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Abstract: Nonequilibrium work relations have fundamentally advanced our understanding of molec-
ular processes. In recent years, fluctuation theorems have been extensively applied to understand
transitions between equilibrium steady-states, commonly described by simple control parameters
such as molecular extension of a protein or polymer chain stretched by an external force in a quiescent
fluid. Despite recent progress, far less is understood regarding the application of fluctuation theorems
to processes involving nonequilibrium steady-states such as those described by polymer stretching
dynamics in nonequilibrium fluid flows. In this work, we apply the Crooks fluctuation theorem to
understand the nonequilibrium thermodynamics of dilute polymer solutions in flow. We directly
determine the nonequilibrium free energy for single polymer molecules in flow using a combina-
tion of single molecule experiments and Brownian dynamics simulations. We further develop a
time-dependent extensional flow protocol that allows for probing viscoelastic hysteresis over a wide
range of flow strengths. Using this framework, we define quantities that uniquely characterize the
coil-stretch transition for polymer chains in flow. Overall, generalized fluctuation theorems provide a
powerful framework to understand polymer dynamics under far-from-equilibrium conditions.

Keywords: fluctuation theorems; nonequilibrium thermodynamics; polymer dynamics; conformation
hysteresis; viscoelasticity

1. Introduction

Understanding the dynamics of soft materials and complex fluids is of fundamental
interest to materials scientists, engineers, and rheologists [1]. Soft materials processing often
involves highly nonequilibrium conditions that are difficult to model using the standard
framework of equilibrium thermodynamics [2]. For example, processes such as flow-guided
printing of semiconducting polymers [3], flow-assisted nonequilibrium assembly of hybrid
synthetic oligopeptides [4,5], or flow-induced phase separation of colloidal particles [6] are
governed by an interplay between far-from-equilibrium structure and dynamics. However,
bulk material properties and the macroscopic viscoelastic response are often determined by
the molecular properties of soft materials. In order to understand and effectively control
material properties during flow processing, it is essential to develop new molecular-level
approaches that connect the nonequilibrium energetics of soft materials to transient flow
conditions. From this view, the development of new molecular-level thermodynamic
frameworks for flowing systems will allow researchers to fundamentally understand the
nonequilibrium processes governed by thermodynamics and rheology [2].

Single molecule techniques allow for a direct observation of individual polymer chains
in flow, which provides access to the entire molecular ensemble under nonequilibrium
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conditions [7]. In this way, single molecule experiments allow for the characterization
of different micro-states or molecular sub-populations in flow, which allows fluctuation
theorems to be applied to understand nonequilibrium energetics and processes. Fluctu-
ation theorems refer to a class of thermodynamic identities that describe the probability
distribution of quantities such as work, heat, or entropy changes along stochastic trajec-
tories [8]. In the context of fluctuation theorems or work relations, transitions between
different thermodynamic states of a system can be analyzed. Hatano and Sasa derived an
extended form of the second law to analyze transitions between thermodynamic steady
states [9]. Jarzynski derived an equality that allows equilibrium-free energy differences
to be determined from nonequilibrium work measurements [10]. Recently, an expression
was developed to determine the nonequilibrium thermodynamic quantities for systems
near equilibrium [11]. From this view, single molecule techniques provide an ideal plat-
form to understand stochastic trajectories and to determine fundamental equilibrium and
nonequilibrium thermodynamic quantities. By applying nonequilibrium work relations
to the trajectories of single polymers in an imposed fluid flow, Schroeder and coworkers
demonstrated the ability to determine polymer chain elasticity from the nonequilibrium
stretching trajectories of polymer molecules [12] and further determined the equilibrium-
free energy landscape for polymer chains in strong flows [13]. Moreover, Schroeder and
coworkers also determined nonequilibrium thermodynamic quantities for polymers in
flow and demonstrated the ability to determine polymer relaxation times purely from
nonequilibrium stretching dynamics in flow [14].

The Crooks fluctuation theorem (CFT) allows the free energy difference between two
states (A and B) to be determined solely from work distributions obtained from repeated
forward processes (A→ B) and backward processes (B→ A) provided that the transitions
are initialized from steady-state and are reversible [15]. Formally, the CFT is given as:

PF(W)

PB(−W)
= exp

(
W − ∆F

kBT

)
(1)

where PF(W) and PB(−W) are the probability distributions of the work performed in the
forward (W) and backward process (−W), respectively, kBT is the Boltzmann temperature,
and ∆F is the Helmholtz free energy change between states A and B [15]. Using the CFT,
the free energy change for a process ∆F is determined where PF(W) = PB(−W) or exactly
where the forward and backward work distributions intersect. In practice, the CFT has been
applied to understand the thermodynamics of micron-sized colloidal particles immersed
in water at millisecond timescales [16]. Moreover, the CFT was also used to study the
energetics of biological molecules and biophysical systems. For example, the equilibrium-
free energy differences between the unfolded and folded states of an RNA hairpin were
determined by directly measuring work distributions from force-extension measurements
using an optical trap [17]. However, there has been far less progress in using the CFT
to determine the free energy differences between nonequilibrium steady-states involving
the flow processing of polymeric materials. Prior work applied the CFT to an elastic
dumbbell model of polymers in an extensional flow [18] or a two-dimensional inviscid
and incompressible flow on a rectangular domain [19], though these demonstrations only
considered simulations of model systems. Here, we use a combination of experiments
and simulations to show that the CFT can be used to determine nonequilibrium-free
energy differences for polymeric materials in flow, specifically focusing on a quantitative
understanding of viscoelastic hysteresis. We note for the nonequilibrium steady-states
described in this article, an effective Helmholtz free energy F∗ rather than Helmholtz-free
energy F is used (vide infra) [14].

Soft polymeric materials generally exhibit history-dependent deformation behavior in
flow [1,20,21]. For polymer melts in shear flow, when the shear rate is gradually increased
from an initial value of γ̇min to a value of γ̇max and then gradually returned to the initial
value of γ̇min, the shear stress τxy measured during this process exhibits ‘hysteresis loops’.
In particular, when the system transitions from γ̇min to γ̇max, the ‘upward curve’ of τxy is
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distinctly different than the ‘downward curve’ when the system travels back from γ̇max to
γ̇min. These hysteresis loops are known as viscoelastic hysteresis or stress-strain hysteresis
in polymer melts and are found to arise due to the polymer normal stress differences in
flow described by the Bird–Carreau model [22,23]. In dilute solutions, a stress-birefringence
viscoelastic hysteresis was also observed in stretch-relaxation cycles of single polymers
in uniaxial extensional flow [24,25]. The stress-birefringence viscoelastic hysteresis was
found to arise due to a broad non-Gaussian distribution of molecular extension during
the stretch phase, where the highly stretched chains dominantly contribute to the stress,
but the birefringence signal is dominated by more weakly stretched chains. Therefore, the
stress is generally larger during the transient startup phase of extensional flow than the
relaxation phase [24]. Recently, an analogous rheological hysteresis was also reported in
soft glassy materials [26].

