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Abstract
The basic reproduction numberR0 is a fundamental concept inmathematical epidemi-
ology and infectious disease modeling. Loosely speaking, it describes the number of
people that an infectious person is expected to infect. The basic reproduction number
has profound implications for epidemic trajectories and disease control strategies. It
is well known that the basic reproduction number can be calculated as the spectral
radius of the next generation matrix, but why this is the case may not be intuitively
obvious. Here, we walk through how the discrete, next generation process connects to
the ordinary differential equation disease system of interest, linearized at the disease-
free equilibrium. Then, we use linear algebra to develop a geometric explanation of
why the spectral radius of the next generation matrix is an epidemic threshold. Finally,
we work through a series of examples that help to build familiarity with the kinds of
patterns that arise in parameter combinations produced by the next generation method.
This article is intended to help new infectious disease modelers develop intuition for
the form and interpretation of the basic reproduction number in their disease systems
of interest.

Keywords Basic reproduction number · infectious disease model · mathematical
epidemiology · next generation matrix · spectral radius

This work was supported in part by the Models of Infectious Disease Agent Study (MIDAS) program
within the National Institute of General Medical Sciences of the National Institutes of Health (grant
number U01GM110712).

B Andrew F. Brouwer
brouweaf@umich.edu

1 Department of Epidemiology, University of Michigan, 1415 Washington Heights, Ann Arbor,
MI 48109, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11538-022-01057-9&domain=pdf
http://orcid.org/0000-0002-3779-5287


96 Page 2 of 26 A. F. Brouwer

1 Introduction

The basic reproduction number for epidemic models, denoted R0, is a fundamental
concept of mathematical epidemiology. Accordingly, those learning infectious disease
modeling need to develop both a technical and intuitive understanding of R0 and be
able to both calculate and interpret it for theirmodels.Many students come to infectious
disease modeling with varying degrees of epidemiological and mathematical training.
There exist many excellent introductions and overviews of R0 (e.g., Diekmann et al.
1990;Dietz 1993;VanDenDriessche andWatmough2002;Heesterbeek2002;Roberts
2007; van denDriessche andWatmough 2008; van denDriessche 2017), and this paper
does not introduce new mathematical results. Instead, it is intended as an introduction
to help newmathematical modelers in epidemiology connect the dots between the two
disciplines.

The reader is assumed to have at least an introductory knowledge of differential
equations and linear algebra. While a knowledge of linear algebra is not, strictly
speaking, necessary to understand, develop, or simulate an epidemic model, it is both
convenient for many analyses and necessary for developing a deeper understanding of
the modeled disease systems. For students starting to explore infectious disease mod-
eling, it is important to recognize that knowing how to invert and multiply matrices as
one might in a basic linear algebra class does not necessarily translate into an under-
standing of what the quantities mean, and that having a heuristic understanding of the
epidemiological concepts is not always enough to be confident in the mathematical
techniques. In this paper, we break down the basic reproduction number and develop
an understanding of it using basic linear algebra concepts. Then, we examine a series
of simple models to understand why common patterns arise in the parameter combi-
nations representing R0 and how to interpret them. Note that this paper focuses on
ordinary differential equation (ODE) compartmental infectious disease models; other
types of models, e.g., stochastic, partial differential equation, etc., require different,
though often related, approaches to calculating and interpreting the basic reproduction
number (Allen and Lahodny 2012; Allen and van den Driessche 2013; Magal et al.
2019; Barril et al. 2021).

2 The Definition and Importance of the Basic Reproduction Number

The basic reproduction number R0 is defined as the average number of secondary
cases arising from a typical primary case in an entirely susceptible population over
their infectious lifetime (Diekmann and Heesterbeek 2000; Anderson and May 1992).
There are three key pieces to this definition. First, we are considering a single infectious
person in an otherwise susceptible population. That means that R0 is only defined at
the start of an outbreak, though it impacts the entire epidemic trajectory. Second, we
are interested in how many new cases a single case will generate, on average. Any
specific personwill be responsible for infectingmore or fewer new people, but wewant
to knowwhether we expect the disease to infect more than 1 person (and thus grow the
size of the outbreak) or fewer than 1 (and shrink the size of the outbreak) on average.
This threshold value of 1 is important because it represents exact replacement—if each
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person infected only one person, the outbreakwould neither grow nor shrink. The third
key piece of the definition is the emphasis on the infectious lifetime of the primary case.
A highly infectious disease could have a smallR0 if people recover quickly; similarly,
a disease that is not very infectious could have a highR0 if people can become chronic
shedders. Another intuitive way to think about theR0 is as the product of the “DOTS,”
that is, duration, opportunity, transmission probability, and susceptibility (Kucharski
2020). The values of R0 vary greatly by disease, ranging from close to 1 for seasonal
influenza to 5–7 for smallpox and polio to 12–18 for measles and pertussis, but are
also dependent on some attributes of the population (Fine 1993).

Mathematical modeling is often used to estimate the basic reproductive number for
a disease system; in fact, the basic reproduction number is widely considered the most
useful contribution of mathematics to epidemiology. Epidemic models are a class of
models that represent disease processes—chiefly transmission and recovery, but pos-
sibly others—in mathematical form. There are many resources available for those
interested in infectious disease modeling more broadly (e.g., Diekmann and Heester-
beek 2000; Anderson and May 1992; Hethcote 2000; Brauer et al. 2008; Vynnycky
and White 2010; Keeling and Rohani 2011; Brouwer et al. 2022).

The most basic epidemic model is the ODE, compartmental SIR model (Kermack
and McKendrick 1927), which capture the processes of transmission and recovery.
The SIR model tracks the numbers of people in a constant population (N ) who are
susceptible (S) to disease, who are infectious (I ), and who have recovered (R) over
time t . This model has two parameters, the transmission rate β, and the recovery rate
γ . The classic equations are

dS

dt
= −β(S/N )I ,

d I

dt
= β(S/N )I − γ I ,

dR

dt
= γ I .

(1)

Transmission is the more complex of the two processes, as it requires individuals to
come together and interact. The transmission rate can be thought of as a contact rate
times a per-contact probability of transmitting the infection. But, not all of an infectious
individual’s contactswill be susceptible (they could be infectious or recovered instead),
so we also account for the time-varying proportion of contacts that are susceptible,
S/N , in the rate. Recovery is a more straightforward process and is modeled as a linear
rate γ . (Note that Eq. (1) is the frequency-dependent form of the SIR equations, so
named because the dynamics are independent of the population size N ; the density-
dependent form of the equations, in which the transmission term is given by β ′SI ,
is also commonly used and is equivalent for an unchanging population size when
β ′ = β/N ).

