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Traumatic brain injury (TBI) is frequently associated with abnormal blood-brain barrier function, resulting in the release of factors
that can be used as molecular biomarkers of TBI, among them GFAP, UCH-L1, S100B, and NSE. Although many experimental
studies have been conducted, clinical consolidation of these biomarkers is still needed to increase the predictive power and reduce
the poor outcome of TBI. Interestingly, several of these TBI biomarkers are oxidatively modified to carbonyl groups, indicating that
markers of oxidative stress could be of predictive value for the selection of therapeutic strategies. Some drugs such as corticosteroids
and progesterone have already been investigated in TBI neuroprotection but failed to demonstrate clinical applicability in advanced
phases of the studies. Dietary antioxidants, such as curcumin, resveratrol, and sulforaphane, have been shown to attenuate TBI-
induced damage in preclinical studies.These dietary antioxidants can increase antioxidant defenses via transcriptional activation of
NRF2 and are also known as carbonyl scavengers, two potential mechanisms for neuroprotection.This paper reviews the relevance
of redox biology in TBI, highlighting perspectives for future studies.

1. Introduction

According to theWorldHealthOrganization, traumatic brain
injury (TBI) is the leading cause of death in young adults.
TBI will surpass many diseases and will become the third
cause of death and disability in the general population by the
year 2020 [1, 2]. The high medical costs of these patients can
compromise the entire health care system [3].

The International Mission for Prognosis and Analysis
of Critical Trials in TBI (IMPACT study) has developed a
prognosis calculator based on admission data of more than
8500 patients [4]; validation studies has shown it to perform
with reasonable accuracy [5]. However, the predictive power
of this outcome calculator can be improved by the use of brain
injury biomarkers [6], while post-TBI prognosis itself can be
improved through the development of new neuroprotective
strategies. To determine a good biomarker it seems essential

that pathophysiologic mechanisms involved in the initial
phase of TBI should be known in detail, while a more
extended understanding of regulatory mechanisms is also
required for effectively promoting neuroprotection.

2. Pathophysiology

2.1. Clinical Parameters. The clinical outcomes of TBI are
directly related to the severity of the primary and secondary
lesions sustained by the patient. Primary lesions are those
related to the initial impact (lacerations, contusion, fractures,
and diffuse axonal injury). Secondary lesions are those which
developed after the initial trauma, including hematomas,
edema, and pathological processes cascades that cause
ischemia resulting in aworsening of the clinical condition [7].
The development of the secondary injury in TBI is a complex
process involving oxidative stress, glutamate excitotoxicity,
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inflammatory damage, and the toxicity of metabolites that
can be disseminated by the circulatory system [8, 9].

The therapeutic management of intracranial trauma aims
to avoid the development of secondary lesions, and to this
end, the control of physiological parameters such as cerebral
perfusion pressure (CPP), intracranial pressure (ICP), and
cerebral blood flow (CBF) is crucial to minimize ischemia
and tissue damage [10]. The clinical use of CPP as a clinical
parameter is based on theoretical suggestions indicating
that optimal cerebral blood flow is necessary to meet the
metabolic needs of the injured brain [11]. The therapeutic
management goal is to keep the CBF stable and maintain a
balance between CPP and ICP in order to rescue the ischemic
penumbra area. Cells in this area are potentially salvable;
therefore, they comprise the most essential area for medical
intervention, making the prevention of secondary insults in
this region crucial for a better outcome [12].

2.2. Brain Swelling. Among secondary injuries, cerebral
edema is of special significance, as it can greatly aggravate
brain damage and is the main condition related to increased
ICP, excluding conditions potentially leading to surgical
interventions, such as hematoma and contusion. Increased
ICP leads to a decrease in CPP and CBF, worsening tissue
damage as a consequence of brain ischemia. Edema occurs
by two basic mechanisms, cytotoxic edema related to the
depletion of cell energy and vasogenic edema related to
disruption of the brain-blood barrier (BBB) [13, 14].

In vasogenic brain edema, BBB integrity is compromised
by mechanical or autodigestive disruption, or functional
breakdown of the endothelial cell layer of brain vessels,
which is critical for maintenance of the BBB. Disintegration
of the cerebral vascular endothelial wall allows for uncon-
trolled ion and protein transfer from the intravascular to the
extracellular (interstitial) brain compartment, leading to fluid
accumulation, which increases the volumeof the extracellular
space [15, 16]. The intact BBB prevents diffusion of most
water-soluble molecules above 500Da [17]. However, when
the BBB is disrupted, brain-related proteins can be measured
in the peripheral circulation [18, 19]. The BBB leakage
associated with TBI not only allows brain-related molecules
to reach the bloodstream but also permitsmolecules from the
periphery to enter cerebrospinal fluid (CSF). Both situations,
either peripheral proteins entering the CSF or CSF leakage of
proteins, can be used as biomarkers of TBI [20, 21].

Cytotoxic brain edema is characterized by intracel-
lular water accumulation inside neurons, astrocytes, and
microglia. This pathology is caused by an increased cell
membrane permeability, ionic pump failure due to energy
depletion, and intracellular accumulation of osmotically
active solutes [16, 22].This edema-driven energy impairment
generates an “ischemia-like” pattern, which increases glycol-
ysis flux, leading to lactic acid accumulation, associated with
increased membrane permeability, intensifying edema, and
the establishment of a destructive positive feed-back loop.

Thenext step of this pathophysiological cascade is charac-
terized by excitoxicity. TBI is associatedwith amassive release

of excitatory amino acid neurotransmitters, particularly glu-
tamate [23, 24].The extracellular glutamate availability affects
neurons and astrocytes and results in overstimulation of
ionotropic and metabotropic glutamate receptors, increasing
Ca2+, Na+, and K+ influxes [25, 26]. Although these events
trigger catabolic processes, the cellular attempt to compensate
for ionic gradients increases Na+/K+-ATPase activity and
therefore metabolic demand, creating a vicious circle of flow-
metabolism uncoupling. This condition can destroy vascular
and cellular structures and, ultimately, induces necrotic or
programmed cell death [27].