A different type of hysteresis behavior known as polymer conformation hysteresis
occurs for high molecular weight (MW) polymer chains in extensional flow [27]. Early
work by de Gennes predicted the existence of a coil-stretch hysteresis for polymer chains
in a narrow range of flow strength in extensional flow [28]. Unlike stress-strain hysteresis
for polymer melts in flow, polymer conformation hysteresis was predicted to arise due to
intramolecular hydrodynamic interactions (HI) for polymer chains in flow, which give rise
to a conformation dependent drag force in flow. In this way, the fluid exerts a larger fric-
tional grip on fully stretched chains compared to polymer coils, resulting in conformational
hysteresis near the coil-stretch transition in strong flows such as extensional flows [28].
Polymer conformation hysteresis was experimentally observed for extremely large DNA
molecules in planar extensional flow using single molecule fluorescence microscopy [27].
Single molecule experiments were complemented by Brownian dynamics (BD) simulations
of large polymer chains that confirmed the existence of coil-stretch hysteresis for high
molecular polymers in flow [27,29]. Numerical simulations further demonstrated that a
large difference in conformation-dependent drag for polymer molecules in a coiled versus
stretched state is necessary for the observation of this form of hysteresis [29]. Hence, high
molecular weight polymer molecules with significant intramolecular HI exhibit a clear
history-dependent conformation hysteresis in extensional flow. In semidilute polymer
solutions, polymer conformation hysteresis in extensional flow was found to depend on
concentration based on results using a combination of bulk extensional rheometry experi-
ments and BD simulations [30,31]. In semidilute polymer solutions, the hysteresis window
significantly widens with increasing concentration, reaching a maximum at the critical
overlap concentration c∗, and decreases before vanishing at a high polymer concentration
in the semidilute regime. Recent atomistic simulations of polyethylene melts have shown
that entangled polymer chains also exhibit a coil-stretch hysteresis at intermediate flow
strength [32,33]. Interestingly, hysteresis in this system is reflected by a bimodal distribution
of highly stretched and coiled chains, with occasional transitions between the two states.
The duality in chain conformation leads to a flow-induced phase separation into ellipsoidal
domains of coiled molecules surrounded by thin sheets of highly stretched molecules.

In addition to the dramatic conformation hysteresis exhibited by high MW polymers
in extensional flow, intramolecular HI also plays a key role in the dynamics of lower MW
polymer chains in strong flows, quantitatively altering their flow dynamics and resulting
in a critical ‘slowing-down’ of transient stretching and relaxation dynamics in the vicinity
of the coil-stretch transition due to a large number of available states and large chain
fluctuations [34]. Although conformational hysteresis is generally not observed for low
MW polymer chains, intramolecular HI significantly alters chain dynamics even for low
MW polymers.

Direct observation of polymer conformation hysteresis in dilute solutions requires
large accumulated fluid strains to be imposed on single polymer chains under controlled
steady flow conditions [27]. Prior single molecule experiments used a slow transition rate
when stepping between different flow strengths to ensure that single polymers fully ‘relax’
to the flow deformation rate in experiments [27]. The observation window for polymer
conformation hysteresis is limited to a narrow range of flow strengths for ultra-dilute
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solutions [35] and requires reasonably long observation times. The effective nonequilibrium
polymer conformational energy exhibits a double-welled potential near the coil-stretch
transition with an effective energy barrier larger than thermal energy, resulting in high
MW polymers becoming trapped in effective energy minima and exhibiting conformation
hysteresis over finite observation times [36]. Kramers hopping theory was used to describe
the hopping rate of polymer chains between different conformational energy states, which
shows that the hopping rate is inversely proportional to the polymer chain length [37]. In
this way, polymer conformation hysteresis can be unambiguously defined as occurring
when the inverse hopping rate is much larger than the experimental observation times [37];
the inverse hopping rates are typically astronomically large for high MW polymer chains.
Of course, if an infinite observation time were possible, polymer chains would evolve to
the lowest conformational energy state [36]. Nevertheless, in practical situations involving
flow processing, high MW chains become kinetically trapped for extremely long times in
stable stretched or coiled conformations near the coil-stretch transition, which is a signature
of polymer conformational hysteresis.

In this article, we apply the Crooks fluctuation theorem (CFT) to understand polymer
dynamics in time-dependent flows, specifically focusing on the history-dependent dynamic
behavior of single polymers in strong flows. In particular, we focus on understanding
viscoelastic hysteresis in low MW polymers at the molecular-level (i.e., we only consider
viscoelastic hysteresis and not conformational hysteresis, as discussed below). We present
a new time-dependent extensional flow protocol that allows for characterization of rate-
dependent viscoelastic hysteresis observable over a broad range of flow conditions. Using
this approach, we define quantities that uniquely characterize the coil-stretch transition
for polymer chains in strong time-dependent flows. We also apply the CFT to understand
the nonequilibrium stretching dynamics of single polymers in time-dependent flows. We
directly determine free energy differences between nonequilibrium steady-states (NESSs)
by calculating work distributions from far-from-equilibrium transient properties. In general,
reasonable agreement between single molecule experiments and BD simulations is observed
using this framework. Overall, our work demonstrates a new route for quantitatively
understanding the nonequilibrium thermodynamic properties of soft materials under
nonequilibrium flow conditions.

2. Methods
2.1. Flow Protocol for Using Fluctuation Theorems

In order to study the time-dependent viscoelastic behavior of polymers at the molecu-
lar level [20], a time-dependent flow forcing function is required. Recently, large amplitude
oscillatory extensional (LAOE) flow was used to understand the dynamics of polymers
at the single molecule level [38,39]. LAOE is a highly transient and time-dependent flow
field that allows for determination of molecular stretch-strain rate curves known as single
molecule Lissajous curves. Interestingly, Lissajous curve shapes were interpreted in the
context of polymer chain conformation over a wide range of dimensionless flow strength
(Weissenberg number, Wi) and dimensionless flow frequency (Deborah number, De) [38].
In this article, we present a different time-dependent flow protocol for studying single poly-
mer dynamics in extensional flow. Using this protocol, we characterize polymer dynamics
and viscoelastic hysteresis over a wide range of flow strength, Wi, and flow transition rate,
De, using a combination of single molecule experiments and BD simulations.

The time-dependent extensional flow protocol used for single polymers is shown in
Figure 1. Here, polymer chains are first allowed to relax to a nonequillibrium steady-state
at an imposed initial flow strength WiA in extensional flow (Figure 1a, a→ b). Next, the
polymer is transitioned to a second flow strength, WiB at a finite transition rate dWi/dt
(Figure 1a, b→ c). Following this forward transition, the polymer is then allowed to relax
to a second nonequilibrium steady-state at the new flow strength WiB (Figure 1a, c→ d).
The polymer is then transitioned again from the nonequilibrium steady-state at WiB back
to WiA at a finite transition rate −dWi/dt (Figure 1a, d → e). Following the backward
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transition, the polymer is once again allowed to reach nonequilibrium steady-state at WiA
(Figure 1a, e→ f ).