In the SIR model, the basic reproduction number is given by the ratio of the trans-
mission rate to the recovery rate β/γ . Why is this the case? At the beginning of the
outbreak, I ≈ 1 and S ≈ N . Consider the initial infectious person. They will infect
βS/N ≈ β people per day on average. How many days are the individual infec-
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tious, on average? The formulation of the SIR model as a system of ODEs requires an
assumption that the rates are exponential, which implies that the length of the infec-
tious period is exponentially distributed (Greenhalgh and Rozins 2021) (though there
are ways to achieve more realistic distributions of the infectious period, e.g., through
distributed delays (Lloyd 2001; Krylova and Earn 2013; Hurtado and Kirosingh 2019;
Greenhalgh and Rozins 2021)). For an exponentially distributed infectious period, the
average duration is one over the rate of leaving the infectious compartment, 1/γ . If
an infectious person is infecting β new people per day over 1/γ days, then we expect
them to infect β/γ people over their infectious lifetime. In terms of the “DOTS,”
β represents the product of opportunity, transmission probability, and susceptibility,
while 1/γ represents duration.

While it was relatively straightforward to build an intuitive argument for this value
ofR0 for the SIR model, more complicated systems may not have such an immediate
way to understand R0. This is particularly true for systems with multiple infection
pathways (such as when there is an environmental compartment (Li et al. 2009; Tien
and Earn 2010)), with multiple infectious species (such as in the case of vectorborne
diseases (Nishiura, et al. 2006)), or with multiple sites of interest on a single person
(as may be the case for the human papillomavirus (Brouwer et al. 2015)). In the next
section, we will discuss the next generation matrix approach to formally calculating
the basic reproduction from mathematical models.

In epidemic models, the basic reproduction number acts as a threshold value that
controls the local stability of the disease-free equilibrium: if R0 < 1, the disease
will die off quickly, while if R0 > 1, the disease will become epidemic. (For those
who have studied dynamical systems, this means thatR0 is a bifurcation parameter).
AlthoughR0 is only defined in the context of a nascent outbreak, its value influences
the entire trajectory, including the cumulative incidence of an outbreak, i.e., the fraction
of the population that is ever infected in the outbreak (Ma and Earn 2006; Miller
2012). IfR0 is small (but still larger than 1), outbreaks are slower, flatter, and longer,
infecting fewer people overall; if R0 is large, on the other hand, outbreaks are more
explosive, peaking higher and faster, infecting more people overall, and then burning
out (Anderson and May 1981; Heesterbeek and Roberts 2015). Indeed, R0, which
characterizes the overall strength of an epidemic, is tied to the epidemic speed, r ,
which is the initial exponential growth rate of the epidemic (Dushoff and Park 1947).
For the SIRmodel (Eq. (1)), we can derive r by assuming S ≈ N for small t and solving
d I/dt = (β − γ )I so that I (t) = exp((β − γ )t) and r = β − γ = γ (R0 − 1). (Note
that the exact formula connectingR0 and r depends on the specification of the model,
so other models may have different relationships between R0 and r ). The threshold
of R0 > 1 can be framed instead as r > 0, which is convenient in some contexts,
particularly in the exponential growth phase of an epidemic or when investigating
interventions that target individuals (Diekmann et al. 2010; Dushoff and Park 1947).

The approximations that we made to think through the intuition for R0 of the
SIR model—namely I ≈ 1 and S ≈ N—will not be true over the course of the
outbreak, so R0 is really only defined around the idea of a potential outbreak. But,
we may be interested in what the expected number of secondary cases is in the midst
of a real outbreak. The effective reproduction number, R(t) = R0S(t)/N , captures
this concept. Why this form? Recall that in the intuitive derivation of R0 we said an
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infectious person infects βS/N people per day. ForR0, we assumed S ≈ N , but that
approximation is no longer valid in middle of the outbreak, and the current fraction of
susceptibles S(t)/N needs to be accounted for. When working with infectious disease
interventions, we are often trying to get R(t) < 1, so that the epidemic will die
out. For example, we may want to introduce a supplemental vaccination campaign
with the goal of moving people from the susceptible compartment to the immune
compartment, effectively shorting out potential transmission chains. In the COVID-
19 pandemic, there was a lot of discussion about “flattening the curve” (Boumans
2021). Essentially, the goal was to use social distancing to lowerR(t) to get a lower,
wider outbreak instead of a shorter, faster outbreak. While this outcome would likely
reduce the cumulative incidence somewhat, the primary goal was to keep the number
of infections at any given time low enough that they would not overwhelm healthcare
systems.

The reproduction number’s threshold property (such that an epidemic will die out
if R0 or R(t) < 1) is closely tied to the concept of herd protection (Fine 1993). We
don’t need everyone in the population to be immune to effectively interrupt infec-
tion; we just need enough people to be immune that a single person will infect fewer
than one susceptible person on average. Because not everyone can be immunized for
logistical or medical reasons, we often rely on herd protection to keep these unvacci-
nated people safe. The fraction of the population that need to be vaccinated to achieve
herd protection, denoted H , differs from disease to disease based on the reproduction
number,

H = 1 − 1

R0
. (2)

Remember that R0 is defined for a fully susceptible population, where S(0)/N ≈ 1.
Here, we use the effective reproduction number at the start of the epidemic, accounting
for the vaccinated fraction with S(0)/N = 1 − H , so that R(0) = R0(S(0)/N ) =
R0(1− H). Solving this equation whenR(0) = 1 results in the above expression for
H . Given this relationship, we will only need relatively little vaccination coverage to
control somediseases (around50%for some strains of seasonal influenza) butwill need
to vaccinate almost everyone for very infectious disease, like measles (which requires
upwards of 95%coverage). Vaccine hesitancy is a big concern tomany people in public
health, because diseases that were once virtually eradicated can regain a foothold
when coverage dips too low, even locally. Population assortativity, which describes
the situation where people are more likely to contact others with similar demographic
characteristics (e.g., age, race, religious affiliation), can result in lower-than-expected
levels of herd protection because the well-mixed assumptions that underlie the above
equations are violated (Peeples 2019).

This concept of the basic reproduction number as a measure of infection control
can be generalized into two related quantities, the type and target reproduction num-
bers (Roberts andHeesterbeek 2003; Shuai et al. 2013). Instead of askingwhat fraction
of the at-risk population as a whole needs to be protected (e.g., through vaccination)
to eliminate the disease, we can ask about targeting specific subgroups by calcu-
lating type reproduction numbers (e.g., targeting only young women for the human
papillomavirus vaccine) or certain transmission pathways by calculating target repro-
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duction numbers (e.g., the use of bed nets for reducing transmission to humans through
mosquito feeding).

