimumab has been
explored in an open-label extension (OLE) study (Clinical-
Trials.gov identifier NCT01712399) in RA patients (n = 442;

Table 1. The most recent clinical trials targeting GM-CSF or its receptor in inflammatory/autoimmune disease

Target Molecule Company Indication Phase Status ClinicalTrials.gov
identifier

Reference

GM-
CSFR

Mavrilimumab/KPL-301
(previously CAM-3001)

MedImmune RA IIb Completed NCT01706926 Burmester et al., 2017

RA IIb Completed NCT01715896 Guo et al., 2018; Weinblatt et al.,
2018

RA II (OLE) Terminated NCT01712399 Burmester et al., 2018

Kiniksa GCA II Recruiting NCTC5827018

GM-CSF GSK 3196165/Otilimab
(previously MOR103)

GSK RA IIb Completed NCT02504671

RA IIa Completed NCT02799472 Genovese, M.C., et al. 2018. ACR/
ARHP Annual Meeting. Abst. 2510.

RA III Recruiting NCT03970837

RA III Recruiting NCT03980483

Hand OA IIa Completed NCT02683785 Schett, G., et al. 2018. ACR/ARHP
Annual Meeting. Abst. 1365.

Namilumab (previously
MT203)

Takeda RA Ib Completed NCT01317797 Huizinga et al., 2017

RA II Terminated NCT02393378

RA II Completed NCT02379091 Taylor et al., 2019

Plaque
psoriasis

II Completed NCT02129777 Papp et al., 2019

Izana
Bioscience

Axial SpA IIa Recruiting NCT03622658

Lenzilumab (previously
KB003)

Humanigen Asthma II Completed NCT01603277 Molfino et al., 2016

TJM2 I-Mab
Biopharma

I Recruiting NCT03794180

GCA, giant cell arteritis; SpA, spondyloarthritis.
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Burmester et al., 2018; Table 1). The median duration of mav-
rilimumab treatment was 2.5 yr, and the cumulative safety
exposure was 899 patient-years. No new safety signals were
seen, and long-term mavrilimumab treatment was also asso-
ciated with clear and sustained benefits in measures of RA
disease outcomes (Burmester et al., 2018). In this OLE study,
biomarker analyses confirmed the sustained suppression of
CCL17 and CCL22 in mavrilimumab-treated patients over a
longer follow-up period, supporting the hypothesis of a spe-
cial link of these mediators to GM-CSF. A new trial (Clin-
icalTrials.gov identifier NCT05827018) with mavrilimumab/
KPL-301 is recruiting patients with giant cell arteritis
(Table 1).

GSK3196165/otilimab
GSK3196165 (formerly known as MOR-103) is an IgG1 mAb
developed by MorphoSys AG that binds to GM-CSF and
prevents its interaction with GM-CSFRα. A short-term phase
I/II study in RA patients (n = 96; ClinicalTrials.gov identifier
NCT01023256) showed MOR103 to be well tolerated, with
evidence of rapid and sustained efficacy. More recent phase
IIa/IIb trials in RA patients assessing the efficacy and safety
of GSK3196165, in combination with methotrexate (Clin-
icalTrials.gov identifiers NCT02504671 and NCT02799472;
Table 1) have been performed; clinical efficacy with consis-
tent improvement in magnetic resonance imaged synovitis
was observed, and the reagent was well tolerated, with no
significant adverse effects (Genovese, M.C., et al. 2018. ACR/
ARHP Annual Meeting. Abst. 2510). Circulating CCL17 levels
declined only in the GSK3196165 group, again supporting the
existence of the GM-CSF→CCL17 pathway in humans. En-
couragingly, GSK has just announced the start of a phase III
clinical development program (ContRAst) with otilimab in
RA patients who have had an inadequate response to disease-
modifying antirheumatic drugs or targeted therapies. This
program includes ContRAst-1 (NCT03970837) and ContRAst-
2 (NCT03980483; Table 1).