3. Reactive Oxygen Species and
Traumatic Brain Injury

Reactive oxygen species (ROS) and reactive nitrogen species
(RNS) are generated during normal physiological processes.
They are highly reactive molecules which can cause damage
to key cellular components such as DNA, lipids, and proteins.
Under physiological conditions, the endogenous defense
system is able to prevent the formation of or scavenge these
harmfulmolecules, protecting tissues fromoxidative damage.
In TBI there is a considerable increase in the production of
free radicals, supporting the idea that oxidative stress plays a
decisive role in the pathology [28, 29].

It is generally believed that 1-2% of the oxygen reduced
by mitochondria is converted to superoxide anion (O

2

∙−) at
the level of complex I or at the level of ubiquinone [30–
32]. However, certain enzymatic components are loosely
associated with the inner mitochondrial membrane and,
under conditions of cellular stress, can be released or inac-
tivated, greatly diminishing the reducing capacity of the
electron transport chain (ETC). The electrons will sub-
sequently be monoelectronically donated to oxygen (O

2
),

yielding increased production of O
2

∙−. Another important
source of mitochondrial O

2

∙−depends on Ca2+ influx, often
secondary to glutamatergic excitotoxicity, which leads to
structural alterations of the inner mitochondrial membrane.
These alterationsmay increase ROS formation due to disorga-
nization of the ETC [33]. Under severe Ca2+ loads, however,
opening of the mitochondrial permeability transition pore
(mPTP) results in the extrusion of mitochondrial Ca2+
and other high- and low-molecular weight components.
This catastrophic event discharges and uncouples the ETC,
preventing ATP production, which can lead to necrotic or
apoptotic cell death [34].

Other sources of free radicals in TBI, in addition to
mitochondrial dysfunction and excitotoxicity mediated by
glutamate, include the formation of bradykinin.This cytokine
can activate phospholipase A2, releasing arachidonic acid
that can serve as a source of free radicals [35, 36]. Arachidonic
acid may also facilitate NADPH oxidase activity, thus further
increasing ROS production [37]. Apart from increasing
arachidonic acid production frommembrane phospholipids,
bradykinin can induce free radical production by causing a
Ca2+ overload [38]. Another source of ROS in TBI may be
macrophages/microglia and neutrophils activated as part of
an inflammatory process triggered by the initial injury [28].
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The extremely short half-life of ROS in biological systems
makes direct measurement virtually impossible in a clinical
setup. Therefore, several indirect approaches have been used
for the estimation of ROS. These include measurement of (1)
products of enzymes known to coproduce ROS, (2) stable
adducts formed by the reaction between ROS and endoge-
nous or exogenous trapping agents, and (3) endogenous scav-
engers [39]. The brain is highly sensitive to oxidative stress
because this 1300 g organ consumes about 20–30%of inspired
oxygen and contains high levels of both polyunsaturated fatty
acids and redox transitionmetals,making it an ideal target for
a free radical attack [40].

Free radical acting on polyunsaturated fatty acids leads
to the formation of highly reactive electrophilic aldehydes,
including malondialdehyde (MDA), 4-hydroxy-2-nonenal
(4-HNE), which are the most abundant products, and
acrolein, the most reactive product [41–43]. Lipid peroxi-
dation products, such as 4-HNE and thiobarbituric acid-
reactive substances, are studied in order to identify an
oxidative stress condition in experimental models of TBI
[44–46]. Reactive aldehydes are a noxious byproduct of lipid
peroxidation, which, among other things, increase BBB per-
meability [47], contribute to cytoskeletal changes in neurons
[48], and affect glucose transport across membranes [49, 50].

Oxidative stress also damages nucleic acids, both by
inducing DNA fragmentation, which consists of single- and
double-stranded DNA breaks, the latter being irreversible
and occurring a few hours after brain injury [51, 52], and via
oxidative damage leading to modification and loss of DNA
bases. The predominant base modification used as an index
of DNA-oxidative damage is 8-hydroxy-2-deoxyguanosine
(8-OHdG). Single-strand breaks and base oxidation can
be repaired [53], but an inefficient DNA repair may delay
neurobehavioral recovery after TBI [54]. Some experimental
work has demonstrated that oxidative damage toDNAoccurs
early in TBI and can be targeted by therapeutic strategies [55,
56]. However, intriguingly, in a study using administration
of the ROS scavenger alpha-phenyl-N-tert-butyl-nitrone, the
authors found an improvement inmemory (water maze task)
accompanied by a paradoxical increase in neuronal DNA
fragmentation. These data suggest that DNA fragmentation
would not be a good marker for TBI [57]. On the other hand,
immunohistochemical analysis of DNA damage markers in
autopsy samples has suggested the validity of single-strand
breaks as markers of TBI. Given these findings, DNA single-
stranded breaks may be more helpful when used in con-
junction with other biomarkers such as glial fibrillary acidic
protein (GFAP) and basic fibroblast growth factor (bFGF)
in providing clues on different cell death mechanisms of
succeeding TBI [58]. However, there is a need for guidelines
to support the use of DNA modifications as a marker of TBI.

4. Antioxidant Defenses

Antioxidants act in a concerted fashion in the normal brain
and can be classified into two major groups: enzymes and
low-molecular-weight antioxidants. The enzymes include a

number of proteins, including SOD, catalase, and peroxi-
dases, as well as some supporting enzymes. The expression
of these enzymes and their activity diverge in different brain
regions [59]. The protective role of endogenous antioxidant
enzymes in ischemic brain injury has been well established
in the literature [60]. Trauma not only interferes with the
regulation of antioxidant mechanisms but may also convert
these mechanisms into prooxidative ones through its ability
to disrupt cell compartmentalization [61].

