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Inflammatory arthritis is an inflammatory disease that involves the joints and surrounding
tissues. Synovial hyperplasia often presents when joints become inflamed due to immune
cell infiltration. Synovial membrane is an important as well as a highly specific component
of the joint, and its lesions can lead to degeneration of the joint surface, causing pain and
joint disability or affecting the patients’ quality of life in severe cases. Synovial
macrophages (SMs) are one of the cellular components of the synovial membrane,
which not only retain the function of macrophages to engulf foreign bodies in the joint
cavity, but also interact with synovial fibroblasts (SFs), T cells, B cells, and other
inflammatory cells to promote the production of a variety of pro-inflammatory cytokines
and chemokines, such as TNF-a, IL-1b, IL-8, and IL-6, which are involved in the
pathogenic process of inflammatory arthritis. SMs from different tissue sources have
differently differentiated potentials and functional expressions. This article provides a
summary on studies pertaining to SMs in inflammatory arthritis, and explores their role
in its treatment, in order to highlight novel treatment modalities for the disease.
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INTRODUCTION

Joint injury plays an important role in inflammatory arthritis. Chronic inflammation involving bone
tissue is known to play a role in the destruction of bones, which is mainly accomplished through the
action of osteoclasts (OCs). However, the small number and short survival time of normal human
OCs, which are difficult to isolate from bone, have set back investigations that study bone
destruction mechanisms in joints (1). Recently, almost all chronic arthritic lesions have been
shown to have inflammation of the mesenchymal tissue, including synovium, tendons, ligaments,
bbreviations: TRMs, tissue-resident macrophages; YSMPs, yolk sac-derived myeloid-biased progenitors; BMSMs, bone
arrow-derived synovial macrophages; ESMs, embryonic synovial macrophages; c-FLIP/Flip, cellular-FLICE inhibitory
rotein; PGIA, proteoglycans induced arthritis; BCA-1, B-cell-attracting chemokines; BCDF, B-cell differentiation factor; AIA,
djuvant-induced arthritis; AtoMs, arthritis-associated osteoclastic macrophages; CR, cruciate ligament rupture; MIA,
aternal immune activation; UA, undifferentiated arthritis; UA-PsA, UA evolved into PsA.
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and joint capsules, while damage to bone and cartilage alone has
been shown to take place in a few exceptional cases (2).
Accordingly, these findings have led to speculation that
perhaps cells other than OCs are involved in the development
of bone destruction. Patients with rheumatoid arthritis (RA)
have significant proliferation of synovial tissue, and their
synovial lesions can induce further joint destruction (3).
Therefore, synovial lesions in arthritis are currently being
widely and thoroughly studied.

The synovium is a highly specialized mesenchymal tissue with
a lining and sub-lining surrounding the joint (Figure 1). The
thinner but highly cellular layer of lining consists of two main
cell types: SFs and SMs. SFs provide the extracellular matrix
(ECM) that supports synovial structures and secretes hyaluronic
acid and lubricin in order to maintain synovial fluid function.
Unlike SFs, however, SMs extend pseudopods into the synovial
space so as to maintain intra-articular homeostasis. The
supporting sublayer contains a rich network of lax connective
tissue, underlying fibroblasts and macrophages, sympathetic and
sensory nerves, and blood and lymphatic vessels that provide
oxygen and nutrients. Other immune cells (lymphocytes, mast
cells, and dendritic cells) are seldom found in normal synovium,
and are mainly distributed in the perivascular area of the
sublayer, playing a role in immune drainage (4). Populations
of SMs have been reported to persist in the lining layer in the vast
majority of patients with arthritis who responded adequately to
treatment, and these macrophage subsets may be resident
sentinels involved in maintaining tissue homeostasis (5).

Factors such as cell developmental origin (embryonic
and adult bone marrow-derived cells), organ survival
environment, microbial invasion, tissue damage, and activation
or inactivation signals from other immune cells determine the
differentiation of the various subsets of macrophages (6). SMs, as
Frontiers in Immunology | www.frontiersin.org 2
a subtype of tissue-resident macrophages (TRMs), maintain
tissue homeostasis, and play a key role in controlling infection
as well as excessive inflammation, similar to other cell subtypes
(7–18) (Table 1). Resting SMs are round or oval in shape and are
surrounded by radial protrusions; the filamentous pseudopods
elongate to make the cells irregular in the functionally active
state. Activated SMs both induce inflammation and carry out
immune monitoring via multiple pattern recognition receptors
(19). One particular study divided SMs into two subpopulations
according to the expression of the chemokine receptor CX3CR1:
CX3CR1+ lining macrophages and CX3CR1-interstitial
macrophages (20). In mice, CX3CR1+ macrophages have been
shown to form a protective and tightly connected cell layer that
prevents arthritis via isolation of the synovium while preventing
the infiltration of inflammatory cells (21). Similarly, TREM2+

trigger receptors and tight junction genes associated with their
barrier function, which are highly expressed on human SMs,
have been described to protect joints while maintaining the
homeostasis of the intra-articular environment (22). In light of
the aforementioned findings, an increasing number of
researchers have started to focus on the therapeutic potential
as well as the specific immune mechanisms of SMs to treat a
variety of diseases both in vivo and in vitro. This paper reviews
the latest studies on the individual development and biological
functions of SMs and highlights prospects for the applications of
SMs in a variety of inflammatory arthritis conditions.
DEVELOPMENT OF SMS

Discovery and Origin of SMs
Takasugi and Hollingsworth (23) were the first to discover a
large group of phagocytes in the synovial fluid of RA patients in
FIGURE 1 | Synovial structures in inflammatory arthritis. Synovial macrophages are mainly distributed in the lining layer of synovial tissue. During the onset of the
disease, SMs can not only induce inflammation, but also perform immune monitoring.
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1967, which was not studied in depth due to the limitations of
experimental techniques during that time. With the development
of minimally invasive joint surgery and ways in obtaining
synovial tissue, this group of cells has been found to be
macrophage-like cells, or SMs, which are one of the two main
cell types that make up the arthritic synovium. Subsequently,
high-throughput techniques found that the SM population of
arthritis patients in clinical remission can be stably present
within the lining layer, while stimulated SMs can induce and
exacerbate inflammation by activating inflammatory mediators
in the local microenvironment. Such technologies have
broadened the understanding of disease heterogeneity and
pathophysiology, opening up more avenues for discovering
SMs as new potential therapeutic targets (24).

