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Abstract: Fungi are exposed to various environmental variables during their life cycle, including
changes in CO2 concentration. CO2 has the potential to act as an activator of several cell signaling
pathways. In fungi, the sensing of CO2 triggers cell differentiation and the biosynthesis of proteins
involved in the metabolism and pathogenicity of these microorganisms. The molecular machineries
involved in CO2 sensing constitute a promising target for the development of antifungals. Carbonic
anhydrases (CAs, EC 4.2.1.1) are crucial enzymes in the CO2 sensing systems of fungi, because they
catalyze the reversible hydration of CO2 to proton and HCO3

-. Bicarbonate in turn boots a cascade of
reactions triggering fungal pathogenicity and metabolism. Accordingly, CAs affect microorganism
proliferation and may represent a potential therapeutic target against fungal infection. Here, the
inhibition of the unique β-CA (MpaCA) encoded in the genome of Malassezia pachydermatis, a fungus
with substantial relevance in veterinary and medical sciences, was investigated using a series of
conventional CA inhibitors (CAIs), namely aromatic and heterocyclic sulfonamides. This study
aimed to describe novel candidates that can kill this harmful fungus by inhibiting their CA, and
thus lead to effective anti-dandruff and anti-seborrheic dermatitis agents. In this context, current
antifungal compounds, such as the azoles and their derivatives, have been demonstrated to induce
the selection of resistant fungal strains and lose therapeutic efficacy, which might be restored by the
concomitant use of alternative compounds, such as the fungal CA inhibitors.

Keywords: carbonic anhydrase; Malassezia pachydermatis; CO2 sensing; sulfonamide inhibitors;
anti-dandruff; antifungals

1. Introduction

Carbon dioxide (CO2) is ubiquitously generated and released into the atmosphere
through cellular respiration and oxidative metabolism [1]. This gas byproduct is typically
transported out of cells via passive diffusion. This transport may be aided by CO2 channels,
which are regulated in a CO2-dependent way [2,3]. Rather than a waste product, CO2
has also the potential to act as a physiological stimulant for a variety of cellular signaling
pathways that promote microorganism virulence and pathogenicity [1,3,4]. For example,
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Bacteria assist their colonization and infection at CO2 concentration levels comparable to
those found in the host, since bacterial CO2 sensing mechanisms allow them to adapt and
survive in such environments [1]. During their life cycle, fungi are exposed to various
environmental variables, including fluctuations in CO2 levels [1]. Dedicated CO2 sensing
machineries allow fungi to sense the amount of CO2 present in mammalian tissues (about
5%), compared to the atmospheric levels (about 0.03%), which ultimately stimulates the
fungal pathogenicity in the host [1,4].

In microorganisms, proteins involved in sensing CO2 have been suggested as attrac-
tive targets of pharmaceuticals since they modulate cell differentiation and the further
production of molecules essential for the pathogen [4,5]. In this context, it has been demon-
strated that carbonic anhydrases (CAs, EC 4.2.1.1), catalyzing the reversible hydration of
CO2 to HCO3

− and H+ (CO2 + H2O 
 HCO3
− + H+) [6–12], are crucial enzymes in fungal

CO2 sensing since they produce bicarbonate, which is a promoter (through an adenylate
cyclase (AC) intermediate enzyme) of fungal meiosis and sporulation [13]. Indeed, HCO3