The low-molecular-weight antioxidants comprise a con-
certed system of water- and lipid-soluble molecules like glu-
tathione (GSH), ascorbic acid, histidine-related compounds
(carnosine, homocarnosine, and anserine), melatonin, uric
acid, lipoic acid, and tocopherols [59]. These are extremely
important in minimizing oxidative stress. However, cells can
synthesize only a limited number of these molecules (e.g.,
GSH and carnosine). The majority of low-molecular-weight
antioxidants are derived from dietary sources. The concen-
tration of ascorbate, which has a relatively high antioxidant
potential, is unusually high in the brain, [62]. However, there
is a very limited literature about the importance of this
antioxidant in TBI. Brain ascorbic acid was shown to be
decreased in experimental blast-induced TBI and has been
associated with decreases in GSH and protein thiols and an
increase in oxidative markers [63–65].

Cells are equipped with enzymes that can eliminate
peroxidation end products, such as the aldehyde 4-HNE.
These enzymes include aldehyde dehydrogenases, aldo-
keto reductases, carbonyl reductase, and glutathione S-
transferases (GST) [66]. GST is an enzyme that displays
glutathione peroxidase activity and has, by far, the highest
detoxifying capability of highly toxic aldehydes such as 4-
HNE. Naturally occurring variation in the GST expression
affects neurodegeneration after experimental TBI, confirm-
ing the importance of lipid peroxidation as an important
pathophysiological mechanism in TBI [67].

5. Biomarkers of TBI

Biochemical biomarkers can be analyzed from serum or
whole blood. Disadvantages of this approach include lack of
specificity to brain tissue, high variability in the extent of BBB
disruption, and low sensitivity to early injury. Alternatively,
we can assess CSF markers that may be more specific to
central nervous system (CNS) tissue and sensitive to early
injury, although CSF collection is more invasive and not
routinely available inmedical practice. Another optionwould
be the measurement of parenchymal interstitial fluid via
microdialysis. High lactate to pyruvate ratio, increased levels
of glycerol, and low levels of glucose have been correlated
with poor clinical outcome.However, cutoff points for certain
parameters are broad and poorly validated. One rational
approach that may lead to identification of blood or CSF
markers would be to evaluate biochemical processes known
to play a central role in CNS injury, including markers of
inflammation, glial activation, neuronal dysfunction, and
oxidative stress [68].
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TBI biomarkers can reveal structural brain damage but
are also markers of secondary injury cascades. TBI promotes
genomic, proteomic, and lipidomic changes, as well as oxida-
tive stress, neurotransmitter dysfunction, mitochondrial fail-
ure, and other processes [69]. Therefore, TBI biomarkers
can also indicate appropriate therapeutic strategies to mini-
mize secondary brain injury and long-term sequelae. Using
TBI biomarkers increases the predictive value of outcome
calculators and improves the development of individualized
treatment courses, thereby reducing outcome severity [70].
The detection of oxidatively modified biomolecules could be
used as biomarkers to demonstrate the extension of cellular
damage or changes in the cascade of secondary brain damage
and repair [39, 65].

Severalmolecules have been investigated as biomarkers of
TBI. CNS-specific molecules include creatine kinase [71, 72],
lactate dehydrogenase [71, 72], glial fibrillary acid protein
(GFAP) [72–75], myelin basic protein [72, 76], neuron-
specific enolase [77–79], S-100𝛽protein [72, 75, 80], brain and
heart type fatty acid-binding proteins [81], tau proteins [82,
83], brain-derived neurotrophic factor (BDNF) [84, 85], and
ubiquitin carboxy-terminal hydrolase-L1 [86, 87]. The most
commonly used inflammatory serum biochemical markers
include heat shock protein 70 kDa (Hsp70) [88], regulated on
activation normal T cell expressed and secreted (RANTES)
[89], tumor necrosis factor alpha (TNF-𝛼), and interleukins
[90].

N-acetylaspartate (NAA), a nervous system-specific
metabolite, is synthesized from aspartate and acetyl-
coenzyme A in neurons. NAA has been shown to be a
marker with diagnostic relevance in monitoring metabolic
state after TBI [65]. NAA is the second most concentrated
metabolite in the brain after the amino acid glutamate. It
is only detected in adult brain neurons and is synthesized
in the mitochondria. NAA and ATP metabolism appear to
be linked indirectly, whereby acetylation of aspartate may
facilitate its removal from neuronal mitochondria, thus
favoring conversion of glutamate to 𝛼-ketoglutarate, which
can enter the tricarboxylic acid cycle for energy production
[91]. Accumulating evidence in the last decade suggests that
NAA is a marker of mitochondrial dysfunction in the brain.
A close relationship has been demonstrated between trauma
severity, depression of energy metabolism, and NAA [92, 93].
Alterations in NAA levels have also been demonstrated in
many cerebral pathologies, and their noninvasive in vivo
quantification by 1H-NMR spectroscopy makes them a
particularly attractive biomarker [94–96].

The activity of the most studied antioxidant enzymes
in TBI, CAT, SOD, and GPx presents random changes in
animal models of TBI. In some cases an increase [97, 98]
and in others a decrease [99, 100] or no change [101, 102].
Theheterogeneity in sampling time points and animalmodels
may be related to this lack of consistency across studies.
Whatever the reason, to date there is little consistency in data
regarding antioxidant enzymes to justify their use as markers
of TBI and as a predictive tool of outcome.

Glutathione, the major nonprotein thiol of cells, usually
decreases after TBI in rats [64, 99] but not in mice [64,

99, 103–105], demonstrating species-specific characteristics
that should be taken into account when using information
obtained from animal studies.