SMs, as a type of macrophage, have long been thought to be
derived primarily from monocytes differentiated from
hematopoietic stem cells (HSCs) in bone marrow. Until the end
of the 20th century, many TRMs were understood to proliferate
independently of the bone marrow hematopoietic system, with a
considerable number of tissue macrophages being derived from
primitive macrophages present in the yolk sac or fetal liver.
Embryonic yolk sacs can directly produce embryonic
macrophages at about the age of the embryo (E) 7.5 and spread
throughout the blood circulation in embryo at approximately E9.0,
undergoing symbiotic differentiation into TRMs (25). Following the
widespread use of gene sequencing technology, Bian (26) et al.
found that yolk sac-derived myeloid-biased progenitors (YSMPs)
can migrate to the fetal liver after E11.5, producing lineages such as
monocytes, which subsequently migrate into tissues. Monocytes
begin to differentiate into TRMs before birth and exhibit different
phenotypes depending on the tissue in which they are located.
Unlike infiltrating macrophages derived from bone marrow HSCs,
Frontiers in Immunology | www.frontiersin.org 3
TRMs are able to sense tissue damage, participate in the
inflammatory response, and constantly repair tissue homeostasis.
In order to further identify the cytological characteristics of bone
marrow-derived synovial macrophages (BMSMs) and embryonic
synovial macrophages (ESMs), SMs of different origins were then
identified (21, 27). Accordingly, most ESMs were shown to bemajor
histocompatibility complex class II negative (MHCII-) in the joint
synovium. Moreover, the depletion of ESMs was shown to worsen
inflammation, indicating that it plays a major role in maintaining
tissue integrity and limiting inflammation. Unlike ESMs, the
BMSMs’ effect of MHCII+ is transient, and when inflammation
occurs, BMSMs continuously replenished by monocytes play a
primary role in maintaining the number of SMs during the
inflammatory phase. Meanwhile, ESMs only exhibit low levels of
local proliferation, allowing their protective signals to be masked by
a relatively large number of BMSMs. Under steady-state conditions,
however, BMSMs have not been shown to contribute to the number
of SMs. During the same period, Tu Jiajie et al. (28) used CX3CR1+

cells expressing green fluorescent protein in CX3CR1+/GFP mice in
order to track the appearance of SMs at different stages of the
embryo and bone marrow chimeras in adult mice. In doing so,
ESMs appeared in the mid-embryonic stage, manifested as F4/
80+CD11b-, exploded after birth, and expressed anti-inflammatory
cytokines such as IL-4 and IL-10. Meanwhile, BMSMs appeared in
the late embryonic stage and manifested as F4/80-CD11b+, while
cell number increased during progression of the disease in adult
mice alongside a reduction in the regression period, suggesting that
BMSMs had certain pathogenic effects.

Typing of SMs
Recently, the function of different subtypes of SMs and their
regulators has garnered increased attention. Numerous studies on
TABLE 1 | Markers and functions of tissue-resident macrophages (TRMs).

TRMs Tissue Function Induced activator Reference

Adipose
tissue
macrophages

Fats Regulates insulin sensitivity, adaptive thermogenesis Metabolic stimulation (free fatty acids, high insulin, high
sugar)

Russo et al. (7)
Caslin et al. (8)

Alveolar
macrophages

Lung Initiation of pulmonary immunity, pulmonary immune
monitoring, maintenance of tissue homeostasis

Bacterial lipopolysaccharides, hyperoxic partial
pressure, surfactants, signals provided by alveolar type
I and type II cells

Dewhurst et al. (9)
Joshi et al. (10)

Lung
interstitial
macrophages

Lung Regulates DC maturation and activation, antigen
presentation

Inhaled granules, bleomycin, radiation Dewhurst et al. (9)
Shi et al. (11)

Bone marrow
macrophages

Marrow Mobilize hematopoietic stem cells to support
hematopoiesis

Elevated hemoglobin levels Heideveld and van
den Akker et al. (12)

Intestinal
macrophages

Gastrointestinal
tract

Maintains homeostasis in the intestinal environment,
activates antigen presentation of T cells, a high
phagocytic capacity

Gut microbes Bain and Schridde
et al. (13)

Microglia CNS Promote neuronal survival, participation in immune
detection and synaptic remodeling

Foreign antigens (bacteria, fungi, parasites, and
viruses), brain damage

Nayak et al. (14)

Kupffer cells Liver Remove microorganisms and cellular debris from the
blood, produce a variety of inflammatory cytokines and
proteases

Bacterial endotoxins, liver damage (alcohol, fat) Basit et al. (15)

Red marrow
macrophages

Spleen Red blood cell clearance, iron metabolism, reticulocyte
quality control

Elevated hemoglobin levels Heideveld and van
den Akker et al. (12)
Hashimoto (16)

Synovial
macrophages

Synovial
membrane

M1: Recruit inflammatory cells, cause joint erosion
M2: Promote angiogenesis, tissue reconstruction and
repair

IFN-g, LPS, GM-CSF
IL-4, IL-13, M-CSF

Zhang et al. (17)
Teng et al. (18)
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single-cell sequencing techniques have been conducted to explore
the heterogeneity of SMs in arthritis patients, which has ushered in
unique perspectives for discovering potentially new therapeutic
targets in inflammatory arthritis (19). Fan Zhang et al. (29)
performed multimodal transcriptional plus proteome mapping
analysis on the synovial tissue of 36 patients with RA, producing a
high-dimensional single-cell dataset of synovial tissue in RA
patients. Here, M1 SMs and M2 SMs were shown to be the two
extremes of the continuous spectrum of activated monocytes in
inflammatory synovial tissue of patients with RA, with
characteristics similar to macrophages, as shown in Table 2
(30–32). M1 SMs cause joint destruction and erosion through
the secretion of cytokines such as TNF-a, IL-1b, IL-12, and IL-18
(17) and are closely associated with synovial inflammation in
inflammatory arthritis. M2 SMs can be further divided into M2a,
M2b, M2c, and M2d, which promote angiogenesis, tissue
remodeling, and repair by producing a large number of anti-
inflammatory factors including IL-10, TGF-b, and arginase1 (33).
M0 (quiescent phase) SMs can transform into M1 (pro-
inflammatory) or M2 (anti-inflammatory) SMs when stimulated
differently, which may be regulated by a variety of factors,
including JAK/STAT, PI3K/Akt, JNK, Notch/NF-kB, and B7-
H3/STAT3 signal pathways (34). M1 SMs have also been shown
to transform into M2 SMs. Semaphorin-3A (SEMA-3A), which is
derived from bone marrow stromal cells (18), lactic acid (35), and
acupuncture at the foot San Li point (36), can accelerate
this process.