−

produced in a CA-dependent manner activates AC and cyclic adenosine monophosphate
(cAMP) production, which stimulates the development of filamentous structures (hyphae)
needed for fungal virulence, adhesion, and the production of hydrolases, thus triggering
cell death in the colonized host [4,5,14,15]. Up to date, eight CA gene families or classes
have been identified and designated with Greek letters (α, β, γ, δ, ζ, η, θ, ι) [6–10]. In
the fungal kingdom, the typical class is represented by β-CAs, which generally occur
with at least one isoform. Conversely, α-CAs are rarely found in fungi [5,16–18]. The
catalytic action of fungal CAs triggers a cascade process, which allows the microorganism
to adapt into the host, thrive therein, and contribute to its pathogenicity [4,14,15,18,19].
It is readily apparent that CAs can affect fungal growth and thus may represent a poten-
tial novel therapeutic target in fungal infections. This is corroborated by the studies of
Supuran’s group, who demonstrated that typical CA inhibitors (CAIs), namely primary
sulfonamides, inhibit the growth of Malassezia globosa when CO2 availability is limited
(i.e., fungus-infected skin surface) [20]. In this context, we have focalized our interest on
another such fungus, M. pachydermatis, which has a significant relevance in veterinary and
medical sciences, as it has been associated with otitis externa and seborrheic dermatitis
in dogs, cats, and wild animals, as well as with fungemia in hospitalized and immuno-
compromised patients [21–24]. When the skin microenvironment or the host’s defenses are
compromised, this opportunistic commensal has the potential to become a disease-causing
pathogen [21,22]. In this context, we determined that the genome of the M. pachydermatis
contains a single gene encoding a β-CA (acronym MpaCA) that is closely related to β-CAs
previously identified by our groups in two other Malassezia species, namely M. globosa
and M. restricta, which are responsible for dandruff and seborrheic dermatitis [20,25–34].

Here, we have further investigated MpaCA, focusing on its inhibition profile with
respect to a series of aromatic or heterocyclic sulfonamides, which are widely used as build-
ing blocks for obtaining potent and selective pharmacological agents. Besides, inhibition
data on MpaCA have been compared with those of ortholog β-CA enzymes from M. globosa
and M. restricta, namely MgCA and MreCA, respectively. Overall, this study tentatively
proposes novel potential anti-dandruff and anti-seborrheic dermatitis compounds able to
eradicate harmful fungi through the inhibition of CAs. This is potentially relevant since
clinically used antifungal drugs, such as azoles and their derivatives, as result of their
widespread diffusion, have determined the selection of resistant fungal strains.

2. Results and Discussion
2.1. Biochemical Characterization of MpaCA

Recombinant M. pachydermatis CA (MpaCA) was overexpressed in E. coli as a fusion
protein with a non-natural tail containing six histidines at its molecular N-terminus, and
purified by affinity chromatography. The purified enzyme was then subjected to SDS-
PAGE and protonography to certify the corresponding molecular mass and ability to elicit
a hydratase activity. As shown in Figure 1, SDS-PAGE demonstrated that recombinant
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MpCA was recovered in the soluble fraction of the bacterial extract in response (after 3 h)
to isopropyl-β-D-thiogalactopyranoside (IPTG) induction. Recombinant MpCA showed an
experimental molecular mass of about 30 kDa, in agreement with the expected theoretical
one (31 kDa).
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which shows the bacterial lysate supernatant before isopropyl-β-D-thiogalactopyranoside induc-
tion. A bacterial extract containing soluble MpaCA was resolved on a HisTrap FF column to yield a 
pure, homogeneous preparation of the fungal enzyme (Lane “Purified MpaCA”). The red box rep-
resents MpaCA migrating with an experimental molecular mass of 30 kDa. 
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binant MpaCA could catalyze the CO2 hydration reaction (Figures 1 and 2). Two homol-
ogous CAs, namely MgCA and MreCA, which are encoded from the genome of M. globosa 
and M. restricta, respectively, were used as positive controls. As expected, the protono-
gram in all cases exhibited yellow bands migrating at a molecular mass of about 30 kDa 
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value variations (acidic pH) resulting from the conversion of CO2 to bicarbonate and protons (H+). 
Legend: Lane Std, molecular markers; Lane MreCA, purified MreCA; Lane MgCA, purified MgCA; 
Lane MpaCA, purified MpaCA. The red box shows the enzyme activity of the three fungal enzymes, 
which migrated with an apparent molecular mass of about 30 kDa. 