The results of an exploratory, 12-wk, phase IIa study of
GSK3196165 in subjects with hand OA (n = 44; ClinicalTrials.gov
identifier NCT02683785) have been reported, and, while not
statistically significant, reductions in pain, accompanied by
improvement in functional impairment, were noted (Schett, G.,
et al. 2018. ACR/ARHP Annual Meeting. Abst. 1365).

A phase Ib study (NCT0151782; Constantinescu et al., 2015)
with GSK3196165 has been performed in patients with MS to
investigate drug safety; the treatment was generally well
tolerated in individuals with relapsing-remitting MS and
secondary progressive MS. Given the encouraging data tar-
geting GM-CSF in EAE (McQualter et al., 2001; Ponomarev
et al., 2007; Codarri et al., 2011; El-Behi et al., 2011; Ifergan
et al., 2017) and the elevated GM-CSF expression in MS pa-
tients (Carrieri et al., 1998; Noster et al., 2014; Rasouli et al.,
2015), as well as the link between GM-CSF and central nervous
system–invading monocyte-derived cells in EAE (Croxford et al.,
2015a), it has been argued that blocking GM-CSF in MS patients
might be efficient in reducing MS relapses (Croxford et al.,
2015b).

Namilumab
Namilumab (formerly known as MT203), an IgG1-neutralizing
anti–GM-CSF mAb, has been investigated in a double-blind,
placebo-controlled, randomized, dose-escalating phase Ib study
in RA patients (n = 24; ClinicalTrials.gov identifier NCT01317797;
Table 1). It was generally well tolerated, with demonstrable
preliminary efficacy (Huizinga et al., 2017). Another RA
(phase II) trial was terminated (ClinicalTrials.gov identifier
NCT02393378). The findings of a phase II, randomized, double-
blind, placebo-controlled, dose-escalating, 12-wk trial in RA
patients (n = 108; ClinicalTrials.gov identifier NCT02379091)
have just been reported (Table 1; Taylor et al., 2019). The study
met its primary endpoint, with a clear dose–response effect and
an acceptable tolerability profile. There were no notable
changes from baseline of cell types known to demonstrate GM-
CSF responsiveness. A phase II, randomized, double-blind,
placebo-controlled trial in plaque psoriasis (ClinicalTrials.gov
identifier NCT02129777; Table 1) has been completed but con-
cluded that GM-CSF blockade is not critical for the suppression
of key inflammatory pathways underlying psoriasis (Papp
et al., 2019). Patients are being recruited for a phase IIa trial
using namilumab in axial spondyloarthritis (ClinicalTrials.gov
identifier NCT03622658; Table 1).

Lenzilumab
When known as KB003, lenzilumab, an IgG1-neutralizing
anti–GM-CSF mAb, was tested in a randomized phase II trial
in RA (ClinicalTrials.gov identifier NCT00995449) which was
terminated due to a program refocus. A phase II, randomized,
double-blind, placebo-controlled, 24-wk study in asthma pa-
tients (n = 311; ClinicalTrials.gov identifier NCT01603277;
Table 1) has been performed; overall, there were no effects on
asthma control or exacerbation rates, although there were im-
provements in patients with eosinophilic asthma (Molfino et al.,
2016). As indicated (Molfino et al., 2016), further studies are
required to select a dose and a candidate asthma phenotype for
evaluating the role of GM-CSF in severe asthma or other airway
conditions. A phase I trial using lenzilumab in patients with
chronic myelomonocytic leukemia has been completed (Clin-
icalTrials.gov identifier NCT02546284).

TJM2
TJM2 is an IgG1-neutralizing anti–GM-CSF mAb, and a phase I
trial has commenced (ClinicalTrials.gov identifier NCT63794180;
Table 1).

