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Abstract

Background: Protein aggregation plays a major role in the pathogenesis of neurodegenerative disorders, such as
Alzheimer’s disease. However, direct real-time imaging of protein aggregation, including oligomerization and fibrillization,
has never been achieved. Here we demonstrate the preparation of fluorescent semiconductor nanocrystal (quantum dot;
QD)-labeled amyloid-b peptide (QDAb) and its advanced applications.

Methodology/Principal Findings: The QDAb construct retained Ab oligomer-forming ability, and the sizes of these
oligomers could be estimated from the relative fluorescence intensities of the imaged spots. Both QDAb coaggregation
with intact Ab42 and insertion into fibrils were detected by fluorescence microscopy. The coaggregation process was
observed by real-time 3D imaging using slit-scanning confocal microscopy, which showed a typical sigmoid curve with
1.5 h in the lag-time and 12 h until saturation. Inhibition of coaggregation using an anti-Ab antibody can be observed as 3D
images on a microscopic scale. Microglia ingested monomeric QDAb more significantly than oligomeric QDAb, and the
ingested QDAb was mainly accumulated in the lysosome.

Conclusions/Significance: These data demonstrate that QDAb is a novel nanoprobe for studying Ab oligomerization and
fibrillization in multiple modalities and may be applicable for high-throughput drug screening systems.
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Introduction

Neurodegenerative disorders such as Alzheimer’s disease (AD),

Parkinson’s disease, Huntington’s disease, and prion diseases are

characterized by misfolded protein aggregates, termed amyloids,

which are usually high in b-sheet content [1]. However, the exact

mechanism of amyloid aggregation and its links to multiple disease

pathogeneses are not fully understood. Amyloid-b peptide (Ab) is

the major component of senile plaques and is a hallmark of AD

[2]. An early hypothesis stated that the accumulation of fibrillar

Ab deposits in senile plaques was neurotoxic [3]. In contrast,

recent studies have identified the smaller soluble Ab oligomer as

potentially more neurotoxic than amyloid fibrils [4,5,6]. Mean-

while, Ab peptide has been observed in various cellular localities,

including lysosomes, aggresomes, mitochondria, dendritic spines,

and within neurons, microglia, astrocytes and the extra-cellular

space [7,8,9,10,11], but the exact cellular origin of Ab aggregation

is not known. To understand the mechanism of Ab misfolding and

locate the origin of Ab assemblage, we have developed a real-time

imaging tool for monitoring Ab aggregation.

Fluorescent semiconductor nanocrystals (quantum dots; QD)

have evolved over the past decade as highly useful fluorescence

probes in biological staining and diagnostics [12,13]. QD

properties include long-term photostability, chemical and physical

stability, nano-scale size, and multicolor fluorescence emission

with single excitation [14]. These features are extremely useful for

long-term, single-molecule imaging in vitro and in vivo [15,16]. In

fact, a single QD can be observed and tracked using basic wide-

field fluorescence microscopy [17], confocal microscopy [12], total

internal reflection microscopy [18], and two-photon fluorescent

microscopy [19]. For these reasons, QD could be an excellent tool

for real-time monitoring of Ab aggregation and localization.

Nevertheless, there have been no reports of successful preparation

and characterization of QD-crosslinked Ab peptide, possibly due

to the difficulty of covalently coupling the QD to the peptide

without also reducing the ability of Ab to aggregate. Recently, Ji et

al. [20] imaged Ab42 and Ab40 fibrils linked with QD, although

the labeling was performed by non-specific ionic interaction

between the fibrils and the QD. Therefore, the method is not

applicable for tissue culture or in vivo studies. While fluorescein-

labeled Ab peptides have also been used in amyloid aggregation

studies [21,22], this application is limited to short-term live

imaging studies (less than 1 second) and is not appropriate for

small oligomer imaging as fluorescein is not suitable for single

molecule imaging nor live imaging due to poor signal levels and

quenching [23]. In addition, standard amyloid plaque staining by
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thioflavin or Congo red is not suitable due to poor binding

between the fluorescent dyes and b-sheet structures of Ab
oligomers. Although potential cytotoxicity is a concern for long-

term QD applications in cells [24], masking the core surface

cadmium atom with a polyethylene glycol (PEG) coating greatly

reduced the cytotoxicity [25]. Here, we have successfully

generated a PEG-QD-crosslinked Ab peptide, which has enabled

us to quantitatively examine, for the first time, Ab fibril and

oligomer formations in vitro and in an intact cell system.

Results

Generation of QDAb probe
Our first step was to examine whether Ab42 or Ab40 is more

suitable as a QD probe. Both can be major components of amyloid

plaques [2]. Aggregation of Ab42 has been shown to be more rapid

than Ab40 [26]. Indeed, we confirmed that Ab42, without SDS,

begins to aggregate within minutes of preparation—already forming

oligomers or protofibrils during the one hour labeling process (Fig.

S1a). It formed trimeric and tetrameric species within 0.3 h from

the start of incubation. On the other hand, Ab40, without SDS, did

not form oligomers after 5 days (Fig. S1c and S1d). Consequently, to

provide a reasonable timeframe over which to study aggregation, we

employed Ab40 for QD-labeling in this study.

Since Ab is significantly smaller than any currently developed

QDs, we also carefully considered the QD sizes and linker

(between QD and Ab) lengths. Here, we adopted polyethylene

glycol (PEG)-conjugated Qdot 525 (QD-PEG-NH2), which is the

smallest commercially available-QD with a 2,000 MW PEG

linker. The QD-PEG-NH2 (10 mM) was first mixed with a cross-

linker (CL), N-(6-maleimidocaproyloxy) sulfosuccinimide ester

(Sulfo-EMCS, 1000 mM), to generate QD-PEG-CL (Fig. 1a).

Since one QD-PEG-NH2 has ,80 to 100 amine groups on the

surface, CL saturates almost all PEG amino groups under these

conditions. Next, 100, 20, and 0 mM Cys-Ab40 (CAb) was added

to QD-PEG-CL, yielding the binding ratios (Ab/QD) of 6, 1, and

0, for QDAb(6), QDAb(1), and QDAb(0) (Ab unconjugated

control) conjugates, respectively (Fig. 1b). The initial concentration

of Cys-Ab40 could control the Ab/QD ratio. A study to determine

the rate of nonspecific binding between Cys-Ab40 and non-

crosslinked QD-PEG-NH2 showed an Ab/QD binding ratio of

0.4, suggesting that approximately 7% of Cys-Ab40 was bound to

the QD surface via non-specific binding (Fig. 1b). The yield of QD

particles was approximately 50% using this preparative method.