With the aid of the stopped-flow technique, we further demonstrated that MpaCA 
exhibits an appreciable CO2 hydrase activity, with a kcat value of 3.8 × 105 s−1 and kcat/KM 
value of 9.7 × 106 M−1 s−. MgCA and MreCA showed a catalytic activity very similar to that 
of MpaCA. In particular, MreCA showed a kcat value = 1.06 × 106 s−1 and kcat/KM value = 
1.07 x 108 M−1s−1 [25], while MgCA exhibited a kcat value of 9.2 × 105 s−1 and kcat/KM value of 
8.3 × 107 M−1 s−1 [27–33].  

Figure 1. SDS-PAGE showing results regarding MpaCA heterologous expression in bacterial cells
and further purification from corresponding extracts. A total of 1 mM IPTG was used to induce
MpaCA biosynthesis. Overexpressed MpaCA is visible in the lane indicated with “+IPTG”, migrating
with an apparent molecular mass of about 30 kDa. The enzyme is not present in lane “-IPTG”, which
shows the bacterial lysate supernatant before isopropyl-β-D-thiogalactopyranoside induction. A
bacterial extract containing soluble MpaCA was resolved on a HisTrap FF column to yield a pure,
homogeneous preparation of the fungal enzyme (Lane “Purified MpaCA”). The red box represents
MpaCA migrating with an experimental molecular mass of 30 kDa.

Protonographic analysis (Figure 2) was used to determine whether purified recombi-
nant MpaCA could catalyze the CO2 hydration reaction (Figures 1 and 2). Two homologous
CAs, namely MgCA and MreCA, which are encoded from the genome of M. globosa and M.
restricta, respectively, were used as positive controls. As expected, the protonogram in all
cases exhibited yellow bands migrating at a molecular mass of about 30 kDa (Figure 2),
thus demonstrating a CO2 hydratase activity for all fungal CAs, including MpaCA.
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Figure 2. Protonographic analysis of MreCA, MgCA, and MpaCA. The CO2 hydratase activity was
directly evaluated on the polyacrylamide gel through the development of yellow bands due to pH
value variations (acidic pH) resulting from the conversion of CO2 to bicarbonate and protons (H+).
Legend: Lane Std, molecular markers; Lane MreCA, purified MreCA; Lane MgCA, purified MgCA;
Lane MpaCA, purified MpaCA. The red box shows the enzyme activity of the three fungal enzymes,
which migrated with an apparent molecular mass of about 30 kDa.
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With the aid of the stopped-flow technique, we further demonstrated that MpaCA
exhibits an appreciable CO2 hydrase activity, with a kcat value of 3.8× 105 s−1 and kcat/KM
value of 9.7 × 106 M−1 s−. MgCA and MreCA showed a catalytic activity very similar to
that of MpaCA. In particular, MreCA showed a kcat value = 1.06 × 106 s−1 and kcat/KM
value = 1.07 x 108 M−1s−1 [25], while MgCA exhibited a kcat value of 9.2 × 105 s−1 and
kcat/KM value of 8.3 × 107 M−1 s−1 [27–33].

2.2. Inhibition Profile of MpaCA with Sulfonamides

Sulfonamide compounds represent a significant class of synthetic bacteriostatic antibi-
otics still used today to treat infections caused by bacteria and other microorganisms [35–37].
They are also known as sulfa drugs. These compounds are derived from sulfanilamide
(compound A in Figure 3) and include synthetic derivatives with the general chemical
structure B [38]. Worth mentioning is the fact that often the term sulfonamide is impre-
cisely referred to antibiotics bearing a sulfonamide moiety, and not all sulfonamides are
antibiotics [39]. Sulfonamide antibiotics have two structural characteristics that distin-
guish them from nonantibiotic counterparts, namely a free amino group at N4 and a
nitrogen-containing heterocyclic ring linked to N1 of the sulfonamide group (compounds
B) (Figure 3). Furthermore, the discovery that sulfanilamide A has CA inhibitory prop-
erties [40] led to the discovery that corresponding derivatives C act as effective enzyme
inhibitors (Figure 3) [41]. The above-mentioned structural features are essential in mediat-
ing allergic reactions to sulfonamide antibiotics [39]. A growing body of clinical evidence
indicates no increased risk of reactions to nonantibiotic sulfonamides in patients with a
history of allergy to sulfonamide antibiotics [39].