This process is performed repeatedly such that an ensemble of molecular deformation
trajectories in response to the flow protocol is observed. Based on the molecular response to
the forward (WiA →WiB) and backward (WiB →WiA) transitions, the ensemble-averaged
polymer fractional extension 〈l〉/L with respect to flow strength Wi (Figure 1b,c) and the
corresponding nonequilibrium work distributions are determined. Using this flow protocol,
the ensemble-averaged extension allows for characterization of viscoelastic hysteresis, and
the work distributions allow for the determination of the nonequilibrium-free energies of
single polymers as a function of flow strength.

time

W
i

(a)

(b)

a b

c d

e f

dWi
dt

WiB
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<l
>/

L

b,f
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<l
>/

L
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Figure 1. Time-dependent flow protocol for single polymers in planar extensional flow used in single
polymer experiments and Brownian dynamics simulations. (a) Time trajectory of the extensional
flow input (top curve) and ensemble-averaged polymer fractional extension 〈l〉/L resulting from the
flow forcing function (bottom curve). Rate-dependent stretch-strain rate loops for ensemble-averaged
polymer fractional extension 〈l〉/L versus flow strength Wi in response to (b) a slow transition rate
from WiA to WiB, and (c) a fast transition rate from WiA to WiB.

2.2. Brownian Dynamics Simulations

We use a free-draining coarse-grained bead-spring polymer chain model and Brownian
dynamics (BD) simulations to model the dynamics of single DNA molecules in time-
dependent planar extensional flow (Figure 1a). In these simulations, a single polymer
chain is modeled as Nb beads connected by N = Nb − 1 springs. A force balance yields an
inertialess Langevin equation of motion [40]:

dR =

[
U +

1
kBT

D · Fs +
∂

∂R
·D
]

dt +
√

2B · dW (2)

where R(rk) is the vector of bead position vectors rk, U is the velocity field, D is the
diffusion tensor, and Fs is the entropic elasticity from the springs. To account for thermal
motion of the chain in a continuum solvent, B is chosen to satisfy the fluctuation-dissipation
theorem, such that D = B · BT , and dW is determined from a Gaussian distribution with
zero mean and variance dt. For our time-dependent planar extensional flow protocol,
the velocity field U = κ(t) · R with κ(t) = κij(t) = ε̇(t)

(
δi1δj1 − δi2δj2

)
, where ε̇(t) is the

applied time-dependent strain rate and δij is the Kronecker delta.
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Based on the time-dependent strain rate, the Weissenberg number is defined as
Wi = ε̇τR, where τR is the longest polymer relaxation time [12]. Here, we use a single-mode
dumbbell model with two beads (Nb = 2) connected by an entropic spring with worm-like
chain (WLC) elasticity [41] to model the behavior of λ-DNA molecules in response to the
time-dependent extensional flow protocol. Prior work has shown that single-mode bead-
spring chains (dumbbells) accurately capture the qualitative dynamics of linear polymer
chains in extensional flow [36]. In this way, we are neglecting intramolecular HI in our
simulations, and the dumbbell model is considered to be free-draining. As mentioned
above, the present work is focused on understanding viscoelastic hysteresis, which arises
due to viscoelastic effects of single polymer chains in response to a time-dependent strain
rate deformation, rather than conformational hysteresis. Of course, intramolecular HI is
known to exaggerate viscoelastic hysteresis effects, and in the limit of high MW polymers,
will induce conformational hysteresis in extensional flow. Nevertheless, a free-draining
dumbbell model is sufficient to capture the underlying physics of viscoelastic hysteresis for
low MW polymer chains such as λ-DNA molecules in extensional flow [36]. The contour
length L of fluorescently labeled λ-DNA molecules is taken to be 21.5 µm in simulations
and experiments [7]. Additional simulation details are described in prior work [14].

With regards to fluctuation theorems and work relations, our system is defined as
a single polymer molecule in a time-dependent planar extensional flow, and the control
parameter that defines the state of the system is the dimensionless flow strength, Wi. In this
way, single polymer chains are transitioned between nonequilibrium steady states (NESSs)
in extensional flow because the control parameter is the flow rate instead of the polymer
extension, as discussed in prior work [14]. The transition time between State A (WiA) and
State B (WiB) is nondimensionalized to obtain a Deborah number De = τR/(tB − tA). In
this way, the Deborah number De describes the transition rate between NESSs with different
flow strengths, defined relative to the polymer relaxation time, which is an intrinsic property
of the polymer chain. Therefore, a small De indicates a slow transition rate between NESSs
such that polymers have sufficient time to respond to the flow deformation, whereas a
large De indicates a fast transition rate between NESSs such that polymers may not have
sufficient time to respond to the flow deformation.

2.3. Single Molecule Experiments

Double-stranded λ-DNA (48.5 kbp, New England Biolabs, MA, USA) is used for single
molecule imaging. λ-DNA molecules are fluorescently labeled with an intercalating dye
YOYO-1 (Invitrogen, Thermo Fisher, USA) at a dye-to-base pair ratio of 1:4 for >1 h in a
dark at room temperature. Fluorescently labeled λ-DNA is added to an imaging buffer
containing 30 mM Tris/Tris-HCl (pH 8.0), 2 mM EDTA, 5 mM NaCl, glucose (5 mg/mL),
glucose oxidase (0.05 mg/mL), catalase (0.01 mg/mL), and 4% v/v β-mercaptoethanol. The
imaging buffer solvent viscosity is increased to 48.5 ± 0.1 cP at 23 ◦C by addition of sucrose
(60% w/w). Glucose oxidase/catalase is used as a coupled enzymatic oxygen scavenging
system to suppress photobleaching and photocleaving of the fluorescently labeled DNA.
The concentration of DNA is ultra-dilute (10−5 c∗), and experiments are performed in the
absence of polymer-polymer interactions.

Imaging is performed using an inverted epifluorescence microscope (IX71,
Olympus, Japan) illuminated with a 100 W mercury arc lamp (USH102D, UShio, Japan)
directed through a 3% neutral density filter (Olympus), a 482 ± 18 nm band-pass exci-
tation filter (FF01-482/18–25, Semrock, USA), and a 488 nm single-edge dichroic mirror
(Di01-R488-25 × 36, Semrock). Fluorescence emission is collected by a 1.45 NA, 100× oil
immersion objective lens (UPlanSApo, Olympus), and a 488 nm long pass filter (BLP01-
488R-25, Semrock) is used in the detection path. Finally, images are acquired by an Andor
iXon electron-multiplying charge coupled device camera (512 × 512 pixels, 16 µm pixel
size) under frame-transfer mode at a frame rate of 33 Hz.

The Stokes trap is used to precisely position and manipulate polymer molecules
in flow [38,39,42–45]. The Stokes trap uses model predictive control (MPC) to confine
fluorescently labeled λ-DNA molecules near the stagnation point of a planar extensional
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flow for long observation times, as previously described [42]. In brief, a microfluidic
cross-slot device is used to generate a planar extensional flow, and the Stokes trap is used
to confine single polymer chains in precisely defined time-dependent extensional flows
(Figure 1a). The imposed strain rate ε̇ is determined experimentally using particle tracking
velocimetry (PTV). Additional details regarding implementation of the Stokes trap to
generate complex time-dependent flows for single polymer dynamics are described in prior
work [38,39].