Oligomer formation of QDAb
Many recent studies have implicated soluble Ab oligomers as a

potential toxic species in AD pathology [4,5,6]. Since formation of

the toxic, b-sheet rich, Ab oligomer can be enhanced by certain

concentrations of SDS [5,6], we examined whether QDAb forms

oligomers in the presence or absence of SDS. Prior to conducting

this experiment, we needed to confirm that 1 mM SDS enhances

oligomerization of unlabeled Ab40 and Ab42 [5] by measuring the

kinetics of Ab40 and Ab42 oligomerization with and without SDS

(Fig. S1). SDS promoted oligomer and fibril formations of both

Ab42 and Ab40 at 1 mM concentration with especially enhanced

Ab40 dimer formation (Fig. S1d). We then applied these

conditions for monitoring oligomerization of QDAb.

Oligomerization of QDAb was imaged according to the method

in Figure S2a. Incubation of QDAb(6) in water for 3 weeks on ice

does not alter its fluorescent image (Fig. 2a top right), suggesting

that QDAb(6) can be stored in water on ice without aggregation.

In contrast, brighter and larger spots were observed by incubation

of QDAb(6) at 37uC with and without 1 mM SDS (Fig. 2a bottom

micrographs), suggesting its oligomerization.

To examine the formation of oligomers by QDAb, we measured

the relative fluorescence (RF) and the number of fluorescence spots

using the ‘‘analyze particle’’ tool of ImageJ (NIH) (Fig. S2b). In this

analysis, the average RF of unconjugated QD-PEG-NH2 was

expressed as 1 RF unit (RF1). Since fluorescence intensity is generally

proportional to the number of fluorescence molecules, it is likely that

the summed RF values indicate the total number of QDAb molecules

in each RF class. Therefore, we tallied the RF values for each RF class

as total QDAb spot intensity (RF#1 to $5, Fig S2c). The data

established that the distribution profile, as determined by the total

intensity, of incubated-QDAb(6) in water for 3 weeks on ice was

similar to that of the negative control QD-PEG-NH2 (Table S1a).

The results of incubation in the presence of SDS revealed that the

percentage of QDAb(6) molecules in the RF#1 class were reduced

from 76.2% to 29.1% after 24 hrs incubation at 37uC (Fig. 2b and

Table S1b), suggesting that majority of QDAb(6) particles formed

oligomers in this condition. Although the oligomer formation was also

observed with QDAb(6) samples in the absence of SDS, the total

value of RF2–RF$5 (39.8%, Table S1c) was much less than in the

presence of SDS (70.9%, Table S1b) (Fig. 2b). This enhancement of

Ab aggregation by SDS is consistent with the results obtained using

unconjugated Ab40 peptides (Fig. S1 b and d).

We also examined the effects of the Ab/QD labeling ratio, in

conjunction with SDS, on QDAb oligomerization. In the presence

of SDS, the frequency of spots belonging to the RF#1 class

significantly decreased as the Ab/QD ratio increased

(QDAb(0).QDAb(1).QDAb(6)) (Table S1b). Accordingly, the

number of spots in RF3, RF4, RF$5 classes significantly increased

in the order of QDAb(0),QDAb(1),QDAb(6) (Table S1b).

These data demonstrated that the Ab/QD binding ratio is

correlated with oligomer formation.

Figure 1. Preparation of QDAb. (a) Scheme of QDAb preparation.
QD-PEG-NH2 was mixed with crosslinker (CL) and incubated for 1 h at
22uC. After elimination of unreacted CL by a desalting column, the
intact QD-PEG-CL was mixed with various concentrations of Cys-Ab40
(CAb) and incubated for 1 h at 22uC. The maleimide group of CL was
quenched by 2-mercaptoethanol, and unreacted CAb was removed by
desalting columns. (b) Yield of QDAb preparation. The table shows
reaction conditions and the yields of QD and Ab.
doi:10.1371/journal.pone.0008492.g001

Novel Ab Qdot-Nanoprobe
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To confirm whether the bright, large spots were QDAb
oligomers, the incubated samples were examined by atomic force

microscopy (AFM). The results revealed that several types of QD

clustering were observed in QDAb(6) but not in QD-PEG-NH2

samples (Fig. 2c). AFM imaging also revealed two types of trimers:

one type entails a tandem repeat of three QDAbs (Fig. 2e, top), and

another contains a triangular complex of three QDAbs (Fig. 2e,

bottom). The distribution of oligomers that were measured from the

AFM data (Table S2b) was similar to the fluorescence spot data

(Table S2a) of the small oligomers (monomer, dimer, and trimer),

suggesting that these small oligomer sizes can be estimated from RF

values of fluorescence spots in fluorescence micrographs. We have

also detected QDAb oligomer formation as dimer, trimer, or

tetramer by electron microscopy (Fig. 2f).

Amyloid fibril formation with QDAb
Although we observed oligomerization solely between QDAb

particles, we were unable to observe amyloid fibril formation by

QDAb alone. This was expected because the size of the QD is

significantly larger than that of Ab. In fact, recent structural work

on Ab fibrils have revealed a non-registered parallel b-sheet

structure stacking approximately 4 peptide molecules in 1 nm

fibril length [27]. This implies that fibril formation is inhibited due

to steric hindrance by the QDs. Therefore, unconjugated Ab has

to be incorporated with QDAb to effectively image Ab fibril

formation. In this study, a QDAb:Ab42 ratio of 1:1000 (0.1%) or

1:10000 (0.01%) was examined for Ab aggregation (Fig. 3). When

0.1% QDAb(6) was mixed with 50 mM Ab42 peptide, bright

aggregates were observed (Fig. 3a). The aggregates were stained

with a monofluoro bis-styrylbenzene (FSB) derivative [28] (Fig.

S3), demonstrating that these aggregates contain a b-sheet

structure. Aggregates were also observed when 0.1% QDAb(1)

was mixed with 50 mM Ab42. However, the mean fluorescence

intensity of these aggregates was approximately 32% of that of

QDAb(6) (Fig. 3b), indicating that the insertion efficiency of

QDAb(1) into Ab fibrils is lower than that of QDAb(6). Although

Ab aggregates could also be visualized by incubation with 0.1%

QDAb(0), the fluorescence intensity was only approximately 14%

of that of QDAb(6) (Fig. 3b). This is probably due to non-specific

binding between QD-PEG-NH2 and Ab fibrils, as observed during

the preparation of QDAb(Fig. 1b) and in a previous report [20].