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 5 of 13 
 

 

2.2. Inhibition Profile of MpaCA with Sulfonamides 
Sulfonamide compounds represent a significant class of synthetic bacteriostatic 

antibiotics still used today to treat infections caused by bacteria and other microorganisms 
[35–37]. They are also known as sulfa drugs. These compounds are derived from 
sulfanilamide (compound A in Figure 3) and include synthetic derivatives with the 
general chemical structure B [38]. Worth mentioning is the fact that often the term 
sulfonamide is imprecisely referred to antibiotics bearing a sulfonamide moiety, and not 
all sulfonamides are antibiotics [39]. Sulfonamide antibiotics have two structural 
characteristics that distinguish them from nonantibiotic counterparts, namely a free 
amino group at N4 and a nitrogen-containing heterocyclic ring linked to N1 of the 
sulfonamide group (compounds B) (Figure 3). Furthermore, the discovery that 
sulfanilamide A has CA inhibitory properties [40] led to the discovery that corresponding 
derivatives C act as effective enzyme inhibitors (Figure 3) [41]. The above-mentioned 
structural features are essential in mediating allergic reactions to sulfonamide antibiotics 
[39]. A growing body of clinical evidence indicates no increased risk of reactions to 
nonantibiotic sulfonamides in patients with a history of allergy to sulfonamide antibiotics 
[39].  

 
A   B   C   

Figure 3. Sulfanilamide (Panel A) led to the discovery of the sulfadrugs (Panel B) and 
benzenesulfonamide CAIs of type (Panel C). 

Among nonantibiotic sulfonamides, primary sulfonamides (R’-SO2-NH2) showed the 
most promising results due to their Zn(II) ion-binding properties; thus, they have received 
increased attention due to their capability to specifically inhibit CAs [42]. In fact, they form 
a complex in the enzyme active site with a tetrahedral geometry that is centered at the 
catalytic Zn (II) ion, with the N atom of the sulfonamide moiety coordinated to the 
bivalent metal [4,36–38,43].  

In order to investigate the inhibition profile of MpaCA and to compare results with 
that of other enzyme homologues, the interaction of 41 main sulfonamides and 1 
sulfamate with the enzyme from M. pachydermatis was investigated in vitro. The molecular 
structure of these compounds is shown in Figure 4. The derivatives 1–24 and AAZ-EPA 
are either simple aromatic or heterocyclic sulfonamides, and are frequently used as 
building blocks to create novel potent and selective pharmaceuticals [43,44]. The series 
AAZ-EPA (see Table 1 for their identification) involves classical CA inhibitors (CAIs) used 
in clinics for managing and treating glaucoma, idiopathic intracranial hypertension, 
altitude sickness, congestive heart failure, epilepsy, and other diseases [4,36–38,43,45].  
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fonamide CAIs of type (Panel C).

Among nonantibiotic sulfonamides, primary sulfonamides (R’-SO2-NH2) showed the
most promising results due to their Zn(II) ion-binding properties; thus, they have received
increased attention due to their capability to specifically inhibit CAs [42]. In fact, they form
a complex in the enzyme active site with a tetrahedral geometry that is centered at the
catalytic Zn (II) ion, with the N atom of the sulfonamide moiety coordinated to the bivalent
metal [4,36–38,43].

In order to investigate the inhibition profile of MpaCA and to compare results with
that of other enzyme homologues, the interaction of 41 main sulfonamides and 1 sulfamate
with the enzyme from M. pachydermatis was investigated in vitro. The molecular structure
of these compounds is shown in Figure 4. The derivatives 1–24 and AAZ-EPA are either
simple aromatic or heterocyclic sulfonamides, and are frequently used as building blocks to
create novel potent and selective pharmaceuticals [43,44]. The series AAZ-EPA (see Table 1
for their identification) involves classical CA inhibitors (CAIs) used in clinics for managing
and treating glaucoma, idiopathic intracranial hypertension, altitude sickness, congestive
heart failure, epilepsy, and other diseases [4,36–38,43,45].
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Table 1. CAI clinically used drugs identified with their short and commercial name.