3. Results and Discussion
3.1. Viscoelastic Hysteresis

We began by studying dynamic polymer stretching behavior using the time-dependent
extensional flow protocol shown in Figure 1. Here, the Stokes trap is experimentally
implemented using a four-channel cross-slot microfluidic device with pressurized inlets
connected to four computer-controlled pressure regulators. First, a single DNA molecule
is confined in extensional flow at State A (at WiA) for residence times at least 5τR–10τR
to ensure that the polymer has reached a NESS (Figure 1a, a → b). The flow strength is
then gradually increased from WiA to WiB by increasing the pressure at the inlets with a
constant programmed rate (Figure 1a, b → c). The polymer chain is then maintained at
State B (at WiB) for at least 5τR–10τR (Figure 1a, c→ d) before the flow rate is transitioned
back from WiB to WiA at the same transition rate (Figure 1a, d→ e). Finally, the polymer
chain is again held at WiA to reach a different NESS (Figure 1a, e→ f ). During this process,
single DNA molecules are trapped near the stagnation point of the extensional flow in
the microfluidic device using a feedback controller that applies small pressures to the
pressurized inlets. The feedback control pressures are negligible compared to the primary
pressure used to generate the time-dependent extensional flow [38,39].

In this time-dependent flow protocol, when the transition rate between WiA and WiB
is slow (e.g., small De), the polymer has sufficient time to relax to the flow deformation,
and the polymer extension generally follows the same forward and backward transition
from WiA → WiB and WiB → WiA, respectively. Under these conditions, we expect no
viscoelastic hysteresis loop to be observed (Figure 1b). However, when the transition rate
between WiA and WiB is fast (e.g., large De), the polymer chain generally does not have
sufficient time to relax to the flow deformation. Hence, after the polymer transitions from
WiA →WiB, it continues to equilibrate to the NESS at a higher flow strength at WiB, and
the polymer extension continues to increase (Figure 1c, c→ d). We define this hysteresis in
polymer extension at a higher flow strength as the ‘stretch-lag’. Similarly, after the polymer
transitions back from WiB → WiA, it continues to equilibrate to the NESS at lower flow
strength at WiA, and the polymer extension continues to decrease (Figure 1c, e→ f ). We
define this hysteresis in polymer extension at a lower flow strength as the ‘coil-lag’. In this
way, a hysteresis loop emerges due to the ‘stretch-lag’ and ‘coil-lag’, which constitutes the
right-hand side and left-hand side of the hysteresis loop, respectively (Figure 1c).

Our results show a strong rate-dependent behavior in the ensemble-averaged polymer
fractional extension 〈l〉/L when transitioning between flow rates Wi above the polymer
coil-stretch transition (CST). Figure 2a,b show results from experiments and BD simulations
for polymer stretching between WiA = 1 and WiB = 2, which corresponds to initial and
final flow rates above the CST. As shown in Figure 2a,b, under a relatively fast transition rate
of De ≈ 0.4, polymers are stretched from 〈l〉/L ≈ 0.6 to 〈l〉/L ≈ 0.7 following the trajectory
along the right arrow. Upon reaching the final WiB, the polymer chain is maintained at a
constant flow strength to fully equilibrate to the nonequilibrium state at WiB. At the higher
flow strength of Wi = 2 where 〈l〉/L ≈ 0.7, the polymer fractional extension continues to
increase with a hysteretic ‘stretch-lag’ value of ∆2.

After equilibrating at the nonequilibrium steady state at Wi = 2, the flow protocol is
continued, and the flow rate decreases at a given rate (De ≈ 0.4) to the initial flow rate at
Wi = 1 (Figure 2a,b). During this step, the polymer extension decreases from 〈l〉/L ≈ 0.7
to 〈l〉/L ≈ 0.65 following the decreasing flow strength as indicated by the trajectory shown
by the left arrow. At a lower flow strength of Wi = 1, the polymer extension continues to
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drop from 〈l〉/L ≈ 0.65 back to the starting point at 〈l〉/L ≈ 0.6 with a hysteretic value
of ∆1, which corresponds to the ‘coil-lag’ value following the definition above. The coil
(stretch)-lag refers to the absolute maximum difference between the forward and reverse
average fractional extensions at the lower (higher) flow strength. To this end, this process
forms the viscoelastic hysteresis loop at a fast transition time because the polymer chain
does not have enough time to respond to the flow deformation, resulting in a lag behind
the time-dependent extensional flow input.
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Figure 2. Rate-dependent polymer stretch loops transitioning from WiA = 1 to WiB = 2 with a
relatively large transition rate De ≈ 0.4 from (a) single molecule experiments and (b) Brownian
dynamics (BD) simulations, and intermediate transition rates De ≈ 0.1 from (c) single molecule
experiments and (d) BD simulations. Here, ∆1 indicates the ‘coil-lag’ and ∆2 indicates the ‘stretch-
lag’. Arrows indicate the direction of the forward transition (WiA →WiB) and backward transition
(WiB →WiA). The experimental ensembles contain n = 50 and n = 38 molecular traces for De = 0.45
and De = 0.1, respectively. All simulation ensembles contain n = 500 molecular traces.

Under slow or intermediate transition rates of De ≈ 0.1 (Figure 2c,d), the polymer
extension increases and decreases between 〈l〉/L ≈ 0.6 and 〈l〉/L ≈ 0.7 following the flow
input, as indicated by the directions of the arrows. At these slower transition rates, the poly-
mer chain has sufficient time to relax and respond and to the transient flow deformation
such that the ‘stretch-lag’ and ‘coil-lag’ are negligible. In this way, the viscoelastic hysteresis
loop collapses to a single curved line, and the transient polymer extension closely follows
the flow deformation. Results from single molecule experiments show reasonable quantita-
tive agreement with BD simulations. In general, BD simulations tend to predict a slightly
larger polymer extension at high flow strength and a slightly lower polymer fractional ex-
tension at low flow strength, which could arise due to the absence of intramolecular HI and
excluded volume interactions in the free-draining model. Nevertheless, the free-draining
dumbbell model with WLC elasticity is observed to qualitatively capture the dynamics of
single DNA polymers (e.g., λ-DNA molecules) under the time-dependent flow protocol.

We further studied transient polymer stretching dynamics using the Pipkin space
framework [46], defined as a two-dimensional parameter space governed by the flow
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strength Wi and the transition rate De. As shown in Figure 3, no viscoelastic hysteresis
is observed for polymers under extremely low rate transitions (De = 0.004), and the
viscoelastic stretch-strain rate loops collapse onto a single line. The polymer ensemble-
averaged fractional extension is independent of the forward/backward transition path
directions, regardless of flow strength. This suggests that at extremely slow transitions,
the flow system responds in a quasi-equilibrium steady-state [39]. Under intermediate
and fast transitions, however, the flow system responds in a nonequilibrium steady-state.
We observe signatures of rate-dependent hysteresis in the ensemble-averaged polymer
fractional extension. Importantly, these viscoelastic hysteresis loops suggest the existence
of dissipation in the context of nonequilibrium steady-state thermodynamics [14].