Individual Ab filaments can be observed by high-power magni-

fication (Fig. 3c left). Electron microscopy imaging revealed

periodical insertion of QDAb(6) into Ab fibrils (Fig. 3c right).

When 0.01% QDAb(6) was incubated with Ab42, the periodicity

of single QD molecules was directly observed by fluorescent

microscopy (Fig. 3d). The average interval length of the periodicity

was 1.961.0 mm, which is close to the estimated value (2.5 mm)

based on the NMR fibril structure [27]. These data suggest that

QDAb(6) was incorporated into Ab fibrils with a similar efficiency

as unconjugated Ab42.

When various concentrations of Ab42 containing 0.1% QDAb(6)

were incubated, time- and dose- dependent aggregation was

observed (Fig. S4). No fibrils were observed in the sample of

6.3 mM Ab42, suggesting that critical concentration of Ab42 in fibril

formation is between 6.3 and 13 mM. In addition, the coaggregation

process with unconjugated Ab42 was temperature-dependent, as we

did not observe aggregation 1 day after incubation on ice (Fig. S5).

This enables us to examine the aggregation process by live imaging

system in a time-controlled manner.

4D imaging of Ab aggregation in vitro
Since we succeeded in direct imaging of Ab aggregation under a

regular wide-field fluorescent microscope, we next improved the

image quality by conducting time-dependent 3D imaging (4D

imaging) of Ab aggregation using automated Z-stack image

acquisition of a Swept-field confocal microscope (Fig. 4a and Movie

S1). When 0.1% QDAb(6)-containing 100 mM Ab42 was incubated

at 37uC, small aggregates were observed on the glass bottom of the

well within 1–2 h incubation time. The Ab fibrils then ‘‘grew

upwards’’ as Ab that aggregated in solution precipitated on top of the

fibrils (Movie S1 and S2). The time-course of the Ab aggregation

showed a typical sigmoidal curve [29] which consisted of the

characteristic time lag, growth, and steady state phases (Fig. 4b). The

lag time was approximately 1.5 h, and the aggregation reached a

plateau around 12 h. Aggregation of Ab can also be monitored by

turbidity at 400 nm [26] and fluorescence measurement of thioflavin

T (ThT) binding [5]. Turbidity measurements showed that the

aggregation of 20 mM Ab42 reached a plateau around 10–20 h in

phosphate buffer (pH 7.4) [26] which is consistent with our 4D

imaging in this study (Fig. 4A). In contrast, ThT binding of 10–

35 mM Ab42 reached a plateau around 1–2 h in phosphate buffer

Figure 2. Imaging of QDAb oligomers. (a) QD-PEG-NH2 (top left),
non-incubated-QDAb(6) (top right: stored in water for 3 weeks on ice),
incubated-QDAb(6) without SDS (bottom left: in PBS for 1 day at 37uC),
and incubated-QDAb(6) with SDS (bottom right: in PBS with 1 mM SDS
for 1 day at 37uC) were observed by regular fluorescence microscopy
using a 100x objective lens with QD filter set. (b) Distribution of QDAb
molecules belonging to each RF classes. The frequency of total intensity
shows the sum of RF values of all spots belonging to the RF class. Error
bars indicate standard deviation (SD, n = 10). * (or #), ** (or ##), and ***
(or ###) denote 0.01,P,0.05, 0.001,P,0.01, and P,0.001, respec-
tively. * are non-incubated- versus incubated-samples (2SDS or +SDS)
and # are -SDS versus +SDS samples. (c) QD-PEG-NH2 and incubated-
QDAb(6) with SDS under the same conditions as in (a) were observed by
AFM. (d and e) Typical AFM images of dimeric (d) and trimeric (e)
species. Trimers were classified into two types: two dimers (top, 2+2) or
one trimer (bottom) of Ab peptides. (f) Typical images of dimers,
trimera, and tetramers by electron microscopy observations.
doi:10.1371/journal.pone.0008492.g002
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(pH 7.5 or pH 7.4) with approximately several minutes of lag time

[5]. Our data suggest that the ThT binding assay monitors

development of b-structure in both protofibrils and fibrils, and that

the turbidity assay monitors the amount of fibrils but not protofibrils,

presumably because the protofibrils (,5 nm) [30] are too small to

induce turbidity at 400 nm. These data imply the existence of two

rate-limits in Ab aggregation: b-structure formation, which can be

detected as lag time of fluorescence of ThT, and protofibrillization.

Total time of b-structure formation and protofibrillization is

displayed as the lag time of QDAb 4D imaging. Since the critical

concentration of Ab42 aggregation is between 6.3 and 13 mM (Fig.

S5), as described above, approximately 90% of Ab formed aggregates

in a steady state phase. On the basis of 4D imaging data, we estimated

that the density of stacked-Ab aggregates on the glass bottom in a

steady state was 32+/26 mg/ml.

Next, we examined whether inhibition of Ab aggregation could

be observed using this technique (Fig. 4c). When 0.6 mM (0.1 mg/

ml) anti-b-tubulin (bTb) mouse monoclonal control antibody was

mixed with 13 mM of 0.1% QDAb(6) containing Ab42, the fibril

formation was unaffected. In contrast, when 0.6 mM anti-Ab mouse

monoclonal antibodies (6E10 and 4G8, specifically recognizing

Ab1-16 and Ab18-22 epitopes, respectively) were incubated, fibril

formation was significantly inhibited (Fig. 4c). The effects of

inhibition differed depending on antibodies: 6E10 blocked fibril

elongation but not small aggregate formation, whereas 4G8

completely blocked Ab aggregation. Since the 4G8 epitope

corresponds to the region that forms a b-structure [31], the binding

of 4G8 to the region may directly block the aggregation, whereas

6E10 may affect higher-order Ab aggregation. 3D reconstruction of

the Swept-field confocal microscope images demonstrated clear

differences in the depth and size of Ab aggregation in the presence

of different antibodies (Fig. S6 and Movies S3–S5).

Fortunately, this image acquisition does not require the fixation

or immobilization procedures necessary for AFM and electron

microscopic observation. Furthermore, the fibril formation can be

observed at a microscopic scale with the use of a simple bio-

incubator system placed on the microscope stage. Thus, this

technology can be applied to micro-scale screening of inhibitory

drugs for Ab aggregation (Fig. 4d).