CAI Commercial Name

AAZ Acetazolamide
MZA Methazolamide
EZA Ethoxzolamide
DZA Dorzolamide
BRZ Brinzolamide
BZA Benzolamide
TPM Topiramate
SLP Sulpiride
IND Indisulam E7070
ZNS Zonisamide
CLX Celecoxib
VLX Valdecoxib
SLT Sulthiame
SAC Saccharin
HCT Hydrochlorothiazide
FAM Famotidine
DCP Dichlorophenamide
EPA Epacadostat
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Recently, we reported the inhibition profiles of sulfonamides against MreCA and
MgCA [26–33]. Since these two fungal CAs have been proposed as new pharmacological
targets for combatting fungal infection and showed a different inhibition pattern toward
CAIs [26–33], we decided to explore the in vitro effect of the above-mentioned compounds
on the activity of MpaCA. The data of the other two Malassezia enzymes (MreCA and
MgCA) are here provided for comparison purposes. The corresponding KI values are
shown in Table 2.

Table 2. Inhibition profile of MpaCA, MreCA, and MgCA with respect to forty-one sulfonamide and
one sulfamate derivatives.

KI (µM) *

Inhibitor MpaCA a MreCA a MgCA

1 1.99 4.12 9.8
2 3.07 4.62 0.24
3 1.5 >10 0.15
4 1.09 4.04 6.74
5 2.18 >10 0.17
6 1.34 >10 0.07
7 2.48 4.59 0.11
8 1.68 >10 0.12
9 0.48 >10 0.34
10 2.01 >10 0.54
11 2.32 6.76 0.09
12 2.74 >10 0.09
13 1.09 >10 >10
14 0.58 >10 >10
15 0.61 >10 0.23
16 1.06 6.51 0.10
17 1.22 >10 0.06
18 1.56 >10 0.06
19 0.59 7.79 >10
20 0.61 0.91 0.23
21 0.27 7.4 0.11
22 1.37 3.74 0.09
23 0.26 >10 >10
24 1.27 >10 2.56

AAZ 0.62 0.1 >10
MZA 1.72 3.9 >10
EZA 2.46 3.79 >10
DZA 1.11 0.81 >10
BRZ 0.55 0.7 >10
BZA 0.12 7.15 0.48
TPM 0.48 3.83 1.46
SLP 1.19 4.85 0.32
IND 4.82 0.87. n.d.
ZNS 2.42 >10 7.65
CLX 0.06 1.4 >10
VLX 0.63 0.77 >10
SLT 1.88 0.67 n.d.
SAC 1.03 6.2 n.d.
HCT 0.26 8.5 n.d.
FAM 4.91 >10 n.d.
DCP 1.20 3.06 0.34
EPA 0.63 n.d. n.d.

* Mean from three different assays as performed by stopped-flow experiments (errors were in the range of±5–10%
of the reported values). a From ref. [26]; n.d.: not detected.
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From the results shown in Table 2, the following conclusions can be drawn.

1. Only fifteen drugs inhibited MpaCA with inhibition constant (KIs) values less than
1.0 µM. Sulfonamide inhibitors of the series 1–24, such as 9, 14, 15, 19, 20, 21,
23, and clinically used sulfonamide drugs of the series AAZ-EPA, such as AAZ,
BRZ, BZA, TMP, CLX, VLX, HCT, and EPA, are significant examples. All these in-
hibitors showed KI values in the range 0.06–0.62 µM (Table 2 and Figure 5A). MreCA
showed only seven “good inhibitors” (20, AAZ, DZA, BRZ, IND, VLX, and SLT) with
KI values <1.0 µM (Table 2 and Figure 5B), while MgCA was well inhibited (KI values
0.06–0.54 µM) by the following twenty compounds: 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16,
17, 18, 20, 21, 22, BZA, SLP and DCP (Table 2 and Figure 5C).
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Interestingly, some good MpaCA inhibitors showed a moderate to limited inhibition
activity on the other fungal homologous enzymes. For example, AAZ appeared as a
promising inhibitor of MpaCA (KI value = 0.62 µM) and MreCA (KI value = 0.1 µM),
but slightly inhibited MgCA (KI > 10 µM) (Table 2). On the other hand, several good
sulfonamide inhibitors of MgCA, with KI values < 1.0 µM, showed KI values in the
range 1–10 µM when used against MpaCA, and were alos weak inhibitors of MreCA
(Table 2), denoting how different the sulfonamide inhibition profiles were of the three
fungal homologous β-CAs.