In practice, R0 can be calculated from data in a number of ways. For example,
it can be estimated from the initial growth rate r of an epidemic, the cumulative
incidence of infection after an epidemic, or age-specific prevalence of an endemic
disease (Dietz 1993). Data-driven approaches for estimating R(t) are particularly
attractive when transmission varies over time (Gostic et al. 2020). Alternatively, R0
can be calculated as a function of an infectious diseasemodel’s parameters, as explored
in the next sections. In this case,R0 can be calculated from known or assumed values
of parameters in addition to values determined through parameter estimation (curve
fitting). Indeed, there is a rich literature on parameter identifiability, that is, knowing
whether parameters can be determined uniquely from available data, such as epidemic
curves (Tuncer and Le 2018; Eisenberg et al. 2013; Kao and Eisenberg 2018; Dankwa
et al. 2022; Massonis et al. 2021; Brouwer et al. 2018). Once we have these values,
how do we develop a formula for R0 as a function of these parameters?

3 The Next GenerationMethod

Severalmethods exist for calculating theR0 of an infectious disease epidemicmodel as
a function of its parameters (Heffernan et al. 2005). In addition to helping to estimate
the value of R0, knowing how R0 is a function of the model parameters aids in
understanding the disease system and can help to determine disease control strategies.
One of the most rigorous and commonly used approaches to calculateR0 as function
of the model parameters is the next generation method. This method was developed
by Diekmann, Heesterbeek, and colleagues (Diekmann et al. 1990; Diekmann and
Heesterbeek 2000; Diekmann et al. 2010) and further explored by van den Driessche
and Watmough (Van Den Driessche and Watmough 2002), among others, and we
refer the reader to these references for the more technical details. The first step in this
method is to distinguish between states in themodel that represent infected individuals
and those that do not, as well as between terms in the equations that represent new
infections and those that do not. In the SIR model (Eq. (1)), only state I is infected,
and the term β(S/N )I represents new infections while the term γ I , which represents
recoveries, does not. For a system of ordinary differential equations representing an
infectious disease model, denote the vector of infected states by x and the vector of
uninfected states by y. Denote a point in the state space, that is, a partition of the
population N into each compartment, by (x, y). Then, the disease-free equilibrium is
the point in state space where all individuals are susceptible, denoted (0, y0). For the
SIR model, x = I , y = (S, R), and y0 = (N , 0). For each infected compartment i ,
let Fi (x, y) be the rate at which previously uninfected people enter compartment i .
Let Vi (x, y) be the rate of transfer of individuals out of compartment i minus the rate
of transfer into compartment i . Then

dxi
dt

= Fi (x, y) − Vi (x, y). (3)
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Let F and V be the Jacobian matrix (the matrix of partial derivatives) ofF and V ,
respectively, evaluated at the disease-free equilibrium (DFE), i.e., the matrices whose
entries are

Fi j = ∂Fi

∂x j
(0, y0), Vi j = ∂Vi

∂x j
(0, y0). (4)

The matrices F and V can be used to succinctly write the equations for the infected
compartments in the ODE linearized at the disease-free equilibrium,

dx

dt
= (F − V )x (5)

Linearization—that is defining a new, linear ODE from the linear terms of the Taylor
expansion of a nonlinear ODE, typically around an equilibrium point—is often used
to determine the stability an equilibrium point of a nonlinear ODE. If a nonlinear ODE
is linearized around an equilibrium point, the stability of that equilibrium point in the
linearized ODE, which is straightforward to calculate, is the same as the stability of
that equilibrium point in the original, nonlinear ODE. We will revisit this linearized
system in Sect. 4. The SIR model has a single infected compartment, and F = β

and V = γ . We previously saw the linearized SIR model, d I/dt = (β − γ )I , when
calculating the epidemic speed in the previous section. Additional examples will be
explored in Sect. 5.

Thematrix K = FV−1 is called the next generationmatrix.Why this form, and how
does one interpret the entries of this matrix? In the case that V represents individuals
changing states (we will complicate and generalize this situation in some later exam-
ples), the authors van den Driessche and Watmough give us a succinct answer (Van
Den Driessche and Watmough 2002):

To interpret the entries of FV−1 and develop a meaningful definition of R0,
consider the fate of an infected individual introduced into compartment k of a
disease-free population. The ( j, k) entry of V−1 is the average length of time
this individual spends in compartment j during its lifetime, assuming that the
population remains near the DFE and barring reinfection. The (i, j) entry of F is
the rate at which infected individuals in compartment j produce new infections
in compartment i . Hence, the (i, k) entry of the product FV−1 is the expected
number of new infections in compartment i produced by the infected individual
originally introduced into compartment k.

The basic reproduction number is defined to be the spectral radius—that is, the
magnitude of the largest eigenvalue—of the matrix K = FV−1, denoted ρ(K ). The
eigenvalues λ of K can be found by solving the characteristic equation det(λI −K ) =
0, where I is the identity matrix the same size as K . An important feature of K is that
all entries are nonnegative; this implies (through extensions of the Perron–Frobenius
Theorem (Meyer 2000)) that K ’s largest eigenvalue is nonnegative (and thus equal
to ρ(K )) and is associated with a nonnegative eigenvector ν. These properties are
important, as we will need ρ(K ) and ν to have realistic interpretations in terms of
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populations dynamics. If K is irreducible, that is, if every type of infection can cause
an infection of every other type (possibly via an intermediate infection type), then
there are no nonnegative eigenvectors other than ν. (If K is reducible, then there may
be degenerate initial conditions).

The next generation theorem tells us that our continuous ODE system is stable
(no outbreak) if and only if ρ(K ) < 1 and is unstable (outbreak) if and only if
ρ(K ) > 1 (Diekmann et al. 1990; Diekmann and Heesterbeek 2000; Diekmann et al.
2010; Van Den Driessche and Watmough 2002). Why does the spectral radius of the
next generation matrix control the behavior of the infectious disease system? The
answer may not be immediately intuitive.

4 The Basic Reproduction Number as a Spectral Radius

4.1 The Next GenerationMatrix as a Linear Transformation

Let z0 = (z0,1, . . . , z0,m) be a vector denoting M individuals across m infected com-
partments at the start of an epidemic, i.e., z0 are the patient zeros of the outbreak. Then,
we can apply the next generation matrix as a linear transformation K : Rm,+ → R

m,+
on this vector z0 of infected individuals bymatrixmultiplication (taking z0 as a column
vector). The result, z1 = Kz0 is the vector of individuals in each of the m infected
compartments in the next generation, i.e., all of the individuals that were infected by
the individuals in z0. Consider the following next generation matrix A for a disease
system with two infectious compartments, say adults and children, respectively,

A =
[
1.58 0.84
0.14 1.72

]
. (6)

One average, one adult will infect 1.58 adults and 0.14 children, and one child will
infect 0.84 adults and 1.72 children. If we start with one individual of each type,
z0 = (1, 1), then we expect the next generation to be z1 = Az0 = (2.42, 1.86). Two
individuals (one of each type) initially infected are expected to infect 4.28 people. Sub-
sequent generation sizes and distributions can be calculated with further applications
of A, i.e., the nth generation is zn = Anz0.