Live imaging of Ab in cells
Microglia have been extensively shown to phagocytose Ab

[8,9,32]. Our recent study revealed that the uptake efficiency of

the oligomeric Ab was significantly lower (0.2-0.5%) than that of

the monomeric form (1–10%) [9]. Therefore, we imaged Ab
phagocytosis by microglia using monomeric or oligomeric QDAb
(Fig. 5). When monomeric QDAb(6) was incubated with primary

cultured mouse microglia for 24 hr, QDAb(6) uptake and

accumulation was observed. In contrast, the uptake and

accumulation of oligomeric QDAb(6) was significantly less,

supporting our recent finding [9]. When monomeric QDAb(6)

or QDAb(1) was added to microglia (Fig. 5b), the number of cells

containing phagocytosed material increased in a time-dependent

manner (Fig. 5c and Fig. S7). In addition, the Ab/QD ratio also

affected the uptake rate as the amount of ingested QDAb(6) was

much higher than that of QDAb(1). In contrast, uptake of

QDAb(0) was hardly observed under these conditions (Fig. 5b and

c). Although high-power magnification imaging revealed that

QDAb(0) was also ingested by microglia, the ingestion amount was

significantly lower than that of QDAb(6) and QDAb(1) (Fig. S8),

indicating the ingestion and accumulation are due to Ab peptides

on the QD surface. There was no obvious cytotoxicity by ingestion

of QD-probes, consistent with the report of the PEG-coated QD

[25]. To determine the localization of the accumulated-QDAb in

Figure 3. Coaggregation of intact Ab42 and QDAb. (a) 0.1% QDAb(6)- (left), QDAb(1)- (middle), and QDAb(0)- (right) containing Ab42 (final
concentration 50 mM) were incubated in 96-well glass bottom plates at 37uC for 1 day, and observed by wide-field fluorescence microscopy using a 100x
objective lens with FITC filter set. (b) Fluorescence intensities of the aggregates in (a). Fluorescence intensities measured from 20 randomly selected
fields (1006100 pixel: 8.668.6 mm) containing the aggregates are shown as relative % intensity against QDAb(6) group. *** denotes P,0.001 for
QDAb(6)- versus QDAb(1)- or QDAb(0)-samples and ## denotes 0.001,P,0.01 for QDAb(1)- versus QDAb(0) samples. Error bars indicate SD (n = 20). (c)
0.1% QDAb-containing Ab42 (final concentration 50 mM). Samples were incubated in microcentrifuge tubes at 37uC for 1 day, spread between glass
slides and cover slips, and observed by regular microscopy using a 100x objective lens with QD filter set (left micrograph) and electron microscopy (right
three micrographs). (d) 0.01% QDAb-containing Ab42 (final concentration 50 mM) were incubated in microcentrifuge tubes at 37uC for 1 day, spread
between glass slides and cover slips, and observed by regular microscopy using a 100x objective lens with QD filter (left micrograph). The right three
micrographs are magnified and brightened micrographs. The top right micrograph is the boxed area in the left micrograph.
doi:10.1371/journal.pone.0008492.g003
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microglia, we observed the uptake of monomeric QDAb(6) using

Lysotracker or Mitotracker. The results showed QDAb(6) partially

colocalized with lysosomes (Fig. 5d) as our group and others have

reported [8,9]. On the other hand, colocalization of QDAb(6) and

Mitotracker, although observed in a recent report [10], was less

than that of Lysotracker (Fig. 5e). These results indicate that the

majority of accumulated Ab colocalized with lysosomes, but not

with mitochondria. The colocalization of QDAb(6) and Lyso-

tracker was reconstructed in 3D-images (Fig. S9 and Movie S6).

Discussion

In this study, we developed a method for QD-labeling of Ab,

which can then be utilized to monitor Ab aggregation for real-time

imaging both in vitro and in cells. We believe that this technology can

be applied to a wide variety of amyloidogenic peptides and proteins.

Our study found that QDAb forms oligomers and that small

oligomer sizes can be estimated from fluorescent microscope

imaging. In addition, we could also observe monomeric QDAb
uptake by microglia (Fig. 5), suggesting the application of QDAb
for the functional analysis of Ab oligomers. Although the data in

vitro and in cells showed that the properties of QDAb oligomers are

similar to those of untagged Ab oligomers, it is still not known

whether the structures of QDAb oligomers and native Ab
oligomers are quite the same. Indeed, QDAb failed to form fibrils

by itself assumedly due to steric hindrance by the QDs, suggesting

a possibility that this also precludes high molecular oligomer

formation (such as nonamer or dodecamer). However, QDAb is a

useful nanoprobe, if used as a small fraction of the unmodified

Abeta, for monitoring the aggregation under the microscope.

In this study, we also successfully observed quantitative 4D live

imaging of Ab aggregation (Fig. 4 a and b, Movie S1). Moreover,

the inhibition of the Ab aggregation by anti-Ab antibody could be

observed in 3D reconstructed imaging. This method could

visualize a detailed configuration of Ab aggregates at a

microscopic scale, suggesting an application for advanced micro

drug screening systems that can distinguish different inhibition

mechanisms of Ab aggregation at different stages.

In this study, we successfully observed different ingestion

manners between monomeric and oligomeric QDAb by microglia

(Fig. 5). The lysosomal accumulation of oligomeric QDAb was

poorer than that of the monomeric form, suggesting that it is

Figure 4. Imaging of Ab aggregation in vitro. (a) 4D imaging of Ab aggregation. 0.1% QDAb(6)-containing Ab42 (final concentration 100 mM) were
incubated in a 96-well glass bottom plate at 37uC with controlled humidity and CO2 concentration, and observed by confocal microscopy every 30 min
over 20 h using a 488 nm excitation laser (20% power) and a 60x oil objective lens. (b) Time-course of Ab aggregation. The volumes of Ab aggregates
measured from three 4D experiments (red, blue, and green). The total volume of the observed space is 1.96106 mm3 (13861386100 mm). The inset
shows an idealized kinetic curve for amyloid aggregation [29]. Amyloid aggregation consists of lag, growth, and steady state phases. (c) Inhibition of Ab
aggregation by anti-Ab antibody. 0.1% QDAb(6)-containing Ab42 (final concentration 13 mM) were incubated in PBS with 0.6 mM control antibody (anti-
b̃tubulin, bTb; top right), 0.6 mM anti-6E10 antibody (bottom left), and 0.6 mM anti-4G8 antibody (bottom right) in a 96-well glass bottom plate at 37uC
for 21 h, and observed by wide-field fluorescence microscopy. (d) The model of a micro drug screening system.
doi:10.1371/journal.pone.0008492.g004