2. Many compounds of the series 1–24 and AAZ-EPA (1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12,
13, 16, 17, 18, 22, 24, MZA, EZA, DZA, SLP, IND, ZNS, SLT, SAC, FAM, and DCP)
examined on MpaCA demonstrated a moderate inhibitory effect on this enzyme, with
KI values in the range 1.06–4.91 µM (Table 2 and Figure 6A). A number of these small
molecules, namely 1, 4, 13, 24, MZA, EZA, ZNS, FAM, and SAC, were also weak
inhibitors of MreCA and MgCA, showing KI values higher than 1.0 µM. Figure 6B,C
provide a graphical representation of these findings, showing sulfonamide inhibitors
with 1 µM < KIs < 10 µM for these fungal enzymes.

3. As mentioned above, many of the chemicals reported in Table 2 were weak inhibitors
of MreCA (Ki > 10 µM) and were already demonstrated to be effective and moderate
inhibitors of the human isoenzyme II (hCA II) [26], MpaCA and MgCA, respectively.
As highlighted above, MreCA showed an inhibition pattern markedly different from
those of the other two homologous enzymes MpaCA and MgCA (Table 2).
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3. Materials and Methods
3.1. MpaCA Production: Synthetic Gene, Cloning, Heterologous Expression, and Purification

The synthetic MpaCA gene was designed in our labs and produced by Life Technolo-
gies (Invitrogen, Carlsbad, CA, USA). Briefly, the MpaCA gene contained NdeI and XhoI
restrictions sites at the 5′- and 3′-ends, respectively; it was ligated into the expression
vector pET100/D-TOPO (Invitrogen, Carlsbad, CA, USA) to form the expression vector
pET100D-Topo/MpaCA, containing a nucleotide sequence encoding for a polypeptide with
additional six histidines before the insertion point, for facilitating the purification of the
resulting recombinant protein. To overexpress MpaCA, competent E. coli BL21 (DE3)pLysS
(Agilent, Santa Clara, CA, USA) cells were transformed with pET100D-Topo/MpaCA,
growing them in 1 L of LB broth at 37 ◦C. Isopropyl-β-D-thiogalactopyranoside (IPTG) was
added to a final concentration of 1 mM, and 0.5 mM ZnSO4 was added after incubation
for 30 min for uptake in the expressed protein. The incubation period continued for an
additional 3 h at 37 ◦C. To verify the overexpression of MpaCA, the resulting bacterial
suspension was tested and analyzed on 12% T SDS-PAGE, according to Laemmli [46].
At 3 h post-induction, the cellular extract was prepared by sonication at 4 ◦C. Following
centrifugation, the supernatant containing the overrepresented MpaCA was purified using
a HIS-Select HF Nickel Affinity Gel (Sigma-Aldrich, St. Louis, MO, USA), which was equili-
brated with a 0.02 M phosphate buffer (pH 8.0) containing 0.01 M imidazole and 0.5 M KCl,
at a flow rate of 1.0 mL/min. MpaCA was eluted from the column with 0.02 M phosphate
buffer (pH 8.0) containing 0.5 M KCl and 0.3 M imidazole, at a flow rate of 1.0 mL/min [34].
The protein concentration of the obtained active fractions was determined with a Bio-Rad
protein assay based on the Bradford method [47]. The enzyme resulted at least 95% pure.
About 1.0 mg of final recombinant enzyme was obtained from 1 L of bacterial culture.

3.2. Enzyme Protonography

For protonography, SDS-PAGE was performed as described by De Luca et al. [48].
Samples were mixed in a loading buffer without 2-mercaptoethanol, and they were not
boiled to avoid protein denaturation. After electrophoresis, the gel was subject to protonog-
raphy to detect the hydratase activity [48].