The peroxidation of membrane lipids can change the
membrane function by modifying its fluidity, permeability,
metabolic processes, and ionic equilibrium [106]. Damage to
mitochondrial membranes can also increase the production
of ROS, besides generating mitochondrial dysfunction. The
damage to brain membrane lipids is an early event. In thirty
minutes after trauma, higher levels of MDA and 4-HNE
can be detected, whose levels are maintained elevated 72 h
after the injury onset [107–109]. Most studies analyzing the
oxidative damage to lipids in animalmodels find a correlation
between this parameter in conjunction with cognitive dam-
age, installation of edema, and volume of injury. These data
suggest that the damage to lipids of biologicalmembranes can
be an important event in this pathology [110, 111].

Oxidative damage to DNA is also an early event in TBI.
In animal models, the appearance of 8-OHdG, oxidative
marker of DNA damage, is increased within the first 15
minutes after trauma, demonstrating that the TBI-induced
ROS production can interfere with the integrity of DNA
[55]. On the other hand, the administration of edaravone,
an antioxidant, proved to be capable of blocking the DNA
damage, resulting in improvement in behavioral tests in mice
[112–114].

It has been shown that after a mild TBI, rats showed
increased protein carbonylation, another marker of oxida-
tive stress. This event correlated with poor performance
in behavioral tests (Morris water maze test), accompanied
by decrease in the levels of the neurotrophic factor BDNF.
These alterations were neutralized by the administration of
antioxidant vitamin E, showing that oxidative damage to
proteins may have a key role in neuronal death in TBI [115].
Evidence also points to the involvement of peroxynitrite on
the pathophysiology of TBI. A number of studies showed
precocious (1 h) increase in protein nitration markers, such
as 3-nitrotyrosine [116, 117]. By contrast, protein carbonyl
and lipid peroxidation levels were increased in mild TBI in
different parts of the brain. However, these oxidative changes
were not observed, or even decreased, in severe TBI [46].
These results were somewhat corroborated by Schwarzbold
and collaborators, showing that the oxidative damage does
not completely correlate with the degree of trauma severity
[98].

Several lines of evidence point to the occurrence of oxida-
tive stress in brain trauma. Bayir and collaborators showed
that children, who have suffered severe TBI, presented a
clinical evolution that is marked by progressive impairment
in antioxidant defenses and increase in lipid peroxidation.
These findings correlate with the clinical evolution of these
patients. Among the endpoints analyzed authors relate ascor-
bate depletion in the cerebrospinal fluid, followed by the
ascorbyl radical formation, in addition to a decrease in the
levels of GSH and antioxidant capacity [118]. Arachidonic
acid derivatives used as markers of lipid peroxidation, such
as F2-isoprostanes, are found at high levels in cerebrospinal
fluid after TBI. In fact, they are positively correlated with
neuron-specific enolase, a marker of neuronal damage [119,
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120]. However, the clinical applicability of this technique is
limited, and not all patients can be analyzed due to the need
of sampling of CSF.

The 8-iso-prostaglandin F2𝛼 (8-iso-PGF2𝛼) is derived
from either enzymatic, by cyclooxygenase, or nonenzymatic
oxidation of arachidonic acid [121]. This isoprostane is con-
sidered an excellent marker of oxidative stress in vivo. Recent
data correlate plasma levels of this marker with the Glasgow
coma scale (GCS). This finding is very important because it
would be a predictive factor of mortality and outcome with
sensitivity similar to GCS [122, 123].Thus, this marker can be
a tool in predicting the prognosis of patients with TBI and
used as a marker of lipid peroxidation which can be dosed in
peripheral blood sample.

Nitrosative stress, mainly detected by the presence of 3-
NT, has been demonstrated in TBI [124, 125]. Darwish and
collaborators [126] detected 3-NT in theCSF of 7 out of 10 TBI
patients, but it was not found in control samples. High levels
of 3-NT were also associated with a negative neurological
outcome measured by the Glasgow outcome scale, but again,
a marker obtained from the cerebrospinal fluid has limited
applicability.

In spite of solid evidence of increased oxidative stress
markers in TBI, the correlation of these changes with the
severity of TBI, as measured by the GCS, is still controversial.
For example, higher levels of lipid peroxidation, decrease
in the levels of GSH, and increased activity of SOD were
observed in erythrocyte of patients with severe TBI, com-
pared to patients who are victims of mild TBI [127–129].
Another work of the same group, however, showed increased
lipid peroxidation in erythrocytes of patients with TBI, but
this was not correlated with GCS [130]. Plasma levels of
lipid peroxidation and protein carbonylation were also not
predictive factors associated with hospital mortality or as
cognitive impairment in TBI patients [131, 132].

Although the literature demonstrates the unequivocal
correlation of markers of oxidative stress with trauma, the
correlation of levels of 4-HNE andMDAwith the outcome of
the TBI presents divergent data necessitating further studies
to determine if there is, in fact, some association with the
prognosis and outcome. This divergence may be related to a
higher incidence of ischemia reperfusion in the mild trauma
compared to severe trauma [46]. One of the main sources of
ROS in TBI occurs during tissue reperfusion after ischemia,
which is an event secondary to trauma. In severe trauma,
however, there is a large area of primary tissue injury causing
extensive cell death. However, in mild trauma more viable
cells that can benefit from reperfusion present higher ROS
production, which may favor the use of markers of lipid
peroxidation as predictive biomarkers of outcome.

Overall, it seems that the oxidative stress occurs simul-
taneously in various conditions during and after the brain
trauma, but its correlation with the severity and outcome
is still not very well understood. Despite all the lines of
evidence that indicate a central role of ROS in the cascades
of secondary damage, the actual implication of them for
neuronal death is not yet clear. As a general picture from
the literature data, oxidative damage is not directly correlated
with the severity of TBI. An area of study that may shed

light on the use of oxidative stress biomarkers needs to take
into account changes in redox signaling pathways, besides
assessing direct oxidative damage to macromolecules, which
may regulate determining factors that contribute to the final
outcome.