Clinical studies targeting GM-CSF activity: Perspectives
As for the targeting of all inflammatory mediators, safety con-
cerns must be high on the agenda. Encouragingly, no serious
adverse events have been noted so far, even as regards infections
and compromised lung function, with the data from the long-
term OLE study in RA patients being particularly encouraging
(Burmester et al., 2018). Unlike TNF targeting, no increase in
tuberculosis has been noted. As mentioned, idiopathic autoim-
mune PAP is characterized by high levels of anti–GM-CSF au-
toantibodies (Uchida et al., 2009); these can be divided into five
distinct groups with nonoverlapping GM-CSF binding epitopes
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(Wang et al., 2013). Of relevance to potential safety issues sur-
rounding GM-CSF targeting, unlike polyclonal anti–GM-CSF
Abs, single neutralizing anti–GM-CSF mAbs may not be harm-
ful, since theymay not be effective as polyclonals in reducing the
amount of bioavailable GM-CSF in vivo (Piccoli et al., 2015).
Continued monitoring of potential side effects is still warranted,
including those related to any compromised lung and gut
function.

As regards efficacy, it appears so far that GM-CSF targeting
has therapeutic potential in RA and perhaps in some forms of
asthma. It may have particular benefit in controlling inflam-
matory pain (for example, that associated with OA; Conaghan
et al., 2019). It could be that CCL17 may be a useful biomarker
(Burmester et al., 2018) to aid in patient selection as well as
provide clues as to the identity of relevant downstream path-
ways, with implications for possible additional therapeutic
strategies. It would be useful to know whether targeting either
GM-CSF or GM-CSFR can be differentiated; so far, the clinical
data in RA patients look similar for these strategies, and the data
are similar in mouse arthritis and inflammation models (Cook
et al., 2016). It would also be useful to know whether such tar-
geting will be effective in patients who are responsive or not to
therapies that target other inflammatorymediators, such as TNF
and IL-6. Obviously, larger trials are needed in RA and for other
potential indications.

Clinical studies with GM-CSF administration
When given to patients with Felty’s syndrome to correct the
neutropenia, GM-CSF exacerbated their arthritis (Hazenberg
et al., 1989), data paralleling those in murine models (Campbell
et al., 1997; Bischof et al., 2000; Llop-Guevara et al., 2014; van
Nieuwenhuijze et al., 2014). There are studies suggesting that
intestinal inflammation in Crohn’s disease may result from a
primary deficiency of innate immunity (Korzenik, 2007). Ele-
vated endogenous GM-CSF antibody levels are associated with
increased rates of stricturing behavior and surgery in Crohn’s
disease (Gathungu et al., 2013) and can predict the recurrence of
inflammatory bowel disease (Däbritz, 2015), even though higher
levels of GM-CSF secretion have been detected in patients with
inflammatory bowel disease (Ina et al., 1999; Noguchi et al.,
2001). Based in part on these studies, the safety and efficacy of
recombinant GM-CSF (sargramostim) has been evaluated in
Crohn’s disease patients (Däbritz, 2014). Even though benefit
has been reported in some patients, a Cochrane review dem-
onstrated that sargramostim does not appear to be more effec-
tive than placebo for remission induction; further studies are
needed to enable a final verdict (Roth et al., 2012).

As regards cancer, out of a number of proinflammatory
mediators tested, only GM-CSF most effectively induced long-
lasting, specific antitumor immunity in a tumor vaccine model
formelanoma (Dranoff et al., 1993). That seminal paper led to the
subsequent clinical development of GM-CSF–secreting tumor
vaccines, the idea being to transduce live tumor cells to secrete
GM-CSF, thus delivering a proinflammatory mediator along
with a variety of tumor-associated antigens. Encouraging clini-
cal data appear when this type of strategy is used in combination
with other immunotherapy such as anti-CTLA4 (ipilimumab) or

anti–PD-1 mAb (pembrolizumab; Hodi et al., 2014; Andtbacka
et al., 2015; Puzanov et al., 2016). As noted above for preclini-
cal models, the effect of systemically administered, high-dose
GM-CSF on a particular condition may or may not be predic-
tive of the effect of suppressing endogenous GM-CSF activity
(Hamilton, 2008; Hamilton et al., 2017).