3.3. Enzyme Assays

An applied photophysics stopped-flow instrument was used for assaying the CA-
catalyzed CO2 hydration activity [49]. Phenol red (at a concentration of 0.2 mM) was used
as an indicator in a buffer containing 20 mM Tris (pH 8.3), 20 mM NaClO4 (for maintaining
a constant ionic strength), measuring the absorbance maximum of 557 nm, and following
the initial rate of the CA-catalyzed CO2 hydration reactions for a period of 10–100 s. The
CO2 concentrations values ranged from 1.7 to 17 mM during the determination of the
kinetic parameters.
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3.4. Inhibition Assays

At least six measurements of the original 5–10% reaction were used to assess the
initial velocity for each inhibitor. The uncatalyzed rates were identically determined
and detracted from the total observed rates. Stock inhibitor solutions (10–100 mM) were
prepared in distilled, deionized water, and dilutions up to 0.01 mM were performed with
the buffer test. Inhibitor and enzyme solutions were preincubated together for 15 min at
room temperature prior to the assay, in order to allow the formation of the E–I complex
or the eventual active site-mediated hydrolysis of the inhibitor. The inhibition constants,
which represent the mean from at least three different determinations, were obtained by
the non-linear least-squares methods using PRISM 6 and the Cheng–Prusoff equation,
as reported earlier [50]. MgCA and MreCA were recombinant enzymes obtained in-
house. All salts/small molecules were of the highest purity available from Sigma-Aldrich
(Milan, Italy).

4. Conclusions

Fungal MpaCA was generated as a soluble recombinant protein using E. coli cells as the
host. SDS-PAGE, protonography, and the stopped-flow experiments showed that MpaCA
has a molecular mass of about 30 kDa and an excellent hydratase activity, converting
the CO2 to bicarbonate and protons with a kcat value of 3.8 × 105 s−1. By using the
simple aromatic/heterocyclic compounds 1–24 and the therapeutically used drugs AAZ-
EPA, the MpaCA sulfonamide inhibition profile was determined. Among the compounds
belonging to both series, only 9, 14, 15, 19, 20, 21, 23, AAZ, BRZ, BZA, TMP, CLX, VLX,
HCT, and EPA inhibited MpaCA with KI values < 1.0 µM, highlighting these compounds as
promising compounds to be further tested for future veterinary and medical applications.
The comparative analysis of the sulfonamide inhibition profiles of MpaCA, MreCA, and
MgCA highlighted that MpaCA exhibits an inhibitory pattern similar to MgCA, but which
is radically different from that of its homolog MreCAs. Considering the sulfonamide
inhibition pattern of the human isoforms I and II (hCAI and hCA II) previously determined
by our group [26], the above-mentioned fungal enzymes showed significant inhibitory
differences with those of the human counterparts.

The differences in the inhibitory effect of the sulfonamides on the three fungal enzymes
can be explained considering the structural properties of each biocatalyst here studied.
Sulfonamides form an enzyme–inhibitor complex with tetrahedral geometry centered
at the Zn(II) ion also involving the N atom of the sulfonamide moiety. An extended
network of hydrogen bonds involving amino acids of the enzyme also contributes to the
inhibitor molecule anchoring to the metal ion. Besides, an interaction occurs between
the aromatic/heterocycle portions of the inhibitor and the hydrophilic and hydrophobic
residues present in the catalytic pocket of the enzyme [4,36–38,43,51]. Thus, it is reasonable
to speculate that various residues present in the catalytic pocket of the different Malassezia
enzymes may be responsible for the observed differences in the calculated KI values
measured for the 42 compounds described in this study. Unfortunately, none of the three
fungal enzymes were crystallized and, accordingly, no structural data were available for
rationalizing the enzyme’s behavior versus the investigated sulfonamides. However, these
findings are encouraging because they show that, even though these CAs are very similar,
there is a good chance for synthesizing inhibitors that can specifically inhibit CAs from the
various fungi reported in this study as well as the human isozymes.
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