While it makes intuitive sense that we should expect an outbreak when the next
generation of infected individuals is larger than the previous generation, it may be
less obvious how this discrete process corresponds to our original continuous ODE
model. To understand the connection, it is important to first remember that our goal is
not to find an alternate, discrete approach to simulating the disease system. Instead,
our goal is to determine the threshold that controls the stability of the ODE system
near the disease-free equilibrium, that is, find the threshold that determines whether
or not there will be an outbreak. To that end, let’s consider the linearized ODE disease
system near the disease free-equilibrium. As we saw in Sect. 3, this linearized system
can be written as

d

dt
x(t) = (F − V )x(t), (7)
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where x(t) is the vector of the number of people in each infected compartment over
time.

Now, let’s distinguish between each generation in our ODE model, beginning with
the initial generation x0(t) starting on the initial condition of the system, x0(0). (Note:
x0 cannot begin exactly on the disease-free equilibrium or there would be no disease
in the system, but we are considering a value x0(0) near the disease-free equilibrium).
Let xn(t) be the vector of infectious individuals in each infected class at time t who
were part of the nth generation. Then, x(t), the vector of the number of individuals
in each of the infected compartments over time, regardless of generation, is the sum
over all of the generations, x(t) = ∑∞

n=0 xn(t). The following infinite-dimensional
ODE system describes how the number of people in each infected compartment in
each generation change over time (Hurford et al. 2010).

dx0
dt

= −V x0,

dx1
dt

= Fx0 − V x1,

dx2
dt

= Fx1 − V x2,

...

dxn
dt

= Fxn−1 − V xn,

...

(8)

The vector zn (as in the discrete system above) is the total number of new infections
of each type in generation n, irrespective of when they were infected. It is calculated
as the cumulative number of people in the nth generation entering each infected class,
namely zn = ∫ ∞

0 Fxn−1(t) dt . (Define z0 = x0(0)). A recursive relationship can
be derived for zn from the infinite dimensional ODE system above (Hurford et al.
2010), namely zn = FV−1zn−1. Hence, the discrete process of applying the next
generation matrix exactly describes how the size of each generation changes in our
linearized ODE model. In fact, the next generation theorem tells us that the stability
of the discrete process of applying the next generation method is the same as that of
the linearized ODE (and thus the original ODE) (Van Den Driessche and Watmough
2002; Hurford et al. 2010).

It is important to emphasize that this discussion is in the context of the linearized
ODE system near the disease-free equilibrium. Because nonlinear ODE epidemic
models quickly leave this regime, we should not expect the behavior of those trajecto-
ries to match these iterations of the next generation matrix. Hence, applying the next
generationmatrix K is not a substitute for the ODE system; instead the next generation
matrix should be seen as an interpretable object that tells us whether we expect an
outbreak for a given disease system.

Although we now understand how using the next generation matrix as a linear
process relates to the dynamics of our disease system, we still need to answer the
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question of why the spectral radius of K is the key threshold for the stability of these
epidemic models.

4.2 The Geometry of the Next GenerationMatrix

Recall from Sect. 3 that the spectral radius of K is the magnitude of the largest
eigenvalue of K . To understand why the spectral radius is important, let us consider
a geometric interpretation of an eigenvalue λ and corresponding eigenvector ν of the
next generation matrix K . Recall that an eigenvalue λ and eigenvector ν are a scalar
and vector, respectively, such that

Kν = λν. (9)

So, ν represents a special distribution of infected individuals such that new generations
will maintain the same relative distribution among the infected classes. For the next
generation matrix A defined in Eq. (6), ν = (2, 1) is an eigenvector because Aν = 2ν.
Starting with 2 infected adults and 1 infected child will result in 4 infected adults and 2
infected children. The proportion of individuals in each infected compartment stayed
the same in the next generation, but the overall size doubled.

Why are these eigenvalues and eigenvectors important? Let’s take a step back and
consider the space of all possible initial generations z0 = (z0,1, . . . , z0,m) with a
fixed total population M , that is, all distributions of M individuals into each of the m
infected compartments. What we are describing here is a circle (or, more generally, an
m-sphere) with radius M , i.e., the set of all vectors z0 ∈ R

m,+ with norm M . Although
most of us are most familiar with the L 2 (Euclidean) norm that governs distance in

the usual sense, with ||z0||2 =
√∑

i z
2
0,i , theL

1 norm (sometimes called the taxicab

or absolute value norm), with ||z0||1 = ∑
i |z0,i |, is more natural for considering a

partition of a fixed population into different compartments. For example, it makes
more biological sense to say that a vector (3, 4) denoting 3 latently infected and 4
infectious people has size 3 + 4 = 7 (L 1) rather than

√
32 + 42 = 5 (L 2). What

works well for distance does not necessarily make sense for populations. Interestingly,
our “circle" of radius M has a diamond shape in L 1 norm. To see this, consider the
set of vectors in R

2,+ with norm M . In the L 2 norm, this looks like the arc of a

circle, with z0,2 =
√
M2 − z20,1, but in the L 1 norm, we have the linear relationship

z0,2 = M − z0,1.
Now, we have the set of all possible initial generation vectors z0 denoting M indi-

viduals partitioned into m infected compartments, Z0 = {z0 ∈ R
m,+ : |z0| = M}.

(We will use absolute value notation to denote theL 1 norm, || · ||1 = | · |). Applying a
next generation matrix K by matrix multiplication to a vector z0 ∈ Z0 results in a new
vector z1 = Kz0, where z1 represents the number of new infections of each type in the
next generation. If we apply K to every vector in Z0, i.e., every initial generation, we
trace out a new shape in R

m,+(Fig. 1a). Although the size (norm) of every vector z0
wasM , the size of each z1 can be different. For example, for our next generationmatrix
A given in Eq. (6), the size of the next generation is |(1.58, 0.14)| = 1.72 for initial

123



Why the Spectral Radius? Page 11 of 26 96

generation (1, 0) and is |(0.84, 1.72)| = 2.56 for initial generation (0, 1). We say that
K stretches z0, and the magnitude of this stretch is given by |Kz0|/|z0|. This stretch
depends only on the relative sizes of the infected classes in z0, e.g., matrix A stretches
initial generations (1, 1) and (2, 2) by the same amount, 4.28/2 = 8.48/4 = 2.14.
The largest possible stretch by K is called the operator norm of K and is denoted
|K | = max|z0|=1 |Kz0|, which we will use below. Here, we see that each generation
produces a next generation of a different size depending on the distribution of individ-
uals among the infected compartments. But, then, how do I know what the expected
generation size is? And what does this have to do with the spectral radius?