Interestingly, the Accelerating Medicine Partnership
consortium combined single-cell RNA sequencing (scRNA-
seq), mass spectrometer, batch RNA-seq, and flow cytometry
in order to analyze 51 synovial tissue samples from patients with
RA and osteoarthritis (OA), providing the first comprehensive
description of 18 unique synovial cell populations (29). Unlike
classical typing of SMs as described above, the authors divided
mononuclear-macrophage subsets into SC-M1 (IL-1B+), SC-M2
(NUPR1+), SC-M3 (C1QA+), and SC-M4 (IFN+). Accordingly,
the amplification of TLR-activated pro-inflammatory SC-M1
and SC-M4 with interferon (IFN) characteristics were observed
to be more pronounced in the synovium of patients with RA
compared to those with OA. The corresponding findings were
also consistent with recent comparative analyses of synovial
tissue transcriptome profiles and reference transcriptomes of
Frontiers in Immunology | www.frontiersin.org 4
immune cells activated by endogenous and exogenous stimulants
in RA patients along with OA patients (37). Subsequently, Kuo
and his team (38) conducted a study using a similar approach.
They found that heparin-binding EGF-like growth factor
(HBEGF)-positive clusters 1 and 4 macrophages acted similarly
to SC-M1 and SC-M4, and that the relative abundance in RA was
higher than that in OA. Thus, the transcriptional profiles of SC-
M2 and SC-M3 were shown to not be clearly defined by specific
markers, indicating that they differed from known activated
macrophage states, which suggested that these two subtypes
may be steady-state macrophage phenotypes. Overall, the
complex heterogeneity of SMs reflects health status as well as
disease at different stages, which provides a better understanding
regarding the biological functions of macrophages while laying
the foundation for treating the different subsets of SMs.
MARKERS OF SMS

Markers of SMs refer to important indicators that define and sort
all SMs during development, which assisted in the identification
of different subpopulations of SMs in human and animal
synovial tissues.

Pro-Inflammatory Surface Markers: CD80,
CD86, and Ly6C
CD80 and CD86 are co-stimulating molecules on the surface of
macrophages that can act as biomarkers in predicting pro-
inflammatory SMs. Anti-CD80 and anti-CD86 therapy in CIA
mice have been shown to significantly inhibit disease scoring and
morbidity (56). Liu et al. (57) utilized immunohistochemistry to
detect the synovial tissue in 18 patients with RA, demonstrating
that CD86+ macrophages were present in 11 of them and were
surrounded by lymphocyte aggregation. In addition, the
stimulation of resident macrophages in vitro with Bacillus
thuringiensis Cry1Ac protoxin (pCry1Ac) has been shown to
upregulate the expression of CD80 and CD86, thereby enhancing
the production of pro-inflammatory cytokines TNF-a, IL-6, and
MCP-1 (58). When CD80 and CD86 that are expressed in SMs
bind to the shared receptor CD28, CD4+ T cells can be co-
stimulated, thus activating pro-inflammatory signaling pathways
TABLE 2 | Characteristics of M1 macrophages and M2 macrophages.

Characteristic M1 M2

Inducer IFN-g, LPS, GM-CSF IL-4, IL-13, M-CSF, helminth
Marker NOS2, TLR2, TLR4, CD80, CD86, CX3CR1 CD115, CD206, PPARG, ARG1, CD163, CD301, Dectin-1, PDL2,

Fizz1, CX3CR1
Secreted cytokines IL-12, IL-23, TNF-a, IL-1b, IL-8, IL-6 IL-10, IL-4, IL-13, TGF-b
Secreted chemokines CXCL9, CXCL10, CXCL11, CCL5 CCL17, CCL22
Correlated transcription factors and signal
regulators

STAT1, IRF5, NF-kB, SOCS1 STAT6, IRF4, SOCS3, KLF4, PPARP-g, c-Myc

Surface receptors MHC-II CD206, mannose, MGL, STAB1, CD163
MicroRNA miRNA-29, miRNA-33, miRNA-127, miRNA-155 miRNA-146a, miRNA-222, miRNA-223, let-7c
Function Recruit inflammatory cells, cause joint erosion, promote

inflammation
Promote angiogenesis, promote tissue reconstruction and repair,
anti-inflammatory, promote tumor growth and invasion
July 2022 | Volume 13 | Article 905356
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and increasing the production of IL-2 and IFN-g (59). Moreover,
the CD80/CD86 axis has been shown to play an important role in
the pro-inflammatory process of SMs, though it cannot be used
as a specific marker for M1-type SMs. In addition, researchers
(60) have detected the presence of the marker Ly6C in mouse
synovial tissue BMSMs of E20.5 via immunohistochemistry and
flow cytometry, which serves as a marker for mouse circulating
monocyte–macrophage lineages. Ly6Chigh monocytes in the
mouse joint synovium are known to be involved in the
development of arthritis, while Ly6Clow monocytes help reduce
joint inflammation by mobilizing Treg cells (61). Cremers et al.
(62) injected collagenase into the joint cavity of wild-type
C57BL/6 mice to induce local arthritis symptoms, which
exhibited a strong increase in S100A8/A9 expression during
the advanced stage of inflammation as well as an increase in
the number of Ly6Chigh monocytes flowing into the synovium.
The corresponding findings suggested that the development of
synovitis may be mediated by Ly6Chigh monocytes–
macrophages, and the molecular marker S100A8/A9, which
occurs during inflammation, is also involved in this process.
However, during the same period, Misharin et al. (63) found that
non-classical Ly6C-CD62L-CD43+CCR2- monocytes initially
differentiated into M1 macrophages so as to drive
inflammatory arthritis in mice, which then polarized to M2
macrophages as inflammation progressed. In contrast, Ly6C-
Frontiers in Immunology | www.frontiersin.org 5
has been shown to act as a polarizing marker for M2 SMs in
arthritis and mediate the reduction of joint inflammation at the
onset of disease. This suggests that Ly6C plays a different role in
monocyte-derived macrophages and TRM, contrary to the
findings described above. Whether this discrepancy is related
to the difference between classical and non-classical, and whether
Ly6C can be used as a specific marker for M1 type SMs, should
be further validated in large cohorts studies of patients and
animal models with inflammatory arthritis.

Anti-Inflammatory Surface Markers:
CD163, CD206, and F4/80
The haptoglobin–hemoglobin receptor CD163 and mannose
receptor CD206 have been described to be highly expressed in
chronic arthritis M2c and M2a macrophages, respectively (64).
Compared with wild-type (C57BL/6), CD163-/-CIA mice have
been observed to have higher arthritis scores, earlier onset, longer
disease, and intense progression (65). Meanwhile, CD163-/-CIA
mice mainly exhibit the Th2 response, while CD163+/+CIA mice
mainly undergo Th1 reactions. Baeten et al. (66) performed
macrophage and lymphocyte subset analysis on synovial biopsy
samples from 26 patients with spondylitis (SpA) as well as 23
patients with RA, which demonstrated a significant increase in
CD163+ SMs that was associated with systemic inflammation
and impaired T-cell activation. The above findings show that
TABLE 3 | Commonly used drugs for the treatment of inflammatory arthritis by SMs.