Concluding remarks and future perspectives
It would appear from the above that GM-CSF–dependent in-
flammatory pathways in monocytes (and macrophages), as
well as in neutrophils and eosinophils, are likely to be critical
for the purported role of GM-CSF in inflammation, pain, au-
toimmunity, and host defense. The available GM-CSF levels in
an inflamed tissue at a particular time point may determine
the nature of these pathways and whether GM-CSF can
overflow into the circulation. Consideration of this parameter
may help to resolve some of the issues and questions raised
above. Such levels may also impact in turn on the effective-
ness and route of administration of an inhibitory therapeutic
such as a mAb.

In addition to attempting to summarize the relevant lit-
erature on inflammation/autoimmunity and pain, I have
tried to highlight some of the contentious issues and ques-
tions currently being debated. Such issues, some of which I
have endeavored to represent diagrammatically (Fig. 2), are
(i) when, how, and at what concentrations GM-CSF controls
cell number and/or activation/differentiation (polarization)
in vivo; (ii) when and how endogenous GM-CSF can act
systemically in addition to locally in tissues; (iii) whether
GM-CSF controls MoDC development in vivo; (iv) the nature
of GM-CSF–induced cell polarization; (v) whether IRF4- or
IRF5-dependent pathways are more important for GM-
CSF–dependent biology; and (vi) how relevant are the ef-
fects of systemically administered GM-CSF to the actions of
endogenous GM-CSF.

As evidenced by the latest basic research literature and
clinical trial activity presented in this review, there is bur-
geoning interest in targeting GM-CSF in inflammatory/au-
toimmune disorders and for the associated pain. Obviously,
determining when and where GM-CSF activity is important
and, as for other mediators involved in restoring homeo-
stasis in response to external insults, how to modulate its
function without compromising its beneficial effects, will
continue to be critical. The uniqueness of the biology sur-
rounding the interaction of GM-CSF with most likely mye-
loid cells holds promise that targeting GM-CSF could be
beneficial and specific for a diverse range of maladies. Again,
as for other inflammatory mediators, even when GM-CSF is
shown to be involved in progression of a particular disease,
biomarkers are needed so that patient stratification can be
made to allow more precise use of the appropriate therapy.
CCL17 may be such a biomarker. Other useful information
for clinical studies, such as when and how (i) GM-CSF reg-
ulates cell numbers and/or function, either locally and/or
systemically, and (ii) GM-CSF links with other proin-
flammatory cytokines, hopefully will result from further
research.
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Godwood, M. Albulescu, M.A. Michaels, X. Guo, D. Close, and M.
Weinblatt. 2018. Mavrilimumab, a Fully Human Granulocyte-
Macrophage Colony-Stimulating Factor Receptor α Monoclonal Anti-
body: Long-Term Safety and Efficacy in Patients With Rheumatoid
Arthritis. Arthritis Rheumatol. 70:679–689. https://doi.org/10.1002/art
.40420

Campbell, I.K., A. Bendele, D.A. Smith, and J.A. Hamilton. 1997. Granulocyte-
macrophage colony stimulating factor exacerbates collagen induced
arthritis in mice. Ann. Rheum. Dis. 56:364–368. https://doi.org/10.1136/
ard.56.6.364

Campbell, I.K., M.J. Rich, R.J. Bischof, A.R. Dunn, D. Grail, and J.A. Hamilton.
1998. Protection from collagen-induced arthritis in granulocyte-
macrophage colony-stimulating factor-deficient mice. J. Immunol. 161:
3639–3644.