Novel Ab Qdot-Nanoprobe

PLoS ONE | www.plosone.org 5 December 2009 | Volume 4 | Issue 12 | e8492



Figure 5. Imaging of QDAb in cultured microglia. (a) Mouse microglia were incubated with 50 nM monomeric (top) or oligomeric (bottom)
QDAb(6) for 1 day, and observed by wide-field fluorescence microscopy using a 20x objective lens with FITC filter set. (b) Microglia were incubated
with 50 nM monomeric QDAb(6) (top), QDAb(1) (middle), and QDAb(0) (bottom) for 1 day, and observed by wide-field fluorescence microscopy using
a 20x objective lens with FITC filter set. (c) Time-dependent monomeric QDAb uptake by microglia. The number of cells with ingested QDAb shown
as the average percentage of total microglia. Error bars indicate SD (n = 3). ND: undetected. * and *** denote 0.01,P,0.05, and P,0.001,
respectively, vs. 6 h time point of the same QD group, and ### denotes P,0.001 vs. the same time point of QDAb(6) samples. (d and e) Co-
localization with Lysotracker (d) and Mitotracker (e). Microglia were incubated with 50 nM monomeric QDAb(6) for 1 day, and then labeled with
Lysotracker or Mitotracker, followed by confocal microscopy. Arrows show co-localization of QD (green) and Lysotracker/Mitotracker (red).
doi:10.1371/journal.pone.0008492.g005
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difficult for microglia to phagocytize oligomerc Ab. These data

imply that cytotoxic Ab oligomers [4,5] are less prone to

degradation by microglia in the brain.

Since QD can be detected by multi-photon fluorescence

microscopy [19], this technology could be applied to monitor

localization and aggregation of Ab in brain. Recently, it was

reported that transferrin (Tf)-conjugated quantum rods transmi-

grated across an in vitro blood-brain barrier model via receptor-

mediated transport [33]. If QDAb can be coated with Tf and the

nanoprobe retains the transmigration capability, it may become a

powerful tool for in vivo live imaging of Ab aggregation in the

brain. Further development of QDAb nanoprobes on the basis of

this outcome promises to yield useful information in the analysis of

beta-amyloidosis—a hallmark of AD.

Materials and Methods

Materials
Human amyloid peptides of Cys-Ab40 (Anaspec), Ab40 (Bio-

source), and Ab42 (Biosource) were dissolved at a concentration of

1 mg/ml in 100% 1,1,1,3,3,3-hexafluoro-2-propanol (Acros), incu-

bated at 22uC for 1 h, and sonicated for 10 min. The aliquots were

put in microcentrifuge tubes, dried down, and stored at 220uC. N-(6-

maleimidocaproyloxy) sulfosuccinimide ester (Sulfo-EMCS) (Pierce)

was stored at 4uC and dissolved immediately before use. Qdot 525

ITK amino (PEG) quantum dot (QD-PEG-NH2) (Invitrogen) was

stored at 4uC. Dulbecco’s Phosphate-buffered saline (Mediatech) was

used as PBS. All other chemicals were of reagent grade.

Preparation of QDAb
12.5 ml of 8 mM QD-PEG-NH2 (100 pmol) was put in micro-

centrifuge tubes and centrifuged at 10,0006g for 1 min at 4uC to

eliminate any aggregates. The supernatants were transferred into

centrifugal filter units (Microcon YM-100, Millipore), and the

remaining volume of the unit was filled with 450 ml of PBS. After

centrifugation at 2,8006g for 15 min at 4uC, the unit was refilled

with 450 ml of PBS and centrifuged again at 4uC until the volume

was reduced to 5 ml. The QD-PEG-NH2 solutions were adjusted

to 9 ml with PBS, supplemented with 1 ml of 10 mM sulfo-EMCS

(final concentrations: 10 mM QD-PEG-NH2, 1000 mM sulfo-

EMCS, and PBS), and incubated for 1 h at 22uC. To quench

unreacted sulfo-EMCS, the reacted samples (QD-PEG-CL) were

supplemented with 1 ml of 100 mM K-glutamate (pH 7.4) and

incubated for 10 min at 22uC. The buffer was changed by micro

spin desalting columns (Zeba Micro Spin Desalting Column,

Pierce) that were equilibrated with 5 mM EDTA in PBS (pH 6.8)

(PBSE), and the volumes were adjusted to 9 ml with PBSE.

Meanwhile, dried Cys-Ab40 aliquots were dissolved at a

concentration of 1000 or 200 mM in dimethyl sulfoxide (DMSO).

The QD-PEG-CL solutions were mixed with various concentra-

tions of Cys-Ab40 (final concentration 100, 10, or 0 mM), and

incubated for 1 h at 22uC. To quench the unreacted maleimide

group of EMCS, 1 ml of 100 mM 2-mercaptoethanol was added

and incubated for 10 min at 22uC. The buffer was changed to

pure water using micro spin desalting columns. Concentrations of

QD in QDAb were determined at the absorbance of 504 nm

according to the instruction manual (Invitrogen). Concentrations

of Ab40 in QDAb were measured using Human b Amyloid 1–40

ELISA KIT (Biosource).

Kinetic analysis of Ab40 and Ab42 aggregations by
SDS-PAGE

Dried Ab40 and Ab42 aliquots were dissolved at a concentra-

tion of 1 mM in DMSO. These Ab solutions were diluted at

50 mM in PBS with or without 1 mM SDS, and 5 ml of aliquots

were incubated for various time periods at 37uC. The samples

were mixed with sample buffer (final concentration: 50 mM Tris-

HCl (pH 6.8), 2% SDS, 0.1% bromophenol blue, and 10%

glycerol) and immediately electrophoresed using 16.5% Tris-

Tricine gels [34] or 16% Tris-Glycine gels [35]. These gels were

stained with Coomassie brilliant blue.

Imaging of QDAb oligomers
QDAb samples were adjusted to a concentration of 3.0 mM in

PBS with or without 1 mM SDS, and 5 ml aliquots were incubated

for various time periods at 37uC. The oligomer samples were

observed by wide-field fluorescence microscopy, atomic force

microscopy (AFM), and electron microscopy. Details of sample

preparation and analysis in fluorescence microscopy observations

are provided in Supplementary Figure 2.

Imaging of fibril formation using QDAb
Dried Ab42 aliquots were dissolved at various concentrations (100,

50, 25, 13, and 6.3 mM) in PBS and mixed with 0.1% or 0.01%

QDAb(6). To remove any aggregates, the mixtures were centrifuged

at 10,0006g for 1 min at 4uC. The mixtures (50 ml) were put in

microcentrifuge tubes or 96-well glass bottom plates (MatTek). The

samples in microcentrifuge tubes were incubated for various time

periods at 37uC in an air incubator, and observed by wide-field

fluorescence microscopy or electron microscopy. The samples in 96-

well glass bottom plates were incubated at 37uC in 5% CO2 in a

culture chamber (LiveCellTM, Pathology Devices), and directly

observed by wide-field fluorescence microscopy or swept-field laser-

scanning confocal microscopy [QDAb: Excitation: 488 nm at 15%

power; Emission filter: Chroma Quad Filter (#C68208) for FITC].