Disease Type of drug Name of drug Mechanism of action Reference

RA Medicinal herb Sinomenine (SIN) Reduce the number of pro-inflammatory SMs in synovial tissue Liu et al. (39)
NF-kB inhibitors Withaferin-A Promotes SMs (CD11b+) repolarization Sultana et al. (40)
Medicinal herb Celastrol Consumption of pro-inflammatory CD68+SMs Cascão et al. (41)
Compound Methyl palmitate Consumption of pro-inflammatory CD68+SMs Abdel Jaleel et al. (42)
Compound Cilostazol Attenuates the expression of IL-23 co-localized with CD68+SMs in

the synovium
Park et al. (43)

Immunomodulators Methotrexate (MTX) Reduce the number of activated macrophages Gremese et al. (44)
JAK inhibitors Tofacitinib

ruxolitinib
Inhibited the stimulation of TNF and the activation of STAT signaling
pathways in SMs;
reduced the nuclear localization of NF-kB subunits in SMs

Yarilina et al. (45)

Biologics Infliximab Reduces Ly6C macrophage infiltration in pannus Huang et al. (46)
Biologics Rituximab Reduce TNF and IL-6 in the microenvironment, indirectly affecting

SM activation
Teng et al. (47)

Biologics CTLA4-Ig Downregulated T-cell activation and SMs secreted IL-6, TNF-a, and
IL-1b

Brizzolara et al. (48)

OA compound Quercetin Induction of polarization of M2-type SMs Hu et al. (49)
Nonsteroidal anti-
inflammatory drugs

Diclofenac sodium Induction of polarization of M2-type SMs Xin et al. (50)

Medicinal herb The anti-swelling formula of Fangji
Huangqi

Suppresses polarization of M1-type SMs Wei et al. (51)

Compound Itaconate Regulate the polarization state of the SMs; directly or indirectly
inhibits inflammation and senescence of chondrocytes

Ni et al. (52)

Synthetic
nanoparticles

Modified zeolitic imidazolate
framework-8 (ZIF-8) nanoparticles

Facilitates the change of the polarization state of SMs from the M1
phenotype to the M2 phenotype

Zhou et al. (53)

PsA Glycolytic inhibitors 2-DG/HIF1ai Reverses the metabolic reprogramming and expression of IL-1b, IL-
6, and IL-12 in SMs

Van Raemdonck
et al. (54)

Monomeric
glycoproteins

GM-CSF Drive a change in the polarization state of the M1-type SMs Fuentelsaz-Romero
et al. (55)
July 2022 | Volum
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CD163 has a novel strong anti-inflammatory effect, and may
complement the anti-inflammatory T-cell effect. Similarly,
CD206 may also play an important role in the anti-
inflammatory ability of SMs. Yokozeki et al. (67) injected TGF-
b inhibitor (SB431542) intraperitoneally into C57BL/6J mice and
used real-time PCR to detect the expression of CD206 in
intervertebral disc macrophages, in which the proportion of
CD206+ macrophages was found to be significantly reduced.
At the same time, CD206+ macrophages have also been shown to
regulate the IL-6-mediated paracrine mechanism in order to
combat fibrosis in fibroblasts (68). Therefore, it may be
reasonable to posit that CD163 and CD206 serve as markers of
anti-inflammatory SMs. Guo Yawei et al. (60) found that F4/80
and CD11b can dynamically monitor mouse ESMs and BMSMs
through immunohistochemistry and flow cytometry separation.
Here, only F4/80+ESMs were found in the mouse synovial tissue
of E12.5, while CD11b+BMSMs appeared in mouse synovial
tissue of E20.5. The synovial tissue of newborn to adult mice
was found to be a mainly mixed cell population of ESMs and
BMSMs, while the proportion was more ambiguous, suggesting
that the expression and function of SMs from two different
sources differed but overlapped. Dexmedetomidine (DEX) is a
highly selective alpha2-adrenoceptor agonist that is known to
increase the expression of F4/80+Ly6G+ macrophages, further
triggering the secretion of TGF-b1 and leading to inhibition of
cytokine storms and accelerated inflammation resolution (69).
F4/80+ cells have been shown to have good immunotherapy
Frontiers in Immunology | www.frontiersin.org 6
potential in inflammatory arthritis, and the cellular-FLICE
inhibitory protein (c-FLIP, Flip) has been described to serve as
a regulator of RA synovial F4/80hi SMs. Huang et al. (70) induced
Flipf/fLysMc/+ mice with a mild inflammatory phenotype and
found that, on day 9, following the induction of arthritis, the
number of F4/80hi SMs in the joint synovium of Flipf/fLysMc/+

mice increased while that of Flip decreased. Meanwhile, F4/80hi

SMs were shown to possess an anti-inflammatory phenotype in
both Flipf/fLysMc/+ and control mice. These findings may have
been because a decrease in Flip is known to alter intracellular
signaling, thereby promoting a rise in the number of F4/80hi SMs
with an M2-like phenotype, though it cannot rule out the
influence of other cells. Subsequently, researchers have found
that bone marrow-derived M1 macrophages could express
markers of M2 macrophages after GM-CSF stimulation in
vitro, suggesting that using only specific markers on the cell
surface to distinguish between M1 SMs and M2 SMs may not
achieve the desired effect (71).

Imaging Markers: Folate Receptors b and
Transporters
Folate receptor b (FRb) is a glycosylphosphatidyl (GPI)-
anchored plasma membrane protein that is expressed on
activated SMs. In light of its strong affinity for folic acid, this
receptor is an important SM imaging marker and RA
therapeutic target (e.g., folate conjugate PET tracers and
folate conjugate drugs) (72). FRb has been found to be
FIGURE 2 | The immunogenic role of synovial macrophages in inflammatory arthritis. Synovial macrophages interact with other immune cells through cytokines,
chemokines, and inflammatory mediators to promote the activation, proliferation, and differentiation of lymphocytes, synovial fibroblasts, and osteoclasts in the
synovium. TRM, tissue-resident memory T; SM, synovial macrophage; SF, synovial fibroblast; OC, osteoclast; AtoMs, arthritis-associated osteoclastogenic
macrophages; IL-1RA, IL-1 receptor antagonists; IL-1bR, IL-1b receptor; IL-12R, IL-12 receptor; IL-23R, IL-23 receptor; IL-1R, IL-1 receptor; IL-6R, IL-6 receptor;
IL-33R, IL-33 receptor; CD206L, CD206 ligand; CXCL, C-X-C motif chemokine ligand; CXCR, C-X-C motif chemokine receptor; CCL, C-C motif chemokine ligand;
CCR, C-C motif chemokine receptor; TNF-a, tumor necrosis factor-a; IFN-g, interferon-g; OPG, osteoprotegerin; MerTK, tyrosine-protein kinase Mer; IRF5, interferon
regulatory factor 5; BCA-1, B-cell-attracting chemokine; BCDF, B-cell differentiation factor; TLR, toll-like receptor; RANK, receptor activator of nuclear factor kappa-
B; RANKL, receptor activator of nuclear factor kappa-B ligand; EGF, epidermal growth factor; EGFR, epidermal growth factor receptor; PG, prostaglandin.
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expressed at higher levels in SMs that are polarized towards
anti-inflammatory and repair aspects, a property similar to
CD163 (73). Samaniego et al. (74) proposed that FRb has now
been used as a target for imaging as well as the delivery of
therapeutic agents in inflammatory arthritis. Therefore, FRb
may also be useful in delivering agents with the ability to alter
the polarization state of macrophages. Translocator protein
(TSPO) is a high-affinity cholesterol and drug-binding protein
that is highly expressed in SMs (CD163+ and CD68+) and
activated synovial stroma in patients with RA (75). Gent et al.
(76) used (R)-[¹¹C] PK11195-based positron emission
tomography (PET) to target TSPO on activated SMs and
image subclinical arthritis to provide the possibility of early
diagnosis and disease-sensitive surveillance. Therefore, TSPO
can also be used as an imaging marker for arthritis SMs. As
understanding of the pathogenesis of SMs continues to develop,
such imaging markers may provide new targets for the future
treatment of inflammatory arthritis.