Campbell, I.K., A. van Nieuwenhuijze, E. Segura, K. O’Donnell, E. Coghill, M.
Hommel, S. Gerondakis, J.A. Villadangos, and I.P. Wicks. 2011. Differ-
entiation of inflammatory dendritic cells is mediated by NF-κB1-de-
pendent GM-CSF production in CD4 T cells. J. Immunol. 186:5468–5477.
https://doi.org/10.4049/jimmunol.1002923

Carbajal, K.S., Y. Mironova, J.T. Ulrich-Lewis, D. Kulkarni, H.M. Grifka-Walk,
A.K. Huber, P. Shrager, R.J. Giger, and B.M. Segal. 2015. Th Cell Di-
versity in Experimental Autoimmune Encephalomyelitis and Multiple
Sclerosis. J. Immunol. 195:2552–2559. https://doi.org/10.4049/jimmunol
.1501097

Carrieri, P.B., V. Provitera, T. De Rosa, G. Tartaglia, F. Gorga, and O. Perrella.
1998. Profile of cerebrospinal fluid and serum cytokines in patients with
relapsing-remitting multiple sclerosis: a correlation with clinical ac-
tivity. Immunopharmacol. Immunotoxicol. 20:373–382. https://doi.org/10
.3109/08923979809034820

Cates, E.C., R. Fattouh, J. Wattie, M.D. Inman, S. Goncharova, A.J. Coyle, J.C.
Gutierrez-Ramos, and M. Jordana. 2004. Intranasal exposure of mice to
house dust mite elicits allergic airway inflammation via a GM-CSF-
mediated mechanism. J. Immunol. 173:6384–6392. https://doi.org/10
.4049/jimmunol.173.10.6384

Chen, G., W. Bracamonte-Baran, N.L. Diny, X. Hou, M.V. Talor, K. Fu, Y. Liu,
G. Davogustto, H. Vasquez, H. Taegtmeyer, et al. 2018. Sca-1+ cardiac
fibroblasts promote development of heart failure. Eur. J. Immunol. 48:
1522–1538. https://doi.org/10.1002/eji.201847583

Chow, K.V., R.B. Delconte, N.D. Huntington, D.M. Tarlinton, R.M. Sutherland,
Y. Zhan, and A.M. Lew. 2016. Innate Allorecognition Results in Rapid
Accumulation of Monocyte-Derived Dendritic Cells. J. Immunol. 197:
2000–2008. https://doi.org/10.4049/jimmunol.1600181

Codarri, L., G. Gyülvészi, V. Tosevski, L. Hesske, A. Fontana, L. Magnenat, T.
Suter, and B. Becher. 2011. RORγt drives production of the cytokine
GM-CSF in helper T cells, which is essential for the effector phase of
autoimmune neuroinflammation. Nat. Immunol. 12:560–567. https://doi
.org/10.1038/ni.2027

Cohen, M., A. Giladi, A.D. Gorki, D.G. Solodkin, M. Zada, A. Hladik, A. Mi-
klosi, T.M. Salame, K.B. Halpern, E. David, et al. 2018. Lung Single-Cell
Signaling Interaction Map Reveals Basophil Role in Macrophage Im-
printing. Cell. 175:1031–1044.e18. https://doi.org/10.1016/j.cell.2018.09
.009

Conaghan, P.G., A.D. Cook, J.A. Hamilton, and P.P. Tak. 2019. Therapeutic
options for targeting inflammatory osteoarthritis pain. Nat. Rev. Rheu-
matol. 15:355–363. https://doi.org/10.1038/s41584-019-0221-y

Constantinescu, C.S., A. Asher, W. Fryze, W. Kozubski, F. Wagner, J. Aram, R.
Tanasescu, R.P. Korolkiewicz, M. Dirnberger-Hertweck, S. Steidl, et al.
2015. Randomized phase 1b trial of MOR103, a human antibody to GM-
CSF, in multiple sclerosis. Neurol. Neuroimmunol. Neuroinflamm. 2:e117.
https://doi.org/10.1212/NXI.0000000000000117