Inhibition of fibril formation by anti-Ab antibody
Ab42 was dissolved in PBS and mixed with 0.1% QDAb(6)

(final concentrations: 16 nM QDAb(6), and 16 mM Ab42). 40 ml

of the mixtures were mixed with 10 ml of 1 mg/ml control IgG

(anti-b̃tubulin, G712A, Promega) or 1 mg/ml anti-Ab IgG (anti-

6E10, SIG-39320, Signet; anti-4G8, SIG-9240, Signet) (final

concentrations: 0.1 mg/ml IgG, 13 mM Ab42, and 13 nM

QDAb(6)), and centrifuged at 10,0006g for 1 min at 4uC to

remove any aggregates. The supernatants were incubated in 96-

well glass bottom plates for 1 day at 37uC, and observed with

wide-field fluorescence microscopy or swept-field laser-scanning

confocal microscopy.

Primary culture of microglia
Microglia were prepared according to the previous report [36].

Microglia were prepared from wild type mouse day 0 newborn

pups as described [37], and cultured in Dulbecco’s modified eagle

medium supplemented with heat-inactivated 10% fetal bovine

serum, heat-inactivated 5% horse serum, and 50 mg/ml penicillin/

streptomycin (all from Invitrogen). Microglia released in the tissue

culture media by shaking were collected at 14 days after the

plating. After confirmation of their purity to be more than 90% by

immunocytochemistry (CD11b for microglia, GFAP staining for

contaminating astrocytes, and Hoechst 33342 for nuclear

staining), cells were used for experiments. The primary cultures

were cultured at 37uC in 5% CO2.

Preparations of monomeric and oligomeric QDAb for in
vivo imaging

To prepare oligomeric QDAb samples, QDAb was adjusted to

a concentration of 3.0 mM in PBS with 1 mM SDS, and then
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incubated for 1 day at 37uC. Monomeric QDAb samples were

identical but were not incubated.

Uptake of QDAb by microglia and imaging with
Lysotracker and Mitotracker

Mouse microglia were seeded at a density of 50,000 cells/well

in 96-well glass bottom plates and preincubated for 10 days. The

cells were incubated with 50 nM monomeric or oligomeric QDAb
for 1 day, and then supplemented with 50 nM Lysotracker

(Invitrogen) or 100 nM Mitotracker (Invitrogen). After an

additional incubation for 30 min, the cells were fixed with 4%

paraformaldehyde (PFA) for 15 min at 22uC and washed with PBS

three times. Vectashield (Vector Laboratories) was added to the

wells, and the cells were observed by wide-field fluorescence

microscopy or swept-field confocal microscopy. [Lyso/Mito-

tracker: Excitation: 568 nm at 25% power; Emission filter:

Chroma Quad Filter (#C68208) for Texas Red. QDAb:

Excitation: 488 nm at 20% power; Emission filter: Chroma Quad

Filter (#C68208) for FITC].

Wide-field fluorescence microscopy
The samples were observed with a wide-field fluorescence

microscope (TE-300, Nikon) equipped with CCD camera (DP71,

Olympus). QD was observed using a QD filter set (ex 405/20 and

em 430LP; Chroma/Nikon) or FITC filter set (ex 480/40 and em

535/50, Chroma/Nikon). The FSB derivative, (E,E)-1,4-bis(4-

hydroxy)styrylbenzene [28], was observed using a Blue filter set (ex

390/22 and em 460/50, Chroma/Nikon) (Blue).

Atomic force microscopy
Reaction mixtures were deposited on a 1-(3-Aminopropyl)

silatrane- (APS-) modified mica [38,39] glued to the glass slide.

AFM images were taken in air, height, amplitude and phase mode

using MFP-3D Asylum Research Instrument (Santa Barbara, CA).

Regular silicon probes (TESP) with spring constant 40 N/m and

resonance frequencies 270–320 kHz were used. Image processing

and the cross-section measurements were performed using

Femtoscan (Advanced Technologies Center, Moscow, Russia).

Electron microscopy
Reaction mixtures were spread on carbon-coated grids,

negatively-stained with 2% uranium acetate pH 7.0, and exam-

ined under an electron microscope (H-7500, Hitachi) with an

acceleration voltage of 75 kV as described [40]. Images were

processed using the FFT bandpass filter (ImageJ 1.40 g, NIH).

Swept-field laser-scanning confocal microscopy
Co-aggregation of QDAb-Ab42 and microglial cells in 96-well

glass bottom plates was observed using a swept-field laser-scanning

confocal microscopy system (TE-2000U, Nikon). QD was excited

by an argon laser, and Lysotracker and Mitotracker were excited

by an argon/krypton laser.

Statistics
Data were analyzed by analysis of variances, followed by one-

way ANOVA (Newman-Keuls multiple comparison tests) using

statistics software (Prism 4.0, GraphPad Software inc.).

Supporting Information

Table S1 Distribution of QDAb molecules belonging to each

RF class as determined by the total intensity of QDAb. (a)

Distribution of total fluorescent intensity (%) of unconjugated QD-

PEG-NH2 and QDAb(6). QD-PEG-NH2 in 50 mM borate was

diluted with PBS (final 1-10 nM) and then analyzed immediately.

QDAb(6) samples (3.0 mM) in water, PBS, and PBS containing

1 mM SDS were incubated for 3 weeks at 0uC, for 6 weeks at 4uC,

and for 3 weeks at 37uC, respectively. The samples were diluted

with PBS (final 1-10 nM) and then analyzed immediately. (b and c)

3.0 mM QDAb(0), QDAb(1), and QDAb(6) were incubated in

PBS with (b) or without (c) 1 mM SDS for 1 day at 37uC. The

samples were diluted with PBS (final 1–10 nM) and then analyzed

immediately. The data show averages of 10 fields (86686 mm).

Incubation of QDAb(6) in PBS for 6 weeks at 4uC led to a

significant increase in the total value of the RF2-RF$5 classes

(23.8% to 70.3%) and a decrease in the RF#1 class (76.2% to

29.7%), suggesting that QDAb(6) forms oligomers in PBS at 4uC.