6. Oxidative Stress-Mediated Factors in TBI

Age is another important factor in TBI. Elderly patients
with TBI have a worse clinical outcome when compared to
younger patients [133]. The influence of oxidative stress on
the development of aging has also been demonstrated. For
instance, older rats showed higher levels of lipid peroxidation
end product (4-HNE), along with lower antioxidant defenses
[134]. A worse cognitive outcome, also demonstrated in older
rats, was correlated with lower mitochondrial antioxidant
enzymes and high levels of 8-OHdG, 4-HNE, single-strand
DNA breaks, and malondialdehyde, suggesting the involve-
ment of ROS [135].

Post-TBI complications such as seizures and cognitive
deficits also appear to be mediated by ROS in experimental
models [136–138].There is evidence that suggests that antiox-
idant therapy may reduce lesions induced by oxidative free
radicals in some animal seizure models [139].

Interestingly, physical conditioning seems to decrease
oxidative damage to lipids formed after TBI in rats [140].
Both, the use of amphetamines, as well as physical exercise
can reduce oxidative damage after TBI [141].There is preclin-
ical evidence suggesting that exercise can improve cognitive
outcomes in experimental TBI [142].

7. Antioxidant Strategies for Neuroprotection

The relationship between oxidative stress and TBI has gener-
ated considerable interest in the development of antioxidant
therapies for neuroprotection. Despite the promising results
in the treatment of TBI in animal models, evidence of suc-
cessful antioxidant therapy in clinical practice is limited [143].
There are a number of drawbacks to the use of exogenous
antioxidants, for example, the limited penetrability through
the BBB, the rapid metabolism and instability of these
compounds, short therapeutic windows, and a very narrow
therapeutic dosage range, resulting in toxicity at higher doses
[143, 144]. Despite these limitations, natural antioxidants and
modified antioxidants are promising candidates for future
drugs to treat TBI.

7.1. Free Radicals Scavengers. Modified SOD has been used
in different models as a scavenger of O

2

∙−, as this radical has
increased production after TBI. Lecithinized SOD displays
high affinity to cell membranes and was able to increase
neuronal counts in an animal model of TBI [145, 146].
Another superoxide scavenger, OPC-14117, reduced edema
formation, neurological deficit, and infarct area caused by
TBI [147–149].

Polyethylene glycol-conjugated superoxide dismutase
(PEG-SOD) has been tested in clinical trials. Initially, some
benefits in a phase II study of PEG-SOD were demonstrated,
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including the reduction of persistent vegetative state and
death outcomes when compared to placebo [150], but these
observations were not confirmed in the phase III trial.
Failures such as these have been attributed to a narrow
therapeutic window [151]. In this way, strategies aimed at
directly scavenging ROS are restricted due to the extremely
short half-life of free radicals and the small therapeutic
window in a TBI event.

Nitrones and derivatives are used in neuroprotection
models. Tempol (4-hydroxy-2,2,6,6-tetramethylpiperidin-1-
oxyl) is a long-known radical scavenger that displays neu-
roprotective properties [152], including maintaining mito-
chondrial function in brain cells affected by TBI [153]. Other
radical scavengers, such as 𝛼-phenyl-N-tert-butyl nitrone
(PBN), or its sulfated form, are able to improve cerebral blood
flow and glucose metabolism, which are accompanied by
improvement in neurologic scores [154–157]. However, the
therapeutic window is relatively short due to initial burst
of ROS in the first moments after the trauma. Therefore,
strategies to increase the therapeutic windows are necessary
to allow the efficient use of these radical scavengers [158].

The antioxidant 𝛼-tocopherol is hydrophobic and is able
to prevent membrane lipids from undergoing peroxidation.
Theuse of𝛼-tocopherol contributed to a lower lipid peroxida-
tion [159], edema [160, 161], and improvement in histological
markers in experimental models of TBI [162].

Melatonin displays radical scavenger properties toward
∙OH, O

2

∙−, singlet oxygen, and peroxynitrite [163]. Admin-
istration of melatonin shortly after TBI decreases brain
edema, neuronal death, andmemory deficits [164, 165].These
changes are correlated with improvements in markers of
oxidative damage (lipid peroxidation) and in the levels of low
molecular weight antioxidants, such as vitamin C [166–169].
However, improvement is not always observed with the use
of melatonin [170].

7.2. Carbonyl Scavengers. Besides the lipid peroxidation end
products aldehydes, likeMDA and 4-HNE, cells also produce
continually a series of 𝛼-dicarbonyl species. For instance,
methylglyoxal is continuously produced during glycolysis but
can also be produced nonenzymatically from carbohydrates
and glycation of proteins, besides other endogenous sources
[171]. The production of methylglyoxal, the main dicarbonyl
byproduct of glycolysis, is responsible for significant por-
tion of protein glycation and, consequently, the induction
of cellular toxicity [66]. Methylglyoxal modifies proteins
to form advanced glycation end product (AGE) residues.
These modified proteins can activate receptors of AGE
(RAGE) leading to the upregulation and the expression of
proinflammatory mediators [172, 173]. This proinflammatory
cascade involving RAGE has been recently shown to be
relevant to TBI. RAGE is upregulated in human brain as
short as 30min after TBI and maintained elevated up to
6 days, presenting maximal values at 24 h after TBI [174].
Importantly, the inflammatory cytokine high-mobility group
box 1 (HMGB1), a RAGE ligand, was increased in CSF and
could be associated with poor outcome after TBI in infants
and children [175]. Since HMGB1 is released in the CSF, an

anti-HMGB1 antibody strategy has proven to be effective in
inhibiting fluid percussion-induced brain damage in mice
[176].