To answer these questions, let’s first think aboutwhat happenswhenweapplymatrix
K to the set of initial generation vectors n times. This process calculates the size of
the nth generation of infected people and the distribution of the individuals among the
m infected classes. The original shape becomes more exaggerated as the size of the
subsequent generations increases. Iterations of this process tell us about the long-term
behavior of the system linearized at the disease-free equilibrium for each possible
initial condition (Fig. 1b). However, we are interested not in the long-term values, per
se, but in the expected number of new infections per generation, averaged over these
multiple generations. Because ρ(K ) is the largest positive eigenvalue of K , the relative
distribution of individuals across the m classes gets closer and closer to that of the
eigenvector ν that corresponds to ρ(K ) as we calculate successive generations, i.e.,
iterations of the next generation matrix K . The influence of the other eigenvalues dies
out quickly, so whatever the distribution of infection types is initially, the distribution
of new infections converges to that of this eigenvector ν.

How many new infections are in a new generation when we are near this stable
distribution represented by ν? That is our key quantity. To calculate this, we can scale
our transformations so that magnitude of the stretch of the initial generation z0 is the
geometric mean stretch, that is n

√|Knz0|/|z0| as n increases. For example, recall next
generation matrix A in Eq. (6), and consider z0 = (1, 1), Az0 = (2.42, 1.86), and
A2z0 = (5.39, 3.54). The stretch from the initial to the first generation was 2.14, and
the stretch from the first to second generation was 2.09. The geometric mean stretch
across these first two generations was

√|(5.39, 3.54)|/|(1, 1)| = 2.11. As we do this
geometric scaling, the magnitude of stretch converges to ρ(K ) (Fig. 1c), per Gelfand’s
Formula (Kozyakin 2009), using the operator norm notation defined above,

ρ(K ) = lim
n→∞

n
√|Kn|. (10)

Hence the spectral radius gives the asymptotic average (i.e., asymptotic geometric
mean) next generation size. In other words, for almost every initial generation, the
average next generation has distribution ν and magnitude ρ(K ). We can intuitively
think of this geometric interpretation of K as telling us that the first couple of gen-
erations of a new epidemic will quickly converge to a specific pattern, with the size
of each generation increasing (or decreasing) by a factor of ρ(K ) and the distribution
among infected compartments given by ν. Now, we can at last understand why the
spectral radius of K gives the expected size of an average next generation and why
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this basic reproduction number determines the stability of our ODE disease system
near the disease-free equilibrium.

4.3 Visualization with Example Next GenerationMatrices

Let’s visualize the geometric interpretation of the next generation matrix in a few
concrete examples. First, let’s revisit the next generation matrix A given in Eq. (6).
Because A, is a nonnegativematrix, A has a largest real eigenvalue equal to the spectral
radius and a corresponding nonnegative eigenvector. Matrix A has eigenvalues 2 and
1.3 and corresponding eigenvectors (2, 1) and (3,−1). As we apply A to subsequent
generations of infected individuals, these generations will converge toward a stable
distribution of adults and children infected in each next generation. By normalizing
the eigenvector corresponding to the largest eigenvalue, we can see that the distribu-
tion of new infections converges to 2/3 adults and 1/3 children. Regardless of initial
distribution, the system moves to a stable distribution of new infections of both types,
with an average of 2 new infections per infected individual overall.

In Fig. 1a, we plot the transformation {Az0 : |z0| = 1} with the dominant eigen-
vector of A. Note that although we show the transformation on the full unit circle,
we are primarily interested in the behavior in the first quadrant, R2,+ for biological
realism. In Fig. 1b, we plot the set of transformations {Anz0 : |z0| = 1}. The suc-
cessive transformations become more exaggerated and rotate slightly. In Fig. 1c, we

plot the set of points
{

Anz0|Anz0| · n
√|Anz0| : |z0| = 1

}
. The norm of these transforma-

tions is n
√|An|, and we see that the direction and magnitude of the largest stretch

of this increasingly long-term average behavior, converges toward the eigenvector ν

and dominant eigenvalue ρ(A) of the original transformation. Indeed, if we were to
plot a uniform distribution of points on the original unit circle, the density of those
transformed points in Fig. 1c would not be uniform but rather would be densest near
the eigenvector. Whatever the initial conditions, the (linearized) outbreak dynamics
converge to a particular magnitude and distribution. In this example, since ρ(A) > 1,
there will be an outbreak.

We repeat this exercise with two more matrices:

B =
[
1.30 1.20
0.15 1.00

]
, (11)

C =
[
0.70 0.40
0 0.80

]
. (12)

Matrix B has eigenvalues 1.6 and 0.7, and we expect an outbreak. Matrix C , has
eigenvalues 0.8 and 0.7, so, despite the fact that infections of type 2 produce an average
of 0.4+0.8 = 1.2 > 1 infections in the next generation, we do not expect an outbreak.
Note that C is not irreducible because infections of type 1 cannot make infections of
type 2, which is why C can have two nonnegative eigenvectors. But, one of these
eigenvectors corresponds to a degenerate initial condition (all type 1). All other initial
conditions converge to the eigenvector associated with ρ(C). Fig. 1d–i is analogous
to Fig. 1a–c for matrices B and C .
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Fig. 1 a {Az0 : z0 ∈ R
2, |z0| = 1}. The solid black line segment denotes the eigenvector of the dominant

eigenvalue of A, while the dotted black line segment is the largest generation of {Az0}, corresponding to
|A|. b {Anz0 : z0 ∈ R

2, |z0| = 1}. Each set of colored lines red, orange, etc., corresponds to n = 1, 2, . . . .

c) { Anz0|Anz0| · n√|Anz0| : |z0| = 1}. This set is the vectors in (b) scaled to the geometric mean norm over
the n iterates of A. The solid black line segment denotes the eigenvector of the dominant eigenvalue of A.
The colored lines correspond to values of a, as in (b). Plots (d), e, and f and (g–i) are analogous to (a–c)
for matrices B and C . In each subfigure, the first quadrant is emphasized because it corresponds to realistic
interpretations of population dynamics. (Colour figure online)

5 Symbolic Interpretation of the Basic Reproduction Number

One challenge in working with basic reproduction numbers calculated from the next
generation method—particularly when using symbolic calculators—is interpreting
and developing intuition for the form of R0 as a function of the model parameters.
Accordingly, it is often easier to develop intuition for your model’s basic reproduction
number if you calculate the next generation matrix by hand, grouping interpretable
terms together. It is also often advisable to calculate R0 for one or more simplified
models to get a better sense of how different parts of the model contribute to the form
R0 for more complex models.
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(a) (b)

(c) (d)

Fig. 2 Compartmental Model Diagrams

Here, we explore the calculation and interpretation of R0 in four classic models
(adapted in part from (Van Den Driessche and Watmough 2002; Li et al. 2009)): a
model with latency and vital dynamics (Fig. 2a), a model with indirect transmission
through the environment (Fig. 2b), a model of vectorborne disease (Fig. 2c), and a
treatment-compliancemodel (Fig. 2d). These examples highlight a number of common
forms that arise in R0 and which may help you develop intuition for interpreting the
form of the basic reproduction number in your own models.