Other Markers
Other markers such as CD32, CD64, CD68, MerTK, and
CX3CR1 also play important roles in SM definition and
sorting. Using immunofluorescence staining technology,
researchers have found that multiple markers exist
simultaneously in synovial tissue. Specifically, the inner
membrane lining layer mainly contains the markers CD163,
CD32, and CD68, while the lower synovial layer has CD68,
CD163, CD32, and CD64, of which CD163 and CD68 can
identify SMs in the late maturation stage of RA patients (33).
Manferdini et al. (77) analyzed synovial tissue in patients with
first-generation (P1) and fifth-generation (P5) OA via flow
cytometry and found that the typical markers CD14, CD16,
CD68, CD80, and CD163 of SMs in P1 isolated synovial cells
were positively expressed, while P5 synovial cells only had
positive labels for SFs. Meanwhile, MerTK+CD206+

macrophages in the synovium of patients in sustained
remission were found to be significantly increased compared
to patients in active or intermittent remission of arthritis, which
was inversely correlated with disease activity, synovial
hypertrophy, and angiogenesis (22). The corresponding
finding suggests that MerTK and CD206 play a synergistic
role in the anti-inflammatory process of SMs. Culemann et al.
(21) found that in CX3CR1+/GFP mice, the synovial lining
layer macrophages selectively express the markers CX3CR1,
CD68, and F4/80 under steady-state conditions, accounting for
40% of the total number of SMs. In contrast, macrophages
within the synovial stromal have not been shown to express
CX3CR1. IL-6, TNF-a, and CCL5 secreted by M1 SMs, along
with IL-10, TGF-b, and CXCL13 secreted by M2 SMs, are all
related to the pathology of inflammatory arthritis. Therefore,
these cytokines and chemokines can also act as secretory
markers, which may assist in distinguishing between SMs
subtypes of different functions. In regard to current research,
the specific markers of SMs remain to be fully understood;
hence, finding substances that can specifically label SMs has
become an immediate issue.
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INTERACTION OF SMS WITH OTHER
IMMUNE CELLS

SMs, which are immune cells, are involved in the pathogenesis of a
variety of inflammatory arthritis conditions. In light of the
previously unclear classification of the SM subpopulations, little
was known about whether such cells had protective or destructive
functions during disease. In order to visualize SMs and study their
spatial and temporal distribution at steady state, as well as during
arthritis, Culemann et al. (21) labeled the chemokine receptor
CX3CR1 and combined it with fluorescence microscopy to follow
SMs in mice. In doing so, CX3CR1- interstitial macrophages were
shown to appear as self-renewing precursors of CX3CR1+ SMs,
and that their emergence appeared earlier than the formation of
immune complexes due to immune infiltration. These SMs are
membranous structures capable of expressing polarity-related
molecules or scavenger receptors, providing an anti-
inflammatory barrier to the joint. Alivernini et al. (22) also
confirmed that in human synovial tissue, the expression of
MerTK distinguished SMs with a protective phenotype
(MerTK+) from those with a pro-inflammatory phenotype
(MerTK-). These MerTK+ cells exhibited different regulatory
characteristics depending on the disease state (healthy, active, or
in remission), and were able to secrete tight junctional proteins
similar to epithelial cells, which hindered the transport of immune
cells in a steady state. In addition, protective SMs could express
high levels of anti-inflammatory mediators, such as IL-1 receptor
antagonist (IL-1RA) or osteoprotegerin (OPG), and may act acted
as negative regulators of pro-inflammatory cytokines, effectively
preventing inflammatory cell infiltration as well as associated bone
destruction (5). SMs have also been shown to secrete TNF-a, IL-6,
IL-23, and large amounts of CXCL together with CCL chemokines
to promote and maintain inflammation through the recruitment
and activation of polymorphocytes (PMNs), T cells, B cells, or
monocytes (78). These specific types of SMs and levels of
inflammatory progression have been shown to form a positive
feedback loop that accelerates the rate of inflammation
development. According to the dual role of SMs in joint
inflammation, a better understanding of the link between this
cell and other immune cells may help to more accurately
characterize their pathogenic function (Figure 2), thus fostering
the development of SM-targeting strategies.

SMs and Lymphocytes
Synovial tissue in patients with arthritis can be considered as
tertiary lymphoid tissue or ectopic lymphoid structures, which
are similar in structure to secondary lymphoid tissue, with the
presence of T-cell and B-cell differentiation sites (79). SMs as a
type of macrophage may also drive T lymphocyte infiltration,
triggering B lymphocytes to produce immunoglobulins and
further aggravate the inflammatory response.

It was found that an increase in CXCL16+ SMs in RA
synovium led to the recruitment of CXCR6+ memory T cells,
which, in turn, triggered the inflammatory cascade response
associated with RA pathology (80). van Roon et al. (81) used a
novel drug-coupled antibody (CD64-CaMi) against the IgG
July 2022 | Volume 13 | Article 905356

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Bai et al. Research Progress of Synovial Macrophages
high-affinity receptor (FcgammaRI) to culture monocytes in the
peripheral blood and synovial fluid of RA patients, where CD64-
CaMi was shown to induce SM death along with the effective
inhibition of pro-inflammatory Th1 cytokine production. Their
findings suggested that the SMs played an important part in
activating inflammation-promoting autoreactive T cells, thus
triggering and exacerbating the disease. Moreover,
inflammatory macrophages have been observed to express
IRF5 so as to promote the proliferation and activation of T
lymphocytes by secreting IL-12, IL-23, and IL-1b, while
promoting the transformation of T lymphocytes to the Th1 or
Th17 phenotype (82). If the IRF5–IRF4 modulation axis is
designated as a new target for therapeutic intervention,
inhibition of IRF5 activity in SMs may specifically affect the
expression of pro-inflammatory cytokines and lead to a decrease
in effector T cells. B cells are essential antigen precursor cells in
proteoglycan-induced arthritis (PGIA). The presence of MerTK-

HLAhighCD48+ SMs in healthy and arthritic synovium may be
key at the onset of inflammation (22). Previous studies have
detected B-cell-attracting chemokines (BCA-1) (83) and B-cell
differentiation factor (BCDF) (84), which have been shown to be
potent pro-B-cell aggregation factors in the condition medium of
synovial cells in patients with inflammatory arthritis. B cells have
also been noted to secrete IL-1, IL-6, TNF-a, and IFN-g, which
can directly or indirectly stimulate macrophages in the synovial
lining and sub-synovial layer, further leading to the destruction
of cartilage and bone (85). Therefore, anti-CD20 antibody
therapy may affect both mature B lymphocytes and SMs.
Comparative transcriptomic analysis has also revealed that
gene patterns of activated B cells and T cells in RA synovial
tissue reflects associated response to activated macrophages (37).