This successful strategy brings attention to the potential
importance of AGE on TBI. To prevent AGE production
and consequent RAGEactivation,𝛼-dicarbonyls, likemethyl-
glyoxal, need to be eliminated or sequestered in order to
avoid a negative impact in TBI outcome. Carbonyl scavengers
have been used with the aim of reducing the “aldehyde
load” [177] and have been investigated in vivo and in vitro
regarding their effects on neuroprotection, but there is lim-
ited literature with regard to TBI [178, 179]. The carbonyl
scavenger D-penicillamine binds primarily to aldehydes in
an irreversible manner which inhibits their damaging effects
and has also been shown to scavenge peroxynitrite as well
[180]. Acute penicillamine administration has previously
been shown to improve neurological recovery in the mouse
concussive head injury model [181] and to protect brain
mitochondria [180]. Carnosine is also a dicarbonyl scavenger
with neuroprotective properties in TBI [182]. Hydralazine,
an acrolein scavenger, decreased cell membrane leakage and
permeability in spinal cord injury [183]. Aminoguanidine,
another carbonyl scavenger and an inhibitor of inducible
nitric oxide synthase (iNOS), was able to reduce carbonyl
stress in diabetes, preserving neurological scores [184, 185],
preventing the decrease in cortical necrotic neuron counts
[186], and reducing infarct volume [185] in animal models of
TBI. Aminoguanidine treatment is also able to reduce infarct
size and preserve BBB in a middle cerebral artery occlusion
model of ischemia [187] and reduce damage area in traumatic
spinal cord injury [188], effects that are relevant to TBI.

7.3. Glutathione-Promoting Drugs. Strategies that aim at
increasing the GSH levels have also been tested in ani-
mal models. GSH-promoting agents, like N-acetylcysteine
(NAC) and 𝛾-glutamylcysteine ethyl ester, are effective neu-
roprotectants in preclinical studies. Administration of 𝛾-
glutamylcysteine ethyl ester after TBI in mice preserves
GSH, decreases autophagy, and improves both behavioral and
histological outcomes [189]. 𝛾-glutamylcysteine ethyl ester
decreased levels of protein carbonyls and 3-nitrotyrosine
after sever TBI [117] as well as, preserved glutathione status,
endotelial function, and BBB [190].

Studies with NAC showed efficacy of this drug in
decreasing the TBI-mediated oxidative stress and limiting the
volume of injury in rats [191]. NAC also restored respiratory
function and calcium transport when administrated 1 h after
trauma [192]. In contrast, this protective effect was not
present when NAC was administrated 2 h after the lesion,
indicating that it must act in the early stages of the lesion.
NAC was able to restore brain GSH levels from 1 h to 14
days after TBI, suggesting that this protective effect may be
related to the maintenance of the GSH levels. Other studies
also showed anti-inflammatory properties of NAC. NAC
administration decreased several inflammatory cytokines
and the activation of NF-𝜅B, which reduced brain edema,
BBB permeability, and apoptotic index in the injured brain
[193].
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NAC was also tested in a randomized double blind,
placebo-controlled study with soldiers who were exposed to
ordnance blast and met the criteria for mild TBI. Patients
received placebo or NAC for seven days, and the treatment
showed improvement in symptoms such as dizziness, mem-
ory loss, and sleep disturbances [194].Given the fact thatNAC
is already approved by the FDA, this is a good candidate for
future clinical trials.

7.4. Steroids. Corticosteroids have been shown to inhibit the
phospholipase A2, cyclooxygenase, and lipoxygenase path-
ways, limiting the release of arachidonic acid and its metabo-
lites, downregulating proinflammatory cytokines, and damp-
ening the inflammatory response [195]. Methylprednisolone
is able to attenuate cellular damage by a direct antioxidant
effect, thereby inhibiting lipid peroxidation and protecting
cellular membranes [195]. Preclinical data showed that this
steroid affects the outcome. Methylprednisolone was able to
improve brain edema in rats, and this was dependent on
dosing, time of administration, and method of treatment
[196].

The indiscriminate use of corticosteroids was long per-
formed without an evaluation of their devastating effects,
as evidenced by clinical trials. However, The Brain Trauma
Foundation guidelines published in 2000 state that “the use of
corticosteroids is not recommended for improving outcome
or reducing intracranial pressure in patients with severe brain
injury” and “the major of available evidence indicates that
steroids do nor improve outcome or lower ICP in severely
head injured patients and the routine use of steroids for
these purposes is not recommended” [197]. In 2004 the
corticosteroid randomization after significant head injury
(CRASH) study demonstrated greater mortality in patients
receiving high doses of methylprednisolone compared to
placebo [198]. ACochranemeta-analysis correlated the use of
corticosteroids with increased risk of gastrointestinal bleed-
ing, hyperglycemia, and also higher mortality rates [199].

Preclinical studies, however, suggested a possible antiox-
idant and neuroprotective effect of physiological doses of
sex hormones following TBI [200, 201]. Progesterone has
been shown to decrease cerebral edema in a pluripotent
manner, reducing lipid peroxidation, aquaporin expression,
proinflammatory cytokine release, and complement activa-
tion [202].Unfortunately, studies in humans have not demon-
strated a significant association between gender and progno-
sis [203, 204]. Nevertheless, clinical trials have demonstrated
better outcomes in patients treated with progesterone [205,
206]. In a phase II study, progesterone showed significant
reduction in mortality and improvement in the Glasgow
outcome scale at 3 and 6 months after TBI; however, results
from a phase III multicentre, randomized clinical trial are
pending [207]. A Cochrane systematic review concluded that
“Progesterone may improve neurologic outcome of patients
suffering TBI.” “. . .evidence is insufficient and there is a need
for further studies to support the use of progesterone in the
management of TBI. Further large and multicentre clinical
trials on progesterone are required to assess the effect of
progesterone in people with acute TBI” [206].