Conti, L., and S. Gessani. 2008. GM-CSF in the generation of dendritic cells
from human blood monocyte precursors: recent advances. Immunobi-
ology. 213:859–870. https://doi.org/10.1016/j.imbio.2008.07.017

Cook, A.D., and J.A. Hamilton. 2018. Investigational therapies targeting the
granulocyte macrophage colony-stimulating factor receptor-α in
rheumatoid arthritis: focus on mavrilimumab. Ther. Adv. Musculoskelet.
Dis. 10:29–38. https://doi.org/10.1177/1759720X17752036

Cook, A.D., E.L. Braine, I.K. Campbell, M.J. Rich, and J.A. Hamilton. 2001.
Blockade of collagen-induced arthritis post-onset by antibody to
granulocyte-macrophage colony-stimulating factor (GM-CSF): re-
quirement for GM-CSF in the effector phase of disease. Arthritis Res. 3:
293–298. https://doi.org/10.1186/ar318

Cook, A.D., E.L. Braine, and J.A. Hamilton. 2003. The phenotype of inflam-
matory macrophages is stimulus dependent: implications for the nature
of the inflammatory response. J. Immunol. 171:4816–4823. https://doi
.org/10.4049/jimmunol.171.9.4816

Cook, A.D., E.L. Braine, and J.A. Hamilton. 2004. Stimulus-dependent re-
quirement for granulocyte-macrophage colony-stimulating factor in
inflammation. J. Immunol. 173:4643–4651. https://doi.org/10.4049/
jimmunol.173.7.4643

Cook, A.D., A.L. Turner, E.L. Braine, J. Pobjoy, J.C. Lenzo, and J.A. Hamilton.
2011. Regulation of systemic and local myeloid cell subpopulations by
bone marrow cell-derived granulocyte-macrophage colony-stimulating
factor in experimental inflammatory arthritis. Arthritis Rheum. 63:
2340–2351. https://doi.org/10.1002/art.30354

Cook, A.D., J. Pobjoy, S. Sarros, S. Steidl, M. Dürr, D.C. Lacey, and J.A.
Hamilton. 2013. Granulocyte-macrophage colony-stimulating factor is a
key mediator in inflammatory and arthritic pain. Ann. Rheum. Dis. 72:
265–270. https://doi.org/10.1136/annrheumdis-2012-201703

Cook, A.D., C. Louis, M.J. Robinson, R. Saleh, M.A. Sleeman, and J.A. Ham-
ilton. 2016. Granulocyte macrophage colony-stimulating factor receptor
α expression and its targeting in antigen-induced arthritis and in-
flammation. Arthritis Res. Ther. 18:287. https://doi.org/10.1186/s13075
-016-1185-9