SMs and SFs
Synovial tissues are immune networks that have complex
components. Through the use of fluorescence tracking of SMs
in arthritis mouse models after the induction of synovitis,
interactions between SFs and SMs in the lining layer were
found to occur due to active remodeling, resulting in the
loosening of barrier layers (21). Therefore, whether the
abnormal activation and proliferation of SMs and SFs in
arthritis patients are related to their interaction has continued
to be the focus of research.

Kuo et al. (38) found that long-term exposure to pro-
inflammatory environments could lead to the production of
prostaglandins by SFs together with inflammatory factors,
thereby prompting SMs to enter a state different from classical
M1 and M2 polarization. Meanwhile, these macrophages have
been shown to promote the invasion of fibroblasts in an
epidermal growth factor receptor-dependent manner. The
associated findings suggest that intercellular crosstalk in the
inflammatory environment remodels both cell types and
accelerates their mediated joint destruction. The team then co-
cultured HBEGF+ SMs with SFs, in which the RNA sequence
analysis revealed that 855 SF genes, including IL-11, IL-33, and
IL-6, were altered. Furthermore, inflammation–macrophages–
fibroblasts were shown to form an interacting system, in which
targeting HBEGF+ SMs may serve as a new therapeutic pathway
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in order to alleviate inflammation. In addition, an analysis of
SMs that adopted single-cell sequencing techniques showed that
MerTK+CD206+ SM clusters could induce inflammatory
responses to SFs and promote synovial inflammation through
the production of pro-inflammatory cytokines in conjunction
with alarm proteins. In contrast, MerTK-CD206- SMs clusters
were shown to produce lipid mediators that resulted in the
induction of a repair response to SFs as well as a reduction in
synovial inflammation. Meanwhile, SFs have been noted to
promote the receptor activator of nuclear factor kappa B ligand
(RANKL) production by macrophages, induce OC formation,
and exacerbate bone destruction (86).

SMs and OCs
OCs are multinucleated giant cells that promote bone resorption;
their epigenetic and transcriptional changes are mainly
dependent on macrophage colony-stimulating factor (M-CSF)
and RANKL (87). Macrophages have been found to differentiate
directly into mature OCs under specific microenvironmental
conditions (88). Mature OCs have also been shown to be
involved in pathological bone erosion in patients with arthritis,
which occurs when the pannus invades the outer surface of
articular bone. Accordingly, whether this process involves SMs
has always been a question of inquiry.

Cuda et al. (89) found that high activation of SMs in patients
with arthritis increased the expression of toll-like receptors
(TLR2, TLR3, TLR4, and TLR7) and produced a large number
of pro-inflammatory cytokines (IFN-g, TNF-a, IL-1, and IL-6),
chemokines (CCL5, CXCL1, and CXCL10), and various matrix
lyases, which, in turn, activated OCs to promote bone
destruction. Additionally, the mannose incorporated liposomal
delivery system (ML) delivers p-coumaric acid (CA), a dietary
polyphenol, to SMs of adjuvant-induced arthritis (AIA) rats that
inhibit OC differentiation and bone resorption (90). Notably,
scientists have discovered a group of arthritis-associated
osteoclastic macrophages (AtoMs) (CX3CR1hiLy6CintF4/80+I-
A+/IE+ macrophages) in the synovial tissue of mice suffering
from collagen-induced arthritis, which has been shown to be
capable of differentiating into functional osteoclastic precursors
in the pannus (91). Similar cell populations (CX3CR1+ HLA-

DRhiCD11c+CD86+ SMs) have also been noted in the synovial
tissues of patients with RA. When these AToMs are inhibited by
thiostrepton, osteoclastogenesis can be inhibited simultaneously,
serving as a potential target for RA treatment.
RESEARCH PROGRESS OF SMS IN
INFLAMMATORY ARTHRITIS

Research Progress of SMs in the
Treatment of RA
As research continues to develop, the importance of SMs in the
pathogenesis of RA is progressively being studied. SMs have been
shown to secrete a variety of cytokines and chemokines while
regulating proliferation via signals such as transcription factors.
In recent years, treatment options for RA have expanded, which
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are now composed of corticosteroids, traditional synthetic
DMARDs (CsDMARDs), biological DMARDs (BDMARDs),
and targeted synthetic DMARDs (TsDMARDs) (92). These
treatment modalities involve multiple mechanisms of action
and have direct or indirect effects on the treatment of SMs.
Therefore, the targeted intervention of SMs may have potential
applications in the treatment of arthritis (Table 3).

Sinomenine is an active monomer obtained from the Chinese
herbal medicine Qingteng, which has been shown to reduce the
number of pro-inflammatory SMs in synovial tissue and improves
arthritic symptoms in RA mice (39). Withaferin-A, a steroidal
endoester-encapsulated mannose modified with liposomes, can be
used to improve RA by promoting SMs (CD11b+) repolarization
in AIA rats (40). CD68+ SMs act as pro-inflammatory
macrophages that accelerate the onset of arthritis. Therefore,
targeted intervention of this subset of cells may effectively
alleviate the pathogenesis of RA. Moreover, depletion of SMs
(CD68+) with clodronate-containing liposomes has been found to
inhibit the onset and development of antigen-induced arthritis
models (93). Rita et al. (41) injected celastrol that was isolated
from the Chinese herbal medicine triptolide into the tail vein of
AIA rats, in which a significant reduction in the number of CD68+

SMs and overall synovial inflammatory cells were observed 22
days later, thus preventing joint destruction without side effects.
Methyl palmitate has been shown to inhibit the expression of
CD68+ SMs in adjuvant-induced rat models of arthritis and can
exert potential anti-inflammatory effects (42). Cilostazol has also
been shown to significantly attenuate the expression of IL-23 co-
localized with CD68+ macrophages in the knee synovium of CIA
mice through cAMP-dependent protein kinase activation while
reducing the severity of arthritis (43). MTX reduces the presence
of activated macrophages in the joints, liver, and spleen of arthritic
rats and has been widely used in the treatment of RA (44).