We further probed viscoelastic hysteresis by studying polymer dynamics with initial and
final Wi values across the CST (Figure 3b) and below the CST (Figure 3c). Figure 3b shows
the ensemble-averaged polymer fractional extension in response to the time-dependent
extensional flow protocol across the CST from WiA = 0.45 to WiB = 0.55. Our results
show a strong rate-dependent hysteresis of the ensemble-average polymer conformation
which increases as the transition rate is increased. Importantly, the hysteresis loops are
more pronounced across the CST than above or below the CST, as shown in Figure 3a,c.
This finding is consistent with the observation that molecular fluctuations, and hence
thermodynamic dissipation, substantially increase near the CST [14]. At flow strengths
below the CST (WiA = 0.2 to WiB = 0.4), viscoelastic hysteresis in the ensemble-averaged
polymer fractional extension is again observed. The hysteresis loops become larger as the
transition rate increases from De = 0.004 to De = 0.4 (Figure 3c).

The rate-dependent viscoelastic stretch-strain loops reveal information regarding the
fundamental nature of the CST. At flow strengths above the CST, the coil-lag ∆1 at the
lower flow strength (WiA = 1) is larger than the stretch-lag ∆2 at a higher flow strength
(WiB = 2), as shown in Figures 2 and 3a. This behavior can be rationalized in terms
of the effective conformational energy of single polymer chains [27,36]. Above the CST,
the effective conformational energy of the polymer chain has a single-valued minimum
corresponding to the stretched polymer state, hence the polymer chain prefers to equilibrate
to a more extended steady-state after flow deformation, leading to ∆2 ≤ ∆1. Whereas under
quasi-equilibrium steady-state conditions, the viscoelastic hysteresis loops collapse onto
a single curve, ∆1 = ∆2 = 0. Below the CST, we observe a different relationship between
the coil- and stretch-lag when compared with our observations above the CST. Below
the CST, ∆2 ≥ ∆1 (Figure 3c), suggesting that polymers prefer to equilibrate to a more
coiled steady-state after flow deformation because the effective polymer conformational
energy has a single minimum corresponding to the coiled polymer state. In the vicinity
of the CST, the effective polymer conformational energy is flattened out, suggesting an
increase in polymer chain fluctuations near a critical point [27,34,36]. Hence, across the
CST, the polymer chain is able to equilibrate to both the coiled and stretched states after
flow deformation, depending on its initial state. Overall, the flow-dependent behavior or
∆1 and ∆2 generally depends on the initial flow strength WiA, the final flow strength WiB,
and the transition rates De.
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Figure 3. Rate-dependent viscoelastic polymer stretch loops in three distinct regimes with respect
to the coil-stretch transition (CST). All trajectories correspond to the ensemble-averaged fractional
extension of λ-DNA molecules perturbed with low, intermediate, and high transition rates (a) above
the CST, from WiA = 1 to WiB = 2 (b) across the CST, from WiA = 0.45 to WiB = 0.55, and (c) below
the CST, from WiA = 0.2 to WiB = 0.4.

3.2. Determination of Free Energy from Work Distributions

In the context of fluctuation theorems, the time-dependent extensional flow protocol
used in this work allows for the determination of nonequilibrium thermodynamic quantities
from forward and backward work distributions. Here, we utilize a work definition that
allows for the determination of an effective free energy, F∗, from fluctuation theorems
including the Crooks relation [9,14]. This definition provides the amount of work performed
on the system due to the changes in the control parameter, Wi. Note that this work definition
does not account for ‘housekeeping work’ [14], which is the work required to continuously
maintain a polymer chain in flow at a constant flow strength at the desired nonequilibrium
steady state. As a result, the work values may be negative depending on the amount of
energy required to maintain the steady state.

The corresponding definition of work for a polymer chain (dumbbell model) in planar
extensional flow is [14]:

W = −
∫ tB

tA

1
τR

dWi
dt′

(
x2

1 − x2
2

)
dt′ (3)

where x = r2 − r1 represents the dimensionless end-to-end connector vector, and the
subscripts 1 and 2 for x represent chain orientation along the extensional and compressional
axes, respectively. The end-to-end distance is non-dimensionalized using a characteristic
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length scale ls =
√

kBT/Hs, where kBT is the thermal energy and Hs is the Hookean spring
force constant (the Hookean spring force constant is Hs = 3kBT/Nk,sbk

2. The Kuhn step size
is bk, and the number of Kuhn steps per entropic spring is Nk,s. For fluorescently labeled
DNA molecules, bk = 0.132 µm and Nk,s = 159 for the dumbbell model for λ−DNA).
Physically, Equation (3) allows for determination of the work required to transition a
polymer chain from WiA to WiB. The quantities t and the transition rate dWi/dt in
Equation (3) are non-dimensionalized using the time constant for a Hookean dumbbell,
λH = ζ/4Hs, and ζ is the hydrodynamic drag coefficient on each bead of the dumbbell (the
bead drag coefficient is ζ = 12kBTτR/0.9Nk,sbk

2, and the value of ζ is determined based on
the longest polymer relaxation time τR from single molecule experiments, as discussed in
prior work [14]).

Using Equation (3), the work required to perform forward (backward) flow transi-
tions on single polymer molecules corresponding to moving along points b(d) to c(e) is
determined, as shown in Figure 1a. In all cases, the system is allowed to reach the non-
equilibrium steady-state before inducing changes in the flow strength (a→ b and c→ d in
Figure 1a), which satisfies a crucial requirement for applying the CFT. Using this approach,
we first determined the forward PF(W) and backward PB(−W) work distributions for DNA
molecules transitioning from nonequilibrium steady-states with flow strengths WiA = 1 to
WiB = 2 at De ≈ 0.45 and De ≈ 0.1 from single molecule experiments and BD simulations
(Figure 4).

The work distributions show a strong dependence on transition rates between the
initial and final flow strengths, as shown in Figure 4a,b. Broad work distributions for
both forward and backward processes were observed at a fast transition rate of De ≈ 0.4
(Figure 4a,b). By applying the CFT (Equation (1)), which corresponds to choosing the
work value where the PF(W) and PB(−W) intersect, we determine the effective free energy
difference, ∆F∗, between the two nonequilibrium steady-states from measurable quantities
in flow. For the process shown in Figure 4a,b, ∆F∗ was determined from single molecule
experiments as ∆F∗ = −242.5 kBT and from BD simulations as ∆F∗ = −266.4 kBT. The
average forward work 〈W〉 is approximately 30 kBT larger than the average backward
work 〈−W〉 from experiments (or 20 kBT from BD simulations). These results indicate the
nature of the strongly irreversible process and energy losses between the two stretched
states of single polymers above CST at De ≈ 0.4, which is consistent with the observations
in viscoelastic hysteresis loops (Figure 3a). In contrast to the broad work distributions at
De ≈ 0.4, the work distributions at an intermediate transition time of De ≈ 0.1 drastically
narrow down with small difference in 〈W〉 and 〈−W〉 (Figure 4c,d). At De ≈ 0.1, CFT
predicts ∆F∗ = −259.8 kBT from single molecule experiments and ∆F∗ = −265.9 kBT
from BD simulations. In general, our results show qualitative agreement between single
molecule experiments and BD simulations in predicting the forward and backward work
distributions, and near quantitative agreement in determining the effective free energy.