In contrast, QDAb(6) incubated in water for 3 weeks on ice was

similar to that of the negative control QD-PEG-NH2, suggesting

that QDAb(6) can be stored in water on ice but not in PBS in the

refrigerator. Distribution of QDAb molecules belonging to each

RF class as determined by the total intensity of QDAb. (a)

Distribution of total fluorescent intensity (%) of unconjugated QD-

PEG-NH2 and QDAb(6). QD-PEG-NH2 in 50 mM borate was

diluted with PBS (final 1-10 nM) and then analyzed immediately.

QDAb(6) samples (3.0 mM) in water, PBS, and PBS containing

1 mM SDS were incubated for 3 weeks at 0uC, for 6 weeks at 4uC,

and for 3 weeks at 37uC, respectively. The samples were diluted

with PBS (final 1-10 nM) and then analyzed immediately. (b and c)

3.0 mM QDAb(0), QDAb(1), and QDAb(6) were incubated in

PBS with (b) or without (c) 1 mM SDS for 1 day at 37uC. The

samples were diluted with PBS (final 1–10 nM) and then analyzed

immediately. The data show averages of 10 fields (86686 mm).

Incubation of QDAb(6) in PBS for 6 weeks at 4uC led to a

significant increase in the total value of the RF2-RF$5 classes

(23.8% to 70.3%) and a decrease in the RF#1 class (76.2% to

29.7%), suggesting that QDAb(6) forms oligomers in PBS at 4uC.

In contrast, QDAb(6) incubated in water for 3 weeks on ice was

similar to that of the negative control QD-PEG-NH2, suggesting

that QDAb(6) can be stored in water on ice but not in PBS in the

refrigerator. Although longer incubation (3 weeks) showed a slight

promotion of Ab aggregation in the presence of 1 mM SDS (a, far

right), the distribution profile was similar to the 1 day incubated

sample (b, far right). These results revealed that oligomer

formation of QDAb(6) nearly saturates after 24 hrs, and that

approximately 30% of QDAb(6) remains as monomers under

these conditions.

Found at: doi:10.1371/journal.pone.0008492.s001 (0.05 MB

DOC)

Table S2 Comparison of QDAb comets as determined by

fluorescence microscopy and AFM imaging. (a) Frequency of spot

number belonging to each RF class from fluorescence microscope

observations. The data table shows differences before (1) and after

incubation (2). The data of RF#1 (parenthetic data) alone were

estimated according to the following calculation method because

the RF#1 value of (2) - (1) was not correct. RF#1 value of (2) - (1)

calculated by 100 - (RF2+RF3+RF4+RF$5). (b) Frequency of

multimerization from AFM observations. The data represent

averages of 9 fields (160061600 nm). This comparison shows that

the frequency of small oligomers (1-mer, 2-mer, and 3-mer) is

similar to the frequency of RF values, suggesting that small

oligomer sizes can be estimated from fluorescence intensities.

Found at: doi:10.1371/journal.pone.0008492.s002 (0.04 MB

DOC)

Figure S1 Kinetics of Ab42 and Ab40 aggregations. 50 mM

Ab42 peptide (a and b) and 50 mM Ab40 peptide (c and d) were
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incubated in PBS with or without 1 mM SDS for various time

periods at 37uC. After the incubation, these samples were

electrophoresed using 16.5% Tris-Tricine [1] (a and c) and 16%

Tris-Glycine gels [2] (b and d). Aggregation of Ab42 was more

rapid than Ab40 in PBS both with and without SDS. [1] Schagger

H (2006) Tricine-SDS-PAGE. Nat Protoc 1: 16–22. [2] Laemmli

UK (1970) Cleavage of structural proteins during the assembly of

the head of bacteriophage T4. Nature 227: 680–685.

Found at: doi:10.1371/journal.pone.0008492.s003 (1.27 MB TIF)

Figure S2 Analysis of fluorescence spots of QDAb oligomers. (a)

Preparation of samples. The coverslips for wide-field fluorescence

microscopy observation were prepared by the modified method of

Agrawal et al. [3]. An aliquot (2 ml) of oligomer sample solution,

which was diluted to 1–10 nM, was spread between the glass slide

and the coverslip. The coverslip was taken off, dried, and placed

on a wide-field fluorescence microscope. The gray images (2040

pixel61536 pixel: 175 mm6132 mm) were obtained using a 100x

objective lens with a QD filter set. A micrograph represented an

average of 5 frames (each exposure time was 0.2 s). (b)

Measurement of relative fluorescence. The micrographs were

analyzed using ImageJ software (NIH). In this analysis, we used a

100061000 pixel area in the central region of the micrographs

because of aberration at the periphery. The micrographs were

thresholded under the same conditions and then were analyzed

using the ‘‘analyze particles’’ program of ImageJ. Relative

fluorescence (RF) was defined as the product of the area size

(pixel) and mean fluorescence intensity. The average RF of

unlabeled QD-PEG-NH2 was expressed as 1 RF unit (RF1). In

this study, #1.5, 1.5–2.5, 2.5–3.5, 3.5–4.5, $4.5 of RF were

indicated as RF#1, RF2, RF3, RF4, and RF$5, respectively.

Each analysis averaged 10 micrographs (one micrograph con-

tained several hundred particles). (c) Frequency of spot number

and total fluorescent intensity. Spot number (Table S2) and total

fluorescent intensity (Figure 2b and Table S1) reflect the number

of oligomers and the number of QDs belonging to each RF class.

[3] Agrawal A, Deo R, Wang GD, Wang MD, Nie S (2008)

Nanometer-scale mapping and single-molecule detection with

color-coded nanoparticle probes. Proc Natl Acad Sci U S A 105:

3298–3303.

Found at: doi:10.1371/journal.pone.0008492.s004 (0.43 MB TIF)

Figure S3 Staining of Ab coaggregates by FSB derivative, (E,E)-

1,4-bis(4-hydroxy)styrylbenzene. 0.1% QDAb(6)-containing Ab42

(final concentrations: 50 nM QDAb(6) and 50 mM Ab42) were

incubated in PBS without (a) or with (b) 1 mM FSB derivative

(BHSB) for 1 day at 37uC in 96 well glass bottom plates (MatTek).

The aggregates were observed by wide-field fluorescence micros-

copy using a 20x objective lens with FITC (QD) or Blue (Blue)

filter sets. Since the FSB derivative binds to the b-sheet structure of

Ab fibrils [4], it is likely that these aggregates are typical Ab fibrils

containing b-sheet structure. [4] Flaherty DP, Walsh SM, Kiyota

T, Dong Y, Ikezu T, et al. (2007) Polyfluorinated bis-styrylbenzene

beta-amyloid plaque binding ligands. J Med Chem 50: 4986–

4992.