Currently, targeted interventions that can modulate factors
and microRNAs associated with the phenotypic transformation
of SMs have also garnered increased attention. Specifically, GM-
CSF phase II randomized controlled trials have demonstrated
that GM-CSF inhibitors for RA have a high safety profile as well
as a very low chance of infection complications (94). miR-155
has been detected in the BIC gene on mouse chromosome 16 and
human chromosome 21. Moreover, studies in clinical and animal
models have revealed that miR-155 is associated with RA
pathogenesis, which can mediate the upregulation of SM
expression in patients with RA (95). CRISPR/CAS9 technology
has also been used to genetically edit mouse macrophages, while
further analysis showed that this technology can reduce pro-
inflammatory cytokines produced by macrophages by targeting
NLRP3 inflammatory bodies, which may serve as a target in
improving inflammatory diseases (96). Jia Xu et al. (97) used
bioinformatics to systematically analyze the GSE97779 and
GSE10500 expression profiles of SMs in RA patients,
identifying 10 candidate genes (FN1, VEGFA, HGF,
SERPINA1, MMP9, PPBP, CD44, FPR2, IGF1, and ITGAM)
that may be used in the future diagnosis, prognosis, and
treatment of RA.
Frontiers in Immunology | www.frontiersin.org 9
JAK inhibitors have long been developed as anti-
inflammatory and immunosuppressive agents, of which
tofacitinib and ruxolitinib have exhibited a significant degree of
clinical efficacy in RA. Yarilina et al. (45) investigated the
mechanism of action of JAK inhibitors, in which the
stimulation of TNF, the activation and expression of STAT-1,
and downstream inflammatory target genes in RA SMs were
inhibited. In the interim, JAK inhibitors can also reduce the
nuclear localization of NF-kB subunits in SMs. In this regard,
targeted SMs have been shown to play an important role in the
treatment of RA joint inflammation. In addition, targeting SMs
by TNF-a inhibitors (98), Bruton’s tyrosine kinase (BTK)
inhibitors (99), and sex hormone modulators (100), and
clearance of overexpressed IgG high-affinity receptors (FcgRI)
(81) can be useful in the treatment of RA. Symptomatic
improvement of patients with arthritis following infliximab
therapy have been shown to be accompanied by a significant
decrease in infiltration of Ly6C macrophages in the pannus (46).
Although rituximab is an anti-CD20 antibody that acts against B
cells, it may indirectly affect SM activation by reducing the
production of TNF and IL-6 in the microenvironment (47).
Similarly, cytotoxic T lymphocyte-associated antigen 4
immunoglobulin (CTLA4-Ig) can bind to B7 molecules on
antigen-presenting cells in order to downregulate T-cell
activation. Co-culture of the biologic agent CTLA4-Ig with
SMs from RA patients has also been shown to significantly
downregulate the expression of cytokines IL-6, TNF-a, and IL-
1b, indicating that CTLA4-Ig has an indirect and direct anti-
inflammatory effect on primary monocultures of RA SMs (48).
Cholesterol-activated liver X receptors (LXRs) are highly
upregulated in RA SMs and can enhance TLR-driven cytokine
release, such as TNF-a (101). In addition, MerTK+CD206+ SMs
appear to play a crucial role in maintaining the sustained
remission of RA inflammation. A decrease in the proportion of
MerTK+ SMs during remission has been found to be associated
with an increased risk of disease after drug discontinuation.
Therefore, the regulation of MerTK+ SMs may be a potential
therapeutic approach for RA (22). Importantly, several new
techniques, such as the use of positron emission tomography
(PET) scanning and activation of SMs-induced tracer-targeting
molecules, may help improve the effectiveness of targeted
therapies for SM-mediated arthritis (19).

Research Progress of SMs in the
Treatment of OA
OA has long been recognized as a degenerative disease of
cartilage that may be accompanied by secondary bone injury
and osteophytes (102). Mild synovial inflammation, which is a
combination of macrophage-based inflammatory infiltrates, has
been observed in more than half of OA patients in both the early
and late stages of disease. Although inflammation is less
pronounced, ample evidence has been produced to support its
pathogenic role (103). Currently, the importance of synovial
membranes, especially SMs, in OA has been elaborated in both in
vitro and in vivo studies.
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Yarnall’s team studied synovial tissue from experimental dogs
with cruciate ligament rupture (CR) and OA. Here, an increased
number of CD68+, CCR7+, and iNOS+ cells in the CR and OA
groups was seen compared to that of the normal group,
suggesting that these M1-type pro-inflammatory SMs played
considerable roles in their pathogenesis. Their findings also
provided evidence that these cells may serve as therapeutic
targets in their treatment (104). Moriya et al. (105) examined
synovial tissue collected from knee joints of OA patients, and
found that SM-induced C-type lectins (Mincle) may play a
significant role in synovial inflammation of OA patients, which
may be potentially developed into a new target for OA therapy.
SMs have been reported to respond to danger-related molecular
patterns, including cartilage fragments and intracellular proteins
in necrotic cells (106). During the same period, rheumatologists
from six academic institutions in the United States biopsied the
synovial tissue of RA and OA patients via minimally invasive
ultrasound, and found a high degree of transcriptional
heterogeneity (107), indicating that multiple subsets of SMs
may exist in the same joint. The persistence of different
subpopulations of SMs in inflammatory disease may contribute
to OA treatment. Specifically, an analysis of patients with knee
OA based on the gene expression profiles of SMs showed a rise in
number and tight alignment of synovial CD14+ macrophages,
which exhibited characteristics of cell proliferation as well as a
high expression of Ki67 (108). Moreover, in vitro studies have
demonstrated that the depletion of CD14+ macrophages in
synovial cell cultures can lead to a reduction in IL-1b, TNF-a,
MMPs, and Aggrecanase enzymes capable of degrading articular
cartilage (109). Recently, Thomson et al. (110) showed that key
OAmediators (TNF, IL-6, and IL-1b) were released into the joint
space via HLA-DRA+ macrophages and neutrophils (NE), after
which it again showed that tissue-specific targeting of synovial
pathogenic molecules or cells has the potential to treat OA.

Studies involving human and animal models have shown that
macrophages accumulated in synovial tissue are associated with
pain sensitivity in OA joints (111). Sakurai et al. (112) reported
that SMs were involved in pain in patients with advanced knee
OA resistant to COX inhibitors by increasing pro-inflammatory
mediators and that drugs targeting SMs may have beneficial
analgesic effects. As modulators and producers of nerve growth
factor (NGF) in joint synovial tissue, the role of SMs is regulated
by TNF-a, which can treat joint pain in OA by upregulating the
NGF signal transduction produced by SMs in OA joints (113).
Abnormal mechanical stress exacerbates the pyroptosis of SMs
through mechanically sensitive channel proteins, which can also
provide pain relief in OA patients (114).