We further investigated work distributions at an extremely slow transition rate of
De ≈ 0.004 using BD simulations, as shown in Figure 5a. Here, the system resides in
quasi-equilibrium steady-states given the slow transition rates. The work distributions
are narrow compared to faster transition rates De ≈ 0.4 and De ≈ 0.04, and the average
work performed in the forward and backward directions is approximately equal, such
that 〈W〉 ≈ 〈−W〉 ≈ −266 kBT. The differences in 〈W〉 and 〈−W〉 are within ±2 kBT
and ∆F∗ = −265.8kBT. Remarkably, we recover nearly the same effective free energy
difference between the two states (WiA = 1 and WiB = 2) at three different transition rates
(De ≈ 0.4, 0.04, and 0.004) spanning two orders of magnitude, with effective free energy
values of −266.4 kBT, −265.9 kBT, and −265.8 kBT, respectively. In principle, the CFT is
valid regardless of the irreversibility during transitions.
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Figure 4. Probability density functions of forward and backward work distributions for transitions
that occur above the coil-stretch transition (WiA = 1.0 to WiB = 2.0) at a fast transition rate of De ∼ 0.4
from (a) single molecule experiments and (b) BD simulations, and at slow transition rate of De ∼ 0.1
from (c) single molecule experiments and (d) BD simulations. The experimental ensemble contain
n = 50, and n = 38 molecular traces for De = 0.45 and De = 0.1, respectively. All simulation
ensembles contain n = 500 molecular traces.

To further demonstrate the generality of CFT for nonequilibrium steady-states in
single polymer dynamics, we consider transitions across and below the CST at different
transition rates (Figure 5b,c). Our results show a broadening in the forward and backward
work distributions when the transition time decreases from De ≈ 0.004 to De ≈ 0.4,
which is consistent with results from transitions above the CST. Interestingly, the effective
free energy differences between nonequilibrium steady states drastically decrease from
∆F∗ ≈ −266 kBT above CST (WiA = 1 and WiB = 2) to ∆F∗ ≈ −0.5 kBT below the CST.
This can be rationalized because in a highly stretched state, a polymer chain significantly
loses conformational entropy, and more work is required to transition the polymers into a
highly stretched state compared to simply maintaining a coiled state conformation.

Finally, we note that the analysis presented here provides a nonequilibrium demon-
stration of the CFT, which allows for the determination of the effective free energy F∗ but
not the nonequilibrium Helmholtz-free energy F. This is in contrast with the equilibrium
demonstration of CFT, which allows for determination of the equilibrium Helmholtz-free
energy [17]. However, the CFT can be easily recast in a form that allows for the direct
determination of F by noting that F = F∗ − 〈χ〉 [14], where −〈χ〉 is a flow energy that
maintains the system out-of-equilibrium. For a polymer dumbbell in planar extensional
flow, the dimensionless flow energy χ = −Wi

(
x2

1 − x2
2
)
/τR [14].

3.3. Validity of the Crooks Fluctuation Theorem

We further validate the application of the Crooks fluctuation theorem to single polymer
dynamics. As predicated by the CFT (Equation (1)), the log ratio of forward and backward
probabilities of work are predicted to follow a linear relationship as a function of the total
work done during the transition. Indeed, as indicated in Figure 6, a linear relation is
observed for the log ratio of forward and backward work probabilities versus the work
performed during the transition between two nonequilibrium steady-states (WiA = 0.45 to
WiB = 0.55) at De ≈ 0.04.
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4. Conclusions

In this article, we use a combination of single molecule experiments and Brownian
dynamics (BD) simulations to explore the existence of a generalized polymer viscoelastic
hysteresis at the molecular level. The Crooks fluctuation theorem (CFT) is applied to ana-
lyze nonequilibrium steady-states (NESSs) of polymer chains based on a time-dependent
planar extensional flow protocol. Reasonable agreement is observed between experiments
and simulations in the context of free energy values describing the forward and reverse
flow processes. Our results showed that viscoelastic hysteresis arises from the different
transition rates De between NESSs in our flow protocol and exists over a wide range
of imposed flow strengths Wi. Using BD simulations, we found that such viscoelastic
hysteresis exists even in the absence of the intramolecular hydrodynamic interactions.
Furthermore, we introduced two new quantities, the ‘coil-lag’ ∆1 and the ‘stretch-lag’ ∆2,
which characterize the viscoelastic hysteresis loop for single polymers above, across, and
below the coil-stretch transition.

Based on the time-dependent planar extensional flow protocol, we determine the work
distributions of single polymers transitioning between two nonequilibrium steady-states
with different flow strengths WiA and WiB under varying transition rates De. In this way,
we are able to perform nonequilibrium free energy recovery using CFT. Remarkably, our
results show that the free energy differences can be determined with reasonable accuracy
regardless of transition rates spanning three orders of magnitude. In contrast to prior work
using CFT to determine free energies from a non-thermodynamic flowing system [19], our
work demonstrates the determination of free energy using the CFT from a true flowing
system consisting of dilute polymer chains in a time-dependent flow. Based on our demon-
strated flow protocol and analysis method, the free energy difference of polymers under
various flow strengths can be determined from work distributions. Moving forward, be-
yond linear polymer chains in dilute solutions, this framework can be applied to investigate
the flow dynamics of topologically complex polymers in nondilute solutions [45,47,48].

Author Contributions: All authors contributed to project design and manuscript preparation. Single
molecule experiments and data analysis, Y.Z.; BD simulations and data analysis, F.L.; supervision
and project administration, C.M.S. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was supported by the National Science Foundation (NSF) Awards no. CBET-
2030537 and CBET-1604038, a PPG-MRL graduate research assistantship award (Y.Z.), and a Computa-
tional Science and Engineering Fellowship from the University of Illinois at Urbana-Champaign (F.L.).

Institutional Review Board Statement: Not applicable

Informed Consent Statement: Not applicable

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to privacy.