Another strategy to prevent ROS-mediated damage is to
block the propagation of lipid peroxidation. Lazaroids (21-
aminosteroids) are a class of compoundswith themembrane-
stabilizing properties, similar to the effect of glucocorticoids.
Tirilazad inhibits lipid peroxidation through its membrane-
stabilizing properties, which prevent the propagation of the
reaction between one oxidized fatty acid to the next, and
through free radical scavenging.

In an animal model of TBI, administration of the lazaroid
tirilazad improved neurological score and survival rate when
administrated shortly after the trauma (5–60min) [208]. In
a weight drop TBI model in rats, tirilazad also diminished
neuron loss at 24 h and increased neuronal survival 14
days after the injury [209]. Furthermore, administration of
tirilazad reduced extracellular O

2

∙− after TBI, which may
contribute to its neuroprotective effect [210]. The protective
effect of tirilazad has also been demonstrated in animal
models of ischemia and subarachnoid haemorrhage, both
events linkedwith the secondary injury pathways inTBI [211].

Tirilazad attenuated cerebral edema after TBI [212] and
protected against arachidonic acid-induced vasogenic brain
edema in rats by inhibiting lipid peroxidation [213]. Since
tirilazad does not penetrate the BBB effectively, it is found
mainly in the membranes of endothelial cells, where it could
exert its action. However, it is possible that tirilazad can reach
neuronal cells during the phase of increased permeability of
the BBB in TBI, which can allow tirilazad to penetrate brain
areas where it can act as a neuroprotectant [214].

In the 90s, tirilazad entered a phase III multicenter
trial. The study comprised 1120 head-injured patients with
moderate or severe TBI. Patients received tirilazad or placebo
within 4 h after injury at a dose of 2.5mg/kg every 6 h
for 5 days. The trial failed to show a beneficial effect of
the treatment in either moderate or severe injured groups.
However, post hoc analysis showed that male patients that
also had subarachnoid hemorrhage had significantly less
mortality [215]. Meta-analysis studies questioned the efficacy
of tirilazad in subarachnoid hemorrhage [216, 217]. In other
clinical studies, tirilazad significantly contributed to recovery
after spinal cord injury [218], but recent studies are not
available. The poor penetration through the BBB might be
responsible for the negative result, as well as the nature of the
head injury.

7.5. Calcium Blockers and Immunosuppressants. Calcium
blockers and immunosuppressants that could limit the pro-
duction of ROS/RNS by membrane stabilization or reduc-
tion of inflammation have also been investigated. Calcium-
channel antagonists, such as nimodipine, would block the
effects of the influx of calcium into the cell after TBI. Unfor-
tunately, in an extensive Cochranemeta-analysis, nimodipine
only reduced the risk of death in a subgroup of patients with
subarachnoid hemorrhage [219]. Cyclosporine A, a known
immunosuppressant, is thought to mediate neuroprotection
by decreasing the mitochondrial permeability and therefore
the influx of Ca2+, organelle swelling, and cell death [34].
Cyclosporine A also showed promising results in a phase
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II study; however, validation by a multicentre, randomized
phase III clinical trial is pending [207].

7.6. Other Drugs. Interference of other pathways which result
in the production of ROS/RNS has thus far failed to produce
good clinical outcomes. Bradykinin antagonists such as
Deltibant [220], modulators of excitotoxicity, and glutamate
such as dexanabinol [221, 222], magnesium sulfate [223], and
selfotel [224] have all been proven to be ineffective in clinical
trials [207].

7.7. Nrf2/ARE: A Putative Therapeutic and Biomarker Route.
Activation of the antioxidant response element (ARE) has
been implicated in neuroprotection, as this induces expres-
sion of genes involved in decreasing oxidative stress, inflam-
matory damage, and accumulation of toxicmetabolites [225].
Several transcriptional factors can bind to ARE, including
the nuclear factor-erythroid 2-related (Nrf2) protein that
activates transcription in response to oxidative stress or
electrophilic attack [226]. Nrf2 is a basic leucine zipper redox-
sensitive transcription factor reported to be a pleiotropic
regulator of cell survival mechanisms [227]. Recent studies
have demonstrated that Nrf2 plays an indispensable role in
the upregulation ofNrf2-dependent antioxidant enzymes and
the reduction of oxidative damage after TBI [228]. Under
basal conditions, Nrf2 is sequestered in the cytoplasm by the
cytosolic regulatory protein Keap1. In conditions of oxidative
or xenobiotic stress, Nrf2 translocates to the nucleus where
it binds to ARE, neutralizing the BACH1 competitive inhibi-
tion, activating this promoter, and resulting in transcription
of a number of antioxidant proteins [229, 230].

Several antioxidants from the diet which have been stud-
ied for their neuroprotective properties are proposed to func-
tion via the activation of Nrf2/ARE. Caffeic acid phenethyl
ester is an active component of bee propolis extracts which
displays anti-inflammatory, immunomodulatory, antiprolif-
erative, and antioxidant properties. Caffeic acid phenethyl
ester treatment decreasedMDA levels and increasedGPx and
SOD activity in a rat experimental model of TBI [231]. Green
tea is rich in polyphenols that have important antioxidant
activity. Epigallocatechin gallate treatment in rat models of
TBI decreased the free radical burden (e.g., O