Intra-articular injection of oxidized low-density lipoprotein (ox
LDL) into the knee joint of mice that acts on SMs has been shown to
promote transforming growth factor b (TGF-b) signal transduction
and prevent the influx of S100A8/S100A9-producing cells, thereby
inhibiting joint inflammation (115). In addition, genes such as miR-
9-5p (116), miR-492 (117), miR-92a-3p (118), miR-135b (119), and
miR-155 (120) have been observed to regulate the polarization state
of SMs, inhibiting the progression of OA. Quercetin induces the
polarization of M2 SMs and upregulates the expression of TGF-b
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along with insulin-like growth factor (IGF), which then creates a
cartilage-promoting microenvironment for chondrocytes in order
to enhance cartilage repair in OA and exert cartilage protective
effects (49). Diclofenac sodium similarly establishes an anti-
inflammatory microenvironment by promoting the polarization
of M2 SMs, attenuating pain and cartilage degeneration in
maternal immune activation (MIA)-induced OA rats (50). The
anti-swelling formula of Fangji Huangqi has also been described to
improve joint synovitis in OA rats via inhibition of M1 SM
polarization and reduction in the secretion of both pro-
inflammatory cytokines and metal-matrix proteases (51).
Meanwhile, exogenous supplementation of Itaconate has been
shown to improve OA progression by regulating the polarization
state of SMs and directly or indirectly inhibiting inflammation and
the senescence of chondrocytes, making it a potential drug for the
treatment of OA (52). Zhou et al. (53) synthesized modified zeolitic
imidazolate framework-8 (ZIF-8) nanoparticles (NPs) by regulating
intracellular gases and reprogramming metabolic phenotypes,
which has been shown to polarize macrophages in synovial tissue
from pro-inflammatory M1 phenotypes to anti-inflammatory M2
phenotypes, a strategy that may offer novel approaches for OA
treatment. In order to identify more therapeutic targets, further
research into the role of SMs in OA does face some
exciting moments.

Research Progress of SMs in the
Treatment of PsA
Psoriatic arthritis (PsA) is a chronic, immune-mediated
inflammatory arthropathy with lesions that mainly involve
attachment points and tendon sheaths. Although synovial
hyperplasia is not obvious, histopathological examination of
the synovium has exhibited hyperplasia of the lining layer with
more SMs being visible (121, 122). Therefore, synovial cells such
as SMs are thought to play an essential part in inducing
inflammation and destruction of PsA joint tissue and skin.

Compared to other patients with inflammatory arthritis,
patients with PsA have more aggressive inflammation of
synovial tissue, which is primarily driven by T cells and causes
hyperproliferation of synovial lining cells (123). Hornum et al.
(124) confirmed via double immunostaining of C5aR and CD68
that C5aR+ cells in the synovium of PsA and RA are
predominantly macrophages. Moreover, C5aR+ cells have been
shown to be closely related to T cells, whose interrelationship
may likely play a pathogenic role. Further studies have also
revealed that therapeutic targeting of the C5a–C5aR axis could
effectively inhibit the proliferation of SMs in PsA patients, thus
reducing synovial inflammation. Meanwhile, Tang et al. (125,
126) demonstrated that prolactin receptors (PRLRs) are
predominantly present on SMs in patients with RA and PsA
through mRNA sequencing, in which SMs with INF-g and IL-10
polarization were observed to express the highest PRLR values.
The authors speculated that when PRL activates PRLR in SMs, it
induces the production of pro-inflammatory cytokines.
Therefore, targeted intervention of prolactin sites in
inflammatory cells may serve as a novel form of treatment for
arthritis. Nicotinic alpha 7 acetylcholine receptor (a7nAChR) is
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present in SMs and SFs of RA patients and PsA patients as a
regulatory mediator for specific cholinergic anti-inflammatory
pathways, and inhibition of the expression of this receptor may
slow down the progression of the disease (127). The endogenous
TLR7 ligands miR-29 and miR-Let7b have been shown to be
significantly increased in the synovial fluid of PsA patients
compared to that of OA patients. Intradermal (id) injection of
miR-let7b can amplify Th1 cells and CD68+ M1 SMs,
upregulating the transcription of glycolytic mediators GLUT1,
C-MYC, and HIF1a. In addition, it has been shown to exacerbate
skin inflammation, suboptimal joint inflammation, and
metabolic remodeling of PsA-like preclinical models. Thus,
glycolytic inhibitors may act on SMs and reverse skin-joint
cross ta lk in PsA (54) . Compared wi th pers i s tent
undifferentiated arthritis (UA), the density of CD163+SMs has
been noted to be significantly increased when UA evolves into
PsA (UA-PsA). Furthermore, during this phase, GM-CSF drove
alterations in the polarization state of pro-inflammatory SMs.
Therefore, it is reasonable to posit that GM-CSF may serve as a
potential therapeutic target for SMs in UA-PsA (55). Pawel et al.
(128) found a myeloid Tie2 signal in PsA synovial tissue, the
participation of which has been described to be sufficient and
necessary in promoting synovial inflammation in PsA. Tie2 and
inflammatory signaling pathways can synergistically regulate the
ability of SMs in expressing inflammatory genes. Therefore,
targeting both pathways simultaneously may confer a
therapeutic effect on PsA.

Overall, research pertaining to SMs for the treatment of PsA
primarily seeks to decrease anti-inflammatory SMs while
preventing the excessive infiltration of pro-inflammatory SMs
in the synovium. Since cell surface markers do not specifically
label SMs, the role of endogenous environmental factors and
related changes in hormones and cytokines affect the distribution
and response of cells in vivo. Great challenges continue to exist in
the treatment of PsA for different SM subpopulations. Therefore,
conducting further detailed studies on the identification of
different SM subtypes and their regulation while formulating
therapeutic strategies based on their pro-inflammatory and anti-
inflammatory properties to search for novel targets with high
specificity, high sensitivity, and low side effects should
be prioritized.
CONCLUSION

SMs, as one of the major cell types that constitute the synovium
of the joint, play an important role in the pathogenesis of
inflammatory arthritis due to their immunomodulatory
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functions in different activation states. With the continuous
deepening of research, a variety of targeted drugs for SMs have
entered preclinical treatment studies. Researchers try to find
drugs that specifically target different subpopulations of SMs,
with a view to acting on both pro-inflammatory SMs and anti-
inflammatory SMs. However, the pathogenesis of arthritis is
complex, the relevant regulatory factors and modulators of SMs
in different origins have yet to be identified, and the
interactions between the various cell subtypes remain unclear.
Therefore, compared with traditional treatment methods,
the safety and efficacy of SM-targeted therapy must be
further investigated.
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