5.1 AModel with Latency andVital Dynamics

One simple extension of the SIR model is the SLIR model, in which we add a com-
partment L , which tracks the number of people with latent infections, who are not yet
infectious (L is sometimes called the “exposed” compartment). A second extension is
to include vital dynamics, i.e., birth and death, here represented by the parameter μ.

dS

dt
= μN − βSI/N − μS,

dL

dt
= βSI/N − σ L − μL,

d I

dt
= σ L − γ I − μI ,

dR

dt
= γ I − μR.

(13)

Our parameters have the following interpretations:μ is the birth/death rate, β is the
transmission rate, 1/σ is average time in the latent compartment, and 1/γ is the average
time spent in the infectious compartment. Then there are two infected compartments,
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L and I . We write

F =
[
βSI/N

0

]
, (14)

V =
[

(σ + μ)L
(γ + μ)I − σ L

]
. (15)

Following Eq. (4), we calculate the matrix of partial derivatives of F and V with
respect to L and I and evaluate them at the disease-free equilibrium, where S = N
and L = I = R = 0.

F =
[

∂
∂L (βSI/N ) ∂

∂ I (βSI/N )
∂

∂L 0
∂
∂ I 0

]
S=N ,L=I=R=0

=
[
0 β

0 0

]
, (16)

V =
[

∂
∂L ((σ + μ)L) ∂

∂ I ((σ + μ)L)
∂

∂L ((γ + μ)I − σ L) ∂
∂ I ((γ + μ)I − σ L)

]
S=N ,L=I=R=0

=
[
σ + μ 0
−σ γ + μ

]
. (17)

Note that the i th component of the diagonal of V is rate of leaving compartment i
(the sum of exponential rates gives the rate of the first event, whichever that ends up
being). The other elements in the corresponding column are the rates of movement to
the other infected compartments. The sum of a column gives the rate of becoming not
infected (whether through recovery or death). Then,

V−1 =
[

1
σ+μ

0
σ

(σ+μ)(γ+μ)
1

γ+μ

]
, (18)

and

FV−1 =
[

βσ
(σ+μ)(γ+μ)

β
γ+μ

0 0

]
. (19)

Why is the second row of the next generation matrix all zeros? Well, this row cor-
responds to the number of new people in compartment I given a person in either L
or I near the disease-free equilibrium. Any new infections produce latent people, not
infectious people directly.

The next generation matrix has two eigenvalues, 0 and

R0 = ρ(FV−1) =
(

σ

σ + μ

) (
β

γ + μ

)
. (20)

We see that the basic reproduction number of the SLIRmodel is the basic reproduction
number of the SIR model (when including vital dynamics)—β/(γ + μ)—times the
fraction of exposed individuals who go on to become infectious—σ/(σ +μ). We also
see that as σ → ∞, that is, as transition out of the exposed compartment becomes
instantaneous, the basic reproduction number converges to that of the SIR model,
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as we would expect. The basic reproduction number of this model accounts for a
reduction in transmission in the system when a latent person dies before they can
become infectious.

5.2 AModel with Indirect, Environmental Transmission

When modeling many diseases, we often consider direct, person-to-person trans-
mission, captured by the familiar β term. However, with the exception of sexually
transmitted infections, pathogen transmission is actually mediated by the environment
and may be affected by environmental processes. For many diseases, the environmen-
tal dynamics are fast enough that the direct transmission approximation works well.
However, when pathogens are persistent in the environment, the direct transmission
approximation may no longer be valid, and we may want to explicitly model the con-
centration of pathogens in the environment. The basic reproduction number of this
class of models will have a very different form from what we’ve seen for models with
direct transmission.

Consider an infectious disease system with the familiar S, I , and R compartments.
We additionally track the concentration of pathogens in the water system W . In this
model, people become infectious not through contact with one another but by drinking
the water. People drink ρ volume of water κ times a day and each pathogen has a
probability π of causing infection (see (Brouwer et al. 2017) for a discussion of more
advanced dose–response functions). Some models parameterize βW = κρπ , although
this βW is subtly different from the β of the SIR model: while the β of the SIR model
is often parameterized from the perspective of the infectious person (i.e., how fast
are infectious people transmitting to susceptible people), βW is from the perspective
of the susceptible person (i.e., how fast are susceptible people getting infected from
the water). Finally, infectious people shed pathogens into the water at rate α, and
pathogens die-off in the environment at rate ξ . This model is a simple example of an
SIWR-type model (Li et al. 2009; Tien and Earn 2010).

dS

dt
= −κρπWS,

d I

dt
= κρπWS − γ I ,

dW

dt
= α I − ξW ,

dR

dt
= γ I .

(21)

There are again two infected compartments—although the environment is not a
class of infected individuals, it is “infected” by infected individuals and can infect
susceptible individuals. However, since we want to calculate the basic reproduction
number from the perspective of new people getting infected, we do not treat pathogens
shedding into the water (α I ) as creating new infections.
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We write

F =
[
κρπWS

0

]
, (22)

V =
[

γ I
ξW − α I

]
, (23)

and, as before, we calculate F and V at the matrix of partial derivatives evaluated at
the disease-free equilibrium, where S = N and I = W = R = 0.

F =
[
0 κρπN
0 0

]
, (24)

V =
[

γ 0
−α ξ

]
. (25)

Then

V−1 =
[

1
γ

0
α
γ ξ

1
ξ

]
. (26)

It isworth discussing the lower left entry ofV−1 specifically. In our original discussion,
we defined this entry as the average length of time that an individual in I would spend in
W . However, because α does not exactly represent compartment transfer, the original
interpretation that van den Driessche & Watmough gave us in Sect. 2 does not quite
make sense here. We have to complicate and generalize the interpretation. This entry
indicates that an individual in I is responsible for an average α/γ pathogens living
for an average 1/ξ time.