Hamilton Journal of Experimental Medicine 10

GM-CSF in inflammatory/autoimmune diseases https://doi.org/10.1084/jem.20190945

https://doi.org/10.1084/jem.20170689
https://doi.org/10.1084/jem.20170689
https://doi.org/10.1186/1744-8069-9-48
https://doi.org/10.1186/1744-8069-9-48
https://doi.org/10.1016/j.immuni.2016.10.026
https://doi.org/10.1016/j.cyto.2015.05.030
https://doi.org/10.1016/j.cyto.2015.05.030
https://doi.org/10.1046/j.1365-2249.2000.01125.x
https://doi.org/10.3389/fimmu.2016.00680
https://doi.org/10.1074/jbc.M207840200
https://doi.org/10.1016/j.str.2016.05.017
https://doi.org/10.1136/ard.2010.146225
https://doi.org/10.1136/ard.2010.146225
https://doi.org/10.1016/S0140-6736(12)61424-X
https://doi.org/10.1016/S0140-6736(12)61424-X
https://doi.org/10.1136/annrheumdis-2016-210624
https://doi.org/10.1002/art.40420
https://doi.org/10.1002/art.40420
https://doi.org/10.1136/ard.56.6.364
https://doi.org/10.1136/ard.56.6.364
https://doi.org/10.4049/jimmunol.1002923
https://doi.org/10.4049/jimmunol.1501097
https://doi.org/10.4049/jimmunol.1501097
https://doi.org/10.3109/08923979809034820
https://doi.org/10.3109/08923979809034820
https://doi.org/10.4049/jimmunol.173.10.6384
https://doi.org/10.4049/jimmunol.173.10.6384
https://doi.org/10.1002/eji.201847583
https://doi.org/10.4049/jimmunol.1600181
https://doi.org/10.1038/ni.2027
https://doi.org/10.1038/ni.2027
https://doi.org/10.1016/j.cell.2018.09.009
https://doi.org/10.1016/j.cell.2018.09.009
https://doi.org/10.1038/s41584-019-0221-y
https://doi.org/10.1212/NXI.0000000000000117
https://doi.org/10.1016/j.imbio.2008.07.017
https://doi.org/10.1177/1759720X17752036
https://doi.org/10.1186/ar318
https://doi.org/10.4049/jimmunol.171.9.4816
https://doi.org/10.4049/jimmunol.171.9.4816
https://doi.org/10.4049/jimmunol.173.7.4643
https://doi.org/10.4049/jimmunol.173.7.4643
https://doi.org/10.1002/art.30354
https://doi.org/10.1136/annrheumdis-2012-201703
https://doi.org/10.1186/s13075-016-1185-9
https://doi.org/10.1186/s13075-016-1185-9
https://doi.org/10.1084/jem.20190945


Cook, A.D., A.D. Christensen, D. Tewari, S.B. McMahon, and J.A. Hamilton.
2018a. Immune Cytokines and Their Receptors in Inflammatory Pain.
Trends Immunol. 39:240–255. https://doi.org/10.1016/j.it.2017.12.003

Cook, A.D., M.C. Lee, R. Saleh, H.W. Khiew, A.D. Christensen, A. Achuthan,
A.J. Fleetwood, D.C. Lacey, J.E. Smith, I. Förster, and J.A. Hamilton.
2018b. TNF and granulocyte macrophage-colony stimulating factor
interdependence mediates inflammation via CCL17. JCI Insight. 3:
e99249. https://doi.org/10.1172/jci.insight.99249

Cowburn, A.S., C. Summers, B.J. Dunmore, N. Farahi, R.P. Hayhoe, C.G. Print,
S.J. Cook, and E.R. Chilvers. 2011. Granulocyte/macrophage colony-
stimulating factor causes a paradoxical increase in the BH3-only pro-
apoptotic protein Bim in human neutrophils. Am. J. Respir. Cell Mol. Biol.
44:879–887. https://doi.org/10.1165/rcmb.2010-0101OC

Croxford, A.L., M. Lanzinger, F.J. Hartmann, B. Schreiner, F. Mair, P. Pelczar,
B.E. Clausen, S. Jung, M. Greter, and B. Becher. 2015a. The Cytokine
GM-CSF Drives the Inflammatory Signature of CCR2+ Monocytes and
Licenses Autoimmunity. Immunity. 43:502–514. https://doi.org/10.1016/
j.immuni.2015.08.010

Croxford, A.L., S. Spath, and B. Becher. 2015b. GM-CSF in Neuro-
inflammation: Licensing Myeloid Cells for Tissue Damage. Trends Im-
munol. 36:651–662. https://doi.org/10.1016/j.it.2015.08.004

Curran, C.S., and P.J. Bertics. 2012. Lactoferrin regulates an axis involving
CD11b and CD49d integrins and the chemokines MIP-1α and MCP-1 in
GM-CSF-treated human primary eosinophils. J. Interferon Cytokine Res.
32:450–461. https://doi.org/10.1089/jir.2011.0111
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