2

∙− and ∙OH)
induced by brain injury. This antioxidant effect decreased
tissue damage induced by free radicals, including a decrease
of neuronal cell degeneration, apoptotic cell death around
the damaged area, and improved brain function (water
maze) [232–234]. Ginseng, from the root of Panax ginseng,
is a well-known traditional herbal medicine that has been
used widely for thousands of years. The ginseng saponins
are generally considered as the principal bioactive ingredi-
ents. Preclinical studies suggested that the neuroprotective
effects of ginseng saponins are potentially associated with
protection against oxidative stress damage [235–238]. The
flavonoid quercetin improved neuronal electrical activity and
decreased proinflammatory effects in a model of TBI [239].
Resveratrol is a polyphenolic compound enriched in grapes
and red wine. Resveratrol has been shown to be a promising
neuroprotective agent in TBI models, possibly inhibiting

lipid peroxidation [240–242]. The use of resveratrol in an
experimental model of TBI was able to counteract oxidative
damage and prevent the depletion of the antioxidant glu-
tathione and also resulted in a reduction of infarct area [110].
Polyphenolic derivatives of curcumin have also been shown
to protect the brain against the effects of experimental TBI
by decreasing oxidative stress [44, 45, 243, 244]; however,
the observed effects may be attributable not only to the
antioxidant properties of flavonoids but also to a response
occurring secondary to Nrf2/ARE activation. Sulforaphane,
similar to other flavonoids, is anNrf2/ARE signaling activator
and is present in cruciferous vegetables such as broccoli.
Nrf2/ARE activation by sulforaphane treatment after exper-
imental TBI was confirmed by induction of target genes
such as glutathione S-transferase 𝛼3 and heme oxigenase-1
and associated with an improvement in BBB integrity [245].
The administration of sulforaphane is also neuroprotective in
various animal models of TBI, specifically reducing cerebral
edema and oxidative stress and thus decreasing cognitive
deficits [246, 247]. In the spinal cord model, sulforaphane
was able to produce both rapid (30min) and long-lasting
(3 days) responses, also corroborated by the induction of
Nrf2/ARE target proteins, including the rate-limiting enzyme
for glutathione synthesis (GCL), heme oxygenase 1, and
NADPH quinonereductase-1, which cooperate to decrease
levels of the proinflammatory markers TNF-𝛼 and IL-1𝛽
[248].

There is some evidence to support the idea that Nrf2
activation is able to protect against dicarbonyl stress by
induction of glyoxalase 1 [249], the enzyme catalyzing the
reaction of methylglyoxal with glutathione. It has been sug-
gested that methylglyoxal and glyoxalase 1 can also modulate
seizure intensity as metabolic sensors [250], which may have
implications in TBI, since hyperglycolysis (high flux through
anaerobic glycolysis) after TBI is associated with a negative
outcome [251–253]. Hyperglycolysis may lead to increased
production of methylglyoxal [254, 255]. Nrf2 activation
would alleviate dicarbonyl stress by inducing glyoxalase 1 and
glutathione synthesis [249]. In fact, resveratrol was effective
in protecting hepatic (Hep G2) cells against methylglyoxal
toxicity due induction of Nrf2, which leads to increased
expression of glyoxalase I and antioxidant defenses [256].The
flavones Fisetin was highly protective against carbonyl stress
in the Akita mice, a model of diabetes type 1, by inducing
Nrf2-dependent enzymes such as glyoxalase and glutamate-
cysteine ligase, the rate limiting enzyme in glutathione syn-
thesis [257]. Fisetin was also neuroprotective in an ischemia
model [258]. Quercetin displays a strong antiglycation action
when albumin was incubated withmethylglyoxal. Curcumin,
despite being a potent Nrf2 inducer and effective as a
neuroprotectant in TBI, is a strong inhibitor (IC(50) ∼10 𝜇M)
of glyoxalase I [259], which would jeopardize its possible
antiglycation properties. Nevertheless, curcumin is as potent
dicarbonyl scavenger [260]. Caffeic acid was effective in
protecting proteins against AGE formation in vitro [261] and
epigallocatechin-3-gallate has been proposed as a dicarbonyl
scavenger [262], as well as other phenolic antioxidants [263].
In this regard, flavonoids are added to the list of carbonyl
scavengers, acting directly as scavenger or indirectly through
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activation Nrf2-dependent antiglycation enzymes such as
glyoxalase I.

The use of antioxidants which sequester ROS and other
harmful molecules is a promising strategy to increase neuro-
protection in TBI [211, 240]; however, part of the antioxidant
effect of such exogenous substances like flavonoids may
be due to the induction of endogenous antioxidants. Nrf2
activators may be prime candidates for the attenuation of
oxidative stress and subsequent neurotoxicity induced by
TBI.

8. Concluding Remarks

Improving TBI outcomes will greatly reduce the heavy
societal and economic burden currently associated with
this condition. Oxidative stress appears to be a primary
driver of TBI pathophysiology, and while several stress-
related markers and new therapeutic drugs with distinct
antioxidative stress mechanisms have been proposed for
the diagnosis and treatment of TBI, clinical consolidation
based on proven efficacy is still necessary. Research prospects
for new biomarkers of TBI should focus on demonstration
of functionality in converging pathways that can impact
multiple pathophysiological cascades.

As part of a consistent and clinically applicable interven-
tion, we believe it would be crucial to not only limit the
development of secondary damage following TBI but also
to activate major neuroprotective pathways. The identifica-
tion of relevant biochemical markers along with successful
therapeutic targeting in experimental models of TBI has
demonstrated the importance of several regulatory pathways
in neuroprotection, in particular Nrf2/ARE. This pathway
is activated by oxidative stress and nitric oxide production,
which are also both points of convergence in TBI-related
pathophysiological cascades.

Regarding the inhibition of secondary damage, the toxic
effect of aldehydes can be mitigated by aldehyde scavengers,
but also by upregulation of endogenous detoxification and
antioxidant defenses, which can limit damage to DNA, lipids,
and proteins. However, other pathophysiological routes, like
inflammation, also need to be targeted to reduce damage.

Our opinion is that the ideal, clinically feasible TBI
therapy would involve the targeting of a pathway which
converges on multiple pathophysiologic processes in TBI,
such as Nrf2/ARE, and which can also be modulated by
external factors like dietary substances. Such a pleiotropic
drug would have the potential to usher in a new era of
effective neuroprotection for traumatic brain injury.
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