In this example, the calculation of K = FV−1 and ρ(K ) is straightforward:

R0 = ακρπN

γ ξ
. (27)

How do we interpret this parameter combination? First, an infectious person will
shed α pathogens per unit volume into the environment per day, and thus an average of
α/γ pathogens over their infectious lifetime. Each pathogen can infect new people for
1/ξ days (here, we neglect pathogen loss from the environment due to ingestion for
simplicity, but somemodels track it explicitly (Li et al. 2009)). If κρN is the volume of
the environment ingested per day (by the initially susceptible population) and π is the
per pathogen probability of infection, then κρπN is the per-pathogen number of new
infections per day. Putting this all together, we arrive at the average number of people
that a single infectious person will infect over their infectious lifetime. This example
highlights that the basic reproduction number can be calculated and interpreted for
modelswith indirect transmission but thatwemay have tomove beyond the conception
of R0 as the number of people that someone directly infects on average.
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5.3 AModel with Vector Transmission

Another class of models that do not use direct transmission is vectorborne disease
models. One important classes of vectorborne diseases are arboviruses, which include
dengue, chikungunya, yellow fever, and many others. Malaria is caused by a parasite
spread by mosquitoes, and Lyme disease is caused by a bacteria spread by ticks. In
vectorborne disease models, we have two or more classes of hosts that can each be
susceptible, infectious, or recovered (although modeling recovered vectors is often
not needed). Each class of host only transmits the disease to the other class and not
directly to other members of their own class (e.g., mosquitoes infect humans but not
other mosquitoes).

Here, we use a very simple model with two classes of individuals (1 and 2), each
of which can be S, I, or R. Infectious members of each class transmit only to the other
class with rates β12 and β21. Note that we have chosen to parameterize these rates
from the point of view of the infectious individual, not the susceptible individual; this
distinction means that we scale our rates by the population of the class that is being
transmitted to, not the population that is transmitting. (Other choices are possible—for
vectorborne models, it is common to specify the parameters so that you are dividing
by the number of humans in both cases. Regardless of how you want to parameterize,
it is important to be sure that the values used for the β12 and β21 parameters match
their interpretation). Our equations are

dS1
dt

= −β21S1 I2/N1,

d I1
dt

= β21S1 I2/N1 − γ1 I1,

dR1

dt
= γ I1,

dS2
dt

= −β12S2 I1/N2,

d I2
dt

= β12S2 I1/N2 − γ2 I2,
dR2

dt
= γ I2. (28)

At this point, we face an important decision: do new infections in each class of
individuals count as new infections? The answer depends on your interpretation of the
model. If class 1 represents humans and class 2 represents mosquitoes, we probably
only care about new infections in humans. Consider instead a model representing a
sexually transmitted infection in a fully heterosexual population of men and women.
(Note that this is not a realistic representation of real populations, given the spectra
of sexuality and gender, the violation of the well-mixed contact assumption by the
assortativity of sexual partners by age and other characteristics, and the violation of
the assumption of homogeneity of contact rates—but it is nonetheless helpful to build
intuition starting from the most simplified models). In this model, we would count
new infections in both classes.
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To start with, let’s continue with the vectorborne example, and write

F =
[
β21S1 I2/N1

0

]
, (29)

V =
[

γ1 I1
γ2 I2 − β12S2 I1/N2

]
. (30)

and evaluate the matrices of partial derivatives at the disease-free equilibrium, where
S1 = N1, S2 = N2, and all other compartments are 0,

F =
[
0 β21
0 0

]
, (31)

V =
[

γ1 0
−β12 γ2

]
. (32)

Then

K =
[
0 β21
0 0

] [
1
γ1

0
β12
γ1γ2

1
γ2

]
, (33)

=
[

β21β12
γ1γ2

β21
γ2

0 0

]
. (34)

Note, again, that the lower left entry of V−1 requires the generalized interpretation
we discussed in the previous example. From K , we can see

R0 = β21β12

γ1γ2
. (35)

The basic reproduction number in this interpretation is the number of human infections
an average human infectious person makes over their infectious lifetime. We see that
it is the average number of mosquito infections a human makes times the average
number of human infections a mosquito makes.

But what if we care about new infections in both classes? We have to rewrite

F =
[
β21S1 I2/N1
β12S2 I1/N2

]
, (36)

V =
[
γ1 I1
γ2 I2

]
, (37)

so that
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K =
[
0 β21

β12 0

] [
1
γ1

0

0 1
γ2

]
, (38)

=
[

0 β21
γ2

β12
γ1

0

]
. (39)

The next generation matrix looks very different when using this interpretation. A
little linear algebra calculation shows that

R0 =
√

β21β12

γ1γ2
. (40)

Now, instead of the product of the average number of infections generated in the
other class, we get the geometric mean. In the previous interpretation, transmission
had to complete a 2-cycle (back and forth) to be considered to be infecting a new
individual; in this interpretation, both directions are considered to be infecting a new
individual, so we are taking an average over each transmission direction. Different
definitions of “new infections” result in different reproduction numbers (Cushing and
Diekmann 2016). More broadly, the square root is a common feature of models with
two subpopulations (O’Regan et al. 2015; Fenton et al. 2015; Roberts and Heesterbeek
2018; Brouwer et al. 2015) because it arises from the solution to the quadratic char-
acteristic polynomial of K . Indeed, the reader might like to explore how the formula
for R0 changes in the above model if we included both within- and between-group
transmission.

Despite having different interpretations, both of theR0s we derived for this model
have the mathematical property of controlling the stability of the disease-free equilib-
rium. IfR0 in the first interpretation is greater than 1, then so too willR0 in the second
interpretation. These models highlight how the basic reproduction number is both an
important mathematical threshold and an epidemiological quantity that depends on
our interpretation of the disease system.

Because there is not always a single valid interpretation, it is worth asking how we
knowwhether a choice to include a term inF vs. in V is valid. A greater discussion of
the assumptions underlying the next generation theorem is given in VanDenDriessche
and Watmough (2002), but a decomposition is mathematically valid as long as the
entries of F and V−1 are all nonnegative and the eigenvalues of the matrix −V have
negative real parts (Hurford et al. 2010).

5.4 A Treatment-Compliance Model

In this final example, we address a common challenge that arises in interpretingR0 in
models with bidirectional movement between two infected compartments (i.e., indi-
viduals can go back and forth between compartments). This kind of model structure
can arise, for example, if there are multiple disease stages through which one can
progress and regress, e.g., asymptomatic and symptomatic stages of herpes simplex
virus. This structure can also occur if infected people can switch between compart-
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ments as their characteristics change. A classic example of this kind of model is
long-term disease treatment with lapses in treatment compliance, e.g., for HIV or
tuberculosis treatment (Van Den Driessche and Watmough 2002).