Found at: doi:10.1371/journal.pone.0008492.s005 (2.49 MB TIF)

Figure S4 Dose- and time-dependent coaggregation. 0.1%

QDAb(6)-containing Ab42 (50, 25, 13, and 6.3 mM of Ab42)

were incubated at 37uC in 96 well glass bottom plates. The

samples were observed at 0, 4, and 21 h from the start of

incubation by wide-field fluorescence microscopy using a 20x

objective lens with FITC filter set. No aggregates were observed in

all 0 h samples. Although dose- and time-dependent aggregation

were observed in the 50, 25, and 13 mM samples, aggregates were

not observed in the 6.3 mM sample, suggesting that the critical

concentration for Ab42 aggregation was between 6.3–13 mM

under these conditions.

Found at: doi:10.1371/journal.pone.0008492.s006 (7.12 MB TIF)

Figure S5 Temperature-dependent Ab aggregation. 0.1%

QDAb(6)-containing Ab42 (final concentration 50 mM) was

incubated for 1 day at 37uC (left), for 1 day on ice (middle), and

for 1 day at 37uC after 1 day on ice (right), and observed by wide-

field fluorescence microscopy using a 100x objective lens with

FITC filter set. The results showed that Ab aggregates were not

formed after 1 day at 0uC incubation (middle). The sample on ice

formed aggregates by additional incubation (right), suggesting that

the 0.1% QDAb(6)-containing Ab42 mixture can be stored on ice

for at least 1 day.

Found at: doi:10.1371/journal.pone.0008492.s007 (1.67 MB TIF)

Figure S6 3D reconstruction images of Ab aggregation

inhibition by anti-Ab antibody. 0.1% QDAb(6)-containing Ab42

(final concentration 13 mM) was incubated in PBS without

antibody (left), with anti-bTubulin (anti-bTb) antibody (middle),

and with anti-6E10 antibody (right) for 1 day at 37uC in 96 well

glass bottom plates, and observed by swept-field laser-scanning

confocal microscopy using a 488 nm excitation laser (75%) and a

100x objective lens. The movies of these 3D images are supplied in

Movie S2-S4.

Found at: doi:10.1371/journal.pone.0008492.s008 (3.87 MB TIF)

Figure S7 Microglial uptake of monomeric QDAb(6), QDAb(1),

and QDAb(0). Medium containing monomeric QDAb(6) (a),

QDAb(1) (b), or QDAb(0) (c) (final concentration 50 nM) was

added to primary cultured mouse microglia in 96-well glass

bottom plates (50,000 cells/well), and incubated for 1, 6, and 24 h

time periods. The cells were fixed with 4% PFA and observed by

wide-field fluorescence microscopy using a 20x objective lens with

QD filter set.

Found at: doi:10.1371/journal.pone.0008492.s009 (8.75 MB TIF)

Figure S8 Magnified observation of microglia with ingested

monomeric QDAb(6) and QDAb(0). Primary mouse microglia

were incubated with monomeric QDAb(6) or QDAb(0) (final

concentration 50 nM) for 24 h, followed by fixation with 4% PFA,

and observed by wide-field fluorescence microscopy using a 100x

oil objective lens (TE-300, Nikon Instruments) and QD filter set

(green).

Found at: doi:10.1371/journal.pone.0008492.s010 (5.75 MB TIF)

Figure S9 Co-localization of ingested QDAb6) and Lysotracker

in microglia. Primary mouse microglia were incubated with

50 nM monomeric QDAb6) for 24 h, followed by incubation with

50 mM Lysotracker for an additional 30 min. The cells were fixed

with 4% PFA, and observed by Swept-field laser-scanning confocal

microscopy using 488 nm excitation (QD, green) and 568 nm

excitation (Lysotracker, red). Far right panel is the 3D reconstruc-

tion image in the same field. The movie of this 3D image is in

Movie S5.

Found at: doi:10.1371/journal.pone.0008492.s011 (3.22 MB TIF)

Movie S1 4D imaging of Ab aggregation. 0.1% QDAb(6)-

containing Ab42 (final concentration 100 mM) was incubated in

PBS for 24 h at 37uC in 96 well glass bottom plate. The sample

was observed every 30 min by swept-field confocal microscopy

using 488 nm excitation laser (20%) and 60x objective lens. The

bird’s-eye movie is played at a speed of 4 h/s.

Found at: doi:10.1371/journal.pone.0008492.s012 (5.68 MB

MOV)

Movie S2 4D imaging of Ab aggregation. 0.1% QDAb(6)-

containing Ab42 (final concentration 100 mM) was incubated in
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PBS for 24 h at 37uC in 96 well glass bottom plate. The sample

was observed every 30 min by swept-field confocal microscopy

using a 488 nm excitation laser (20%) and 60x objective lens. The

movie in angled bird’s-eye view is played at a speed of 4 h/s.

Found at: doi:10.1371/journal.pone.0008492.s013 (5.68 MB

MOV)

Movie S3 3D imaging of Ab aggregates in PBS. 0.1% QDAb(6)-

containing Ab42 (final concentration 50 mM) was incubated in

PBS for 1 day at 37uC in a 96 well glass bottom plate. The sample

was observed by swept-field confocal microscopy using a 488 nm

excitation laser (75%) and 100x objective lens.

Found at: doi:10.1371/journal.pone.0008492.s014 (5.53 MB

MOV)

Movie S4 3D imaging of Ab aggregates in PBS with anti-

bTubulin (control) antibody. 0.1% QDAb(6)-containing Ab42

(final concentration 50 mM) was incubated in PBS containing anti-

bTubulin antibody for 1 day at 37uC in a 96 well glass bottom

plate. The sample was observed by swept-field confocal micros-

copy using a 488 nm excitation laser (75%) and 100x objective

lens.

Found at: doi:10.1371/journal.pone.0008492.s015 (5.53 MB

MOV)

Movie S5 3D imaging of Ab aggregation in PBS with anti-6E10

antibody. 0.1% QDAb(6)-containing Ab42 (final concentration

50 mM) was incubated in PBS containing anti-6E10 antibody for

1-day at 37uC in a 96 well glass bottom plate. The sample was

observed by swept-field confocal microscopy using a 488 nm

excitation laser (75%) and 100x objective lens.

Found at: doi:10.1371/journal.pone.0008492.s016 (5.53 MB

MOV)

Movie S6 3D movies of QDAb(6) and Lysotracker in Fig. S9 (far

right panel).

Found at: doi:10.1371/journal.pone.0008492.s017 (4.76 MB

MOV)
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