Acknowledgments: The authors thank Anish Shenoy for help in implementing the Stokes trap and
Kai-Wen Hsiao for useful discussions.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Larson, R.G. The Structure and Rheology of Complex Fluids; Oxford University Press: New York, NY, USA, 1999.
2. Beris, A.N.; Edwards, B.J. Thermodynamics of Flowing Systems: With Internal Microstructure; Oxford University Press:

New York, NY, USA, 1994. [CrossRef]
3. Gu, X.; Shaw, L.; Gu, K.; Toney, M.F.; Bao, Z. The meniscus-guided deposition of semiconducting polymers. Nat. Commun. 2018,

9, 534 [CrossRef] [PubMed]
4. Marciel, A.B.; Tanyeri, M.; Wall, B.D.; Tovar, J.D.; Schroeder, C.M.; Wilson, W.L. Fluidic-directed assembly of aligned oligopeptides

with π-conjugated cores. Adv. Mater. 2013, 25, 6398–6404. [CrossRef]
5. Li, B.; Li, S.; Zhou, Y.; Ardoña, H.A.M.; Valverde, L.R.; Wilson, W.L.; Tovar, J.D.; Schroeder, C.M. Nonequilibrium Self-Assembly

of π-Conjugated Oligopeptides in Solution. ACS Appl. Mater. Interfaces 2017, 9, 3977–3984. [CrossRef] [PubMed]

http://doi.org/10.1093/oso/9780195076943.001.0001
http://dx.doi.org/10.1038/s41467-018-02833-9
http://www.ncbi.nlm.nih.gov/pubmed/29416035
http://dx.doi.org/10.1002/adma.201302496
http://dx.doi.org/10.1021/acsami.6b15068
http://www.ncbi.nlm.nih.gov/pubmed/28067038


Entropy 2022, 24, 27 15 of 16

6. Thutupalli, S.; Geyer, D.; Singh, R.; Adhikari, R.; Stone, H.A. Flow-induced phase separation of active particles is controlled by
boundary conditions. Proc. Natl. Acad. Sci. USA 2018, 115, 5403–5408. [CrossRef] [PubMed]

7. Schroeder, C.M. Single Polymer Dynamics for Molecular Rheology. J. Rheol. 2018, 62, 371–403. [CrossRef]
8. Seifert, U. Stochastic thermodynamics, fluctuation theorems and molecular machines. Rep. Prog. Phys. 2012, 75, 126001.

[CrossRef] [PubMed]
9. Hatano, T.; Sasa, S. Steady-state thermodynamics of Langevin systems. Phys. Rev. Lett. 2001, 86, 3463–3466. [CrossRef]
10. Jarzynski, C. Nonequilibrium equality for free energy differences. Phys. Rev. Lett. 1997, 78, 2690–2693. [CrossRef]
11. Sivak, D.A.; Crooks, G.E. Near-equilibrium measurements of nonequilibrium free energy. Phys. Rev. Lett. 2012, 108, 150601,

[CrossRef] [PubMed]
12. Latinwo, F.; Schroeder, C.M. Determining elasticity from single polymer dynamics. Soft Matter 2014, 10, 2178–2187. [CrossRef]

[PubMed]
13. Latinwo, F.; Schroeder, C.M. Nonequilibrium Work Relations for Polymer Dynamics in Dilute Solutions. Macromolecules 2013,

46, 8345–8355. [CrossRef]
14. Latinwo, F.; Hsiao, K.-W.; Schroeder, C.M. Nonequilibrium thermodynamics of dilute polymer solutions in flow. J. Chem. Phys.

2014, 141, 174903. [CrossRef] [PubMed]
15. Crooks, G.E. Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences. Phys.

Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 1999, 60, 2721–2726. [CrossRef] [PubMed]
16. Wang, G.M.; Sevick, E.M.; Mittag, E.; Searles, D.J.; Evans, D.J. Experimental Demonstration of Violations of the Second Law of

Thermodynamics for Small Systems and Short Time Scales. Phys. Rev. Lett. 2002, 89, 050601. [CrossRef]
17. Collin, D.; Ritort, F.; Jarzynski, C.; Smith, S.B.; Tinoco, I.; Bustamante, C. Verification of the Crooks fluctuation theorem and

recovery of RNA folding free energies. Nature 2005, 437, 231–234. [CrossRef]
18. Sharma, R.; Cherayil, B.J. Work fluctuations in an elastic dumbbell model of polymers in planar elongational flow. Phys. Rev. E

Stat. Nonlinear Soft Matter Phys. 2011, 83, 041805. [CrossRef] [PubMed]
19. Gundermann, J.; Kantz, H.; Bröcker, J. Crooks fluctuation theorem for a process on a two-dimensional fluid field. Phys. Rev. Lett.

2013, 110, 234502. [CrossRef] [PubMed]
20. Ferry, J.D. Viscoelastic Properties of Polymers, 3rd ed.; John Wiley & Sons: New York, NY, USA, 1980.
21. Bird, R.B.; Armstrong, R.C.; Hassager, O. Dynamics of Polymeric Liquids, Volume 1: Fluid Mechanics, 2nd ed.; John Wiley & Sons:

York, ON, Canada, 1987.
22. Bird, R.B.; Marsh, B.D. Viscoelastic Hysteresis. Part I. Model Predictions. Trans. Soc. Rheol. 1968, 12, 479–488. [CrossRef]
23. Marsh, B.D. Viscoelastic Hysteresis. Part II. Numerical and Experimental Examples. Trans. Soc. Rheol. 1968, 12, 489–510.

[CrossRef]
24. Doyle, P.S.; Shaqfeh, E.S.G.; McKinley, G.H.; Spiegelberg, S.H. Relaxation of dilute polymer solutions following extensional flow.

J. Non-Newton. Fluid Mech. 1998, 76, 79–110. [CrossRef]
25. Spiegelberg, S.H.; McKinley, G.H. Stress relaxation and elastic decohesion of viscoelastic polymer solutions in extensional flow. J.

Non-Newton. Fluid Mech. 1996, 67, 49–76. [CrossRef]
26. Divoux, T.; Grenard, V.; Manneville, S. Rheological hysteresis in soft glassy materials. Phys. Rev. Lett. 2013, 110, 018304,

[CrossRef]
27. Schroeder, C.M.; Babcock, H.P.; Shaqfeh, E.S.G.; Chu, S. Observation of polymer conformation hysteresis in extensional flow.

Science 2003, 301, 1515–1519. [CrossRef] [PubMed]
28. De Gennes, P.G. Coil-stretch transition of dilute flexible polymers under ultrahigh velocity gradients. J. Chem. Phys. 1974,

60, 5030–5042. [CrossRef]
29. Hsieh, C.C.; Larson, R.G. Prediction of coil-stretch hysteresis for dilute polystyrene molecules in extensional flow. J. Rheol. 2005,

49, 1081. [CrossRef]
30. Prabhakar, R.; Gadkari, S.; Gopesh, T.; Shaw, M. Influence of stretching induced self-concentration and self-dilution on coil-stretch

hysteresis and capillary thinning of unentangled polymer solutions. J. Rheol. 2016, 60, 345. [CrossRef]
31. Prabhakar, R.; Sasmal, C.; Nguyen, D.A.; Sridhar, T.; Prakash, J.R. Effect of stretching-induced changes in hydrodynamic screening

on coil-stretch hysteresis of unentangled polymer solutions. Phys. Rev. Fluids 2017, 2, 011301, [CrossRef]
32. Nafar Sefiddashti, M.H.; Edwards, B.J.; Khomami, B. Communication: A coil-stretch transition in planar elongational flow of an

entangled polymeric melt. J. Chem. Phys. 2018, 148, 141103. [CrossRef]
33. Nafar Sefiddashti, M.H.; Edwards, B.J.; Khomami, B. Configurational Microphase Separation in Elongational Flow of an

Entangled Polymer Liquid. Phys. Rev. Lett. 2018, 121, 247802. [CrossRef]
34. Gerashchenko, S.; Steinberg, V. Critical slowing down in polymer dynamics near the coil-stretch transition in elongation flow.

Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 2008, 78, 040801. [CrossRef]
35. Radhakrishnan, R.; Underhill, P.T. Impact of solvent quality on the hysteresis in the coil-stretch transition of flexible polymers in

good solvents. Macromolecules 2013, 46, 548–554. [CrossRef]
36. Schroeder, C.M.; Shaqfeh, E.S.G.; Chu, S. Effect of Hydrodynamic Interactions on DNA Dynamics in Extensional Flow: Simulation

and Single Molecule Experiment. Macromolecules 2004, 37, 9242–9256. [CrossRef]
37. Beck, V.A.; Shaqfeh, E.S.G. Ergodicity-breaking and the unraveling dynamics of a polymer in linear and nonlinear extensional

flows. J. Rheol. 2007, 51, 561. [CrossRef]

http://dx.doi.org/10.1073/pnas.1718807115
http://www.ncbi.nlm.nih.gov/pubmed/29735679
http://dx.doi.org/10.1122/1.5013246
http://dx.doi.org/10.1088/0034-4885/75/12/126001
http://www.ncbi.nlm.nih.gov/pubmed/23168354
http://dx.doi.org/10.1103/PhysRevLett.86.3463
http://dx.doi.org/10.1103/PhysRevLett.78.2690
http://dx.doi.org/10.1103/PhysRevLett.108.150601
http://www.ncbi.nlm.nih.gov/pubmed/22587237
http://dx.doi.org/10.1039/C3SM52042K
http://www.ncbi.nlm.nih.gov/pubmed/24651921
http://dx.doi.org/10.1021/ma400961s
http://dx.doi.org/10.1063/1.4900880
http://www.ncbi.nlm.nih.gov/pubmed/25381543
http://dx.doi.org/10.1103/PhysRevE.60.2721
http://www.ncbi.nlm.nih.gov/pubmed/11970075
http://dx.doi.org/10.1103/PhysRevLett.89.050601
http://dx.doi.org/10.1038/nature04061
http://dx.doi.org/10.1103/PhysRevE.83.041805
http://www.ncbi.nlm.nih.gov/pubmed/21599196
http://dx.doi.org/10.1103/PhysRevLett.110.234502
http://www.ncbi.nlm.nih.gov/pubmed/25167499
http://dx.doi.org/10.1122/1.549096
http://dx.doi.org/10.1122/1.549093
http://dx.doi.org/10.1016/S0377-0257(97)00113-4
http://dx.doi.org/10.1016/S0377-0257(96)01475-9
http://dx.doi.org/10.1103/PhysRevLett.110.018304
http://dx.doi.org/10.1126/science.1086070
http://www.ncbi.nlm.nih.gov/pubmed/12970560
http://dx.doi.org/10.1063/1.1681018
http://dx.doi.org/10.1122/1.2000971
http://dx.doi.org/10.1122/1.4942792
http://dx.doi.org/10.1103/PhysRevFluids.2.011301
http://dx.doi.org/10.1063/1.5026792
http://dx.doi.org/10.1103/PhysRevLett.121.247802
http://dx.doi.org/10.1103/PhysRevE.78.040801
http://dx.doi.org/10.1021/ma301815y
http://dx.doi.org/10.1021/ma049461l
http://dx.doi.org/10.1122/1.2714820


Entropy 2022, 24, 27 16 of 16

38. Zhou, Y.; Schroeder, C.M. Single polymer dynamics under large amplitude oscillatory extension. Phys. Rev. Fluids 2016, 1, 053301.
[CrossRef]

39. Zhou, Y.; Schroeder, C.M. Transient and Average Unsteady Dynamics of Single Polymers in Large-Amplitude Oscillatory
Extension. Macromolecules 2016, 49, 8018–8030. [CrossRef]

40. Jendrejack, R.M.; Dimalanta, E.T.; Schwartz, D.C.; Graham, M.D.; de Pablo, J.J. DNA Dynamics in a Microchannel. Phys. Rev. Lett.
2003, 91, 038102. [CrossRef]

41. Marko, J.F.; Siggia, E.D. Stretching DNA. Macromolecules 1995, 28, 8759–8770. [CrossRef]
42. Shenoy, A.; Rao, C.V.; Schroeder, C.M. Stokes trap for multiplexed particle manipulation and assembly using fluidics. Proc. Natl.

Acad. Sci. USA 2016, 113, 3976–3981. [CrossRef] [PubMed]
43. Zhou, Y.; Schroeder, C.M. Dynamically Heterogeneous Relaxation of Entangled Polymer Chains. Phys. Rev. Lett. 2018, 120, 267801.

[CrossRef]
44. Zhou, Y.; Hsiao, K.-W.; Regan, K.E.; Kong, D.; McKenna, G.B.; Robertson-Anderson, R.M.; Schroeder, C.M. Effect of molecular

architecture on ring polymer dynamics in semidilute linear polymer solutions. Nat. Commun. 2019, 10, 1753. [CrossRef]
45. Zhou, Y.; Young, C.D.; Regan, K.E.; Lee, M.; Banik, S.; Kong, D.; McKenna, G.B.; Robertson-Anderson, R.M.; Sing, C.E.; Schroeder,

C.M. Dynamics and Rheology of Ring-Linear Blend Semidilute Solutions in Extensional Flow: Single Molecule Experiments. J.
Rheol. 2021, 65, 729–744. [CrossRef]

46. Pipkin, A.C. Lectures on Viscoelasticity Theory; Springer: New York, NY, USA, 1972.
47. Young, C.D.; Zhou, Y.; Schroeder, C.M.; Sing, C.E. Dynamics and rheology of ring-linear blend semidilute solutions in extensional

flow. Part I: Modeling and molecular simulations. J. Rheol. 2021, 65, 757–777. [CrossRef]
48. Patel, S.F.; Young, C.D.; Sing, C.E.; Schroeder, C.M. Nonmonotonic dependence of comb polymer relaxation on branch density in

semidilute solutions of linear polymers. Phys. Rev. Fluids 2020, 5, 121301. [CrossRef]

http://dx.doi.org/10.1103/PhysRevFluids.1.053301
http://dx.doi.org/10.1021/acs.macromol.6b01606
http://dx.doi.org/10.1103/PhysRevLett.91.038102
http://dx.doi.org/10.1021/ma00130a008
http://dx.doi.org/10.1073/pnas.1525162113
http://www.ncbi.nlm.nih.gov/pubmed/27035979
http://dx.doi.org/10.1103/PhysRevLett.120.267801
http://dx.doi.org/10.1038/s41467-019-09627-7
http://dx.doi.org/10.1122/8.0000219
http://dx.doi.org/10.1122/8.0000221
http://dx.doi.org/10.1103/PhysRevFluids.5.121301

	Introduction
	Methods
	Flow Protocol for Using Fluctuation Theorems
	Brownian Dynamics Simulations
	Single Molecule Experiments

	Results and Discussion
	Viscoelastic Hysteresis
	Determination of Free Energy from Work Distributions
	Validity of the Crooks Fluctuation Theorem

	Conclusions
	References