For the purposes of illustration, we use a very simple model with two classes
of infected people with bidirectional movement. Here, I represents untreated infected
individuals, and T represents treated infected individuals.We can think of this as a sim-
plified model of treatment compliance. Here, treatment might reduce infectiousness
and reduce themortality rate. Parameters β and βT are contact rates times transmission
probabilities for people not on treatment and on treatment, respectively, ϕ is the rate of
going on treatment, θ is the rate of treatment lapse, and ν and νT are the disease-related
death rates for people not on treatment and on treatment, respectively.

dS

dt
= −S(β I + βT T )/N

d I

dt
= S(β I + βT T )/N − ϕ I + θT − ν I

dT

dt
= ϕ I − θT − νT T

(41)

We have

F =
[
S(β I + βT T )/N

0

]
, (42)

V =
[

(ν + ϕ)I − θT
(νT + θ)T − ϕ I

]
, (43)

and evaluate the matrices of partial derivatives at the disease-free equilibrium, where
S = N and I = T = 0,

F =
[
β βT

0 0

]
, (44)

V =
[
ν + ϕ −θ

−ϕ νT + θ

]
. (45)

Then,

V−1 =
[

νT +θ
(ν+ϕ)(νT +θ)−ϕθ

θ
(ν+ϕ)(νT +θ)−ϕθ

ϕ
(ν+ϕ)(νT +θ)−ϕθ

ν+ϕ
(ν+ϕ)(νT +θ)−ϕθ

]
. (46)

Here, V−1 is much harder to interpret than in the previous examples. The determi-
nant of V , namely (ν1 + ϕ)(ν2 + θ) − ϕθ , is more complicated and does not simplify
with the other terms. Indeed, how are we to interpret this parameter combination?

Consider an individual with an untreated infection. They can either die with prob-
ability ν

ν+ϕ
or they can start treatment with probability ϕ

ν+ϕ
. (Incidentally, thinking

in these terms—identifying jumping probabilities—is the first step to transitioning
to a stochastic framework). Similarly, a person on treatment can die with probability
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νT
νT +θ

or they can stop taking their treatment with probability θ
νT +θ

. The probability of
starting in one compartment, jumping to the other, and then jumping back is

p := ϕθ

(ν + ϕ)(νT + θ)
. (47)

The probability of jumping back and forth twice is p2, and so on. Given that one starts
out not on treatment, what is the expected number of times that one will not be on
treatment? Let us count the times (Van Den Driessche and Watmough 2002). We start
with one visit since one starts in that compartment. Then, we must add one for each
additional visit, times the probability that the visit occurs. So, the expected number of
visits is

1 + p + p2 + p3 + · · · = 1

1 − p
. (48)

We can arrive at this number using some basic probability theory as well. Let X , a
random number, be the number of visits to compartment I , and let Z be the event of
a return visit to compartment I . Using the law of total expectation

E[X ] = 1 + P(Z)E[X |Z ] + (1 − P(Z))E[X |Z̄ ]
= 1 + pE[X ] + 0

(49)

Solving for E[X ], we get
E[X ] = 1

1 − p
. (50)

In terms of our model, this expected number of visits is

1

1 − ϕθ
(ν+ϕ)(νT +θ)

= (ν + ϕ)(νT + θ)

(ν + ϕ)(νT + θ) − ϕθ
(51)

How much time does one spend in the untreated compartment? Well, we expect
there to be (ν+ϕ)(νT +θ)

(ν+ϕ)(νT +θ)−ϕθ
visits, each lasting 1

ν+ϕ
. Thus, if one starts in the untreated

compartment, one expects to spend

(ν + ϕ)(νT + θ)

(ν + ϕ)(νT + θ) − ϕθ
· 1

ν + ϕ
= νT + θ

(ν + ϕ)(νT + θ) − ϕθ
(52)

much time there over the course of one’s lifetime. Looking back, we recognize this
term as V1,1. The other terms of V can be similarly understood.

There is a graph-theoretic way of approaching this interpretation as well (Brouwer
et al. 2015). Let A be the matrix whose entries ai, j are the probabilities of moving
from compartment j to compartment i ; this is the adjacency matrix of the directed
graph of the compartments, weighted by transition probability (or, depending on your
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definition of the adjacency matrix, its transpose). Then

A =
[

0 θ
νT +θ

ϕ
ν+ϕ

0

]
. (53)

Then,
I + A + A2 + A3 + · · · = (I − A)−1 (54)

is a matrix whose entries mi j give the expected number of visits to compartment i if
one starts in compartment j . Thus, we can write V−1 as the product of waiting times
and expected number of visits.

V−1 =
[

1
ν+ϕ

0

0 1
νT +θ

]
(I − A)−1

=
[

1
ν+ϕ

0

0 1
νT +θ

] [
(ν+ϕ)(νT +θ)

(ν+ϕ)(νT +θ)−ϕθ
(ν+ϕ)θ

(ν+ϕ)(νT +θ)−ϕθ
ϕ(νT +θ)

(ν+ϕ)(νT +θ)−ϕθ
(ν+ϕ)(νT +θ

(ν+ϕ)(νT +θ)−ϕθ

]

=
[

νT +θ
(ν+ϕ)(νT +θ)−ϕθ

θ
(ν+ϕ)(νT +θ)−ϕθ

ϕ
(ν+ϕ)(νT +θ)−ϕθ

ν+ϕ
(ν+ϕ)(νT +θ)−ϕθ

]
.

(55)

To complete the example, we calculate

K = FV−1 =
[
β βT

0 0

] [
νT +θ

(ν+ϕ)(νT +θ)−ϕθ
θ

(ν+ϕ)(νT +θ)−ϕθ
ϕ

(ν+ϕ)(νT +θ)−ϕθ
ν+ϕ

(ν+ϕ)(νT +θ)−ϕθ

]

=
[

β(νT +θ)
(ν+ϕ)(νT +θ)−ϕθ

+ βT ϕ
(ν+ϕ)(νT +θ)−ϕθ

βθ
(ν+ϕ)(νT +θ)−ϕθ

+ βT (ν+ϕ)
(ν+ϕ)(νT +θ)−ϕθ

0 0

]
,

(56)

so that

R0 = β(νT + θ)

(ν + ϕ)(νT + θ) − ϕθ
+ βTϕ

(ν + ϕ)(νT + θ) − ϕθ
. (57)

Although we could simplifyR0 to a single fraction, it aids interpretation to define the
two terms as R0,I and R0,T , respectively, so that R0 = R0,I + R0,T . Thus, R0 can
be seen as the sum of terms, sometimes called submodel reproduction numbers, repre-
senting the contributions of untreated and treated individuals to the overall epidemic
potential of the system. This type of additive structure is common in models with
multiple infectious compartments. It can be interesting, for example, to understand
how the relative contributions ofR0,I andR0,T change as model parameters, e.g., the
treatment ϕ and relapse θ rate parameters, change.
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6 Conclusion

The basic reproduction number R0 is a fundamental and concept in mathematical
epidemiology, and calculating R0 as a function of an infectious disease model’s
parameters can improve one’s understanding of the disease system and the poten-
tial for disease control. In this paper, we developed intuition for the basic reproduction
number of epidemic models both as an epidemiological construct and as a mathe-
matical threshold. We used linear algebra and geometry to understand why the basic
reproduction number is the spectral radius of the next generation matrix.We examined
a series of simple models to see and interpret common patterns of parameter combina-
tions. The intuition we developed here can be used when approaching more complex
epidemic models.
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