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Introduction
The nuclear envelope (NE) separates the contents of the nucleus 

and cytoplasm and is a physical barrier for the exchange of macro-

molecules. The only known mechanism for nuclear import and 

export is via nuclear pore complexes (NPCs; Fahrenkrog and 

Aebi, 2003; Fried and Kutay, 2003). Thus, the NPC is a central 

player in controlling gene expression and regulating nucleocyto-

plasmic signaling. Specifi cally, the NPC precludes molecules 

larger than �30–40 kD from freely diffusing through its central 

aqueous channel. Larger macromolecules use transport recep-

tors to pass through the NPC in a signal-dependent process 

(Pemberton and Paschal, 2005). The karyopherin (Kap) β pro-

teins (also termed importins, exportins, and/or transportins) are 

a major family of transport receptors. There are 14 Kapβs in 

budding yeast and >20 identifi ed in higher eukaryotes (Harel 

and Forbes, 2004; Pemberton and Paschal, 2005). Each Kap 

binds a specifi c nuclear localization signal (NLS) or nuclear 

export sequence (NES) on a cargo, with Kap cargo release and 

transport directionality triggered by the small GTPase Ran (Fried 

and Kutay, 2003; Weis, 2003). There are non-Kapβ transport 

receptors for RanGDP import (Ntf2; Ribbeck et al., 1998; Smith 

et al., 1998) and for mRNA export (the heterodimer Mex67-Mtr2 

[TAP/NXF1-p15/NXT1 in vertebrates]; Segref et al., 1997; 

Santos-Rosa et al., 1998; Katahira et al., 1999; Strasser et al., 

2000). With the potential for at least 16 different receptors trans-

porting thousands of distinct cargoes, the NPC is a complex 

machine. Indeed, it is not fully understood how such a myriad of 

distinct transport receptors use the NPC structure for presumably 

simultaneous translocation.

The �40–60-MD NPCs are formed by the assembly of 

multiple copies of �30 individual proteins called nucleoporins 

(Nups; Rout et al., 2000; Cronshaw et al., 2002). Nups associate 

in discrete subcomplexes and localize in specifi c substructures 

of the NPC, including the cytoplasmic fi laments, the central core 

structure in the pore, and a nuclear basket structure (Fig. 1 B; 

Rout et al., 2000; Cronshaw et al., 2002; Fahrenkrog and Aebi, 

2003). Movement of cargo-bound Kapβs, Ntf2, or Mex67-Mtr2 

through the NPC requires interactions between the given transport 

receptor and a specialized subset of NPC proteins termed the FG 

(phenylalanine-glycine) Nups (Pemberton and Paschal, 2005). 

The FG Nups are defi ned by domains with numerous, clustered 

repeats of the core dipeptide FG fl anked by characteristic spacer 

sequences (Rout and Wente, 1994). Nearly half of the Nups con-

tain these FG domains, each with predominant FG subtypes (FG, 

FXFG [phenylalanine–any residue–phenylalanine-glycine], or 
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GLFG [glycine-leucine-phenylalanine-glycine]), defi ned NPC 

substructural locations, and corresponding orthologues across 

species (Rout et al., 2000; Cronshaw et al., 2002; Lim et al., 2006a). 

Some FG Nups are exclusively on the cytoplasmic (C) NPC fi -

brils (in Saccharomyces cerevisiae Nup159 and Nup42), and some 

are exclusively on the nuclear (N) NPC basket (in S. cerevisiae 

Nup1, Nup2, and Nup60); together, these are collectively de-

fi ned as the asymmetric FG Nups (Fig. 1 B). The remaining FG 

Nups are distributed on both sides and through the central NPC 

channel and are termed the symmetric Nups (in S. cerevisiae 

Nup49, Nup57, Nsp1, Nup100, Nup116, and Nup145; Rout et al., 

2000; Suntharalingam and Wente, 2003).

The physical interactions between transport receptors and 

FG peptides have been structurally analyzed for Kapβ1, Ntf2, 

and Nxt1. In these receptors, the Phe of an FG repeat is found in 

hydrophobic pockets on the protein surface (Bayliss et al., 

2000a,b, 2002a,b; Fribourg et al., 2001). Indeed, transport re-

ceptor mutants with impaired FG binding are defective for NPC 

translocation (Bayliss et al., 2002b). Thus, each transport recep-

tor serves as a molecular bridge between FG Nups and a signal-

containing cargo. With multiple FG repeats per FG domain and 

multiple FG Nups in each NPC, the pore displays thousands of 

individual FG repeats, each of which is a potential binding site 

for a transport receptor. The abundance of FG repeats and se-

quence redundancies between FG Nups have made understand-

ing the sequence of molecular interactions between the NPC 

and transport receptors a formidable task.

Given their critical role in the translocation mechanism, 

the FG Nups have been the focus of intense study. Models for 

the mechanism of NPC translocation have as their tenets the 

 unfolded nature of the FG domains, the huge number of FG re-

peats per NPC, and the intrinsic binding affi nities of transport 

receptors for FG domains. Localization of FG domains in the 

NPC and the physiological constraints of NPC translocation 

rates are also key considerations. Two of the fundamental mod-

els proposed contrast the FG domains as forming either a pri-

marily physical or energetic barrier for selective translocation. 

As a physical barrier, weak interactions between FG domains 

are proposed to form a hydrophobic gel into which transport re-

ceptors selectively partition as a result of their FG interaction 

capacity (Ribbeck and Gorlich, 2002; Frey et al., 2006). The hy-

drophobic gel would form a selective phase and exclude macro-

molecules larger than the physical barrier generated by the FG 

interaction meshwork. As an energetic barrier, the interaction of 

a transport receptor with an FG Nup would allow the transport 

receptor to overcome an entropic threshold for diffusion through 

the NPC central channel (Rout et al., 2003). The FG domains 

would also function as repulsive bristles to entropically exclude 

nontransport receptor molecules (Lim et al., 2006b). As such, 

the NPC would be governed by a virtual gate. From the analysis 

of individual FG domains in vitro, there is independent data to 

support both the selective phase and virtual gate models.

To analyze the requirements for FG domains in the con-

text of the intact NPC, we have used a large-scale genetic strat-

egy in S. cerevisiae (Strawn et al., 2004). By combinatorial 

in-frame deletions in genes encoding the FG Nups, we showed 

that the asymmetric FG domains are dispensable for facilitated 

transport, whereas the symmetric FG domains are suffi cient. 

Interestingly, although the selective-phase model predicts that the 

abundance or mass of FG repeats is critical to transport function 

(Macara, 2001; Ribbeck and Gorlich, 2001, 2002; Frey et al., 

2006), we found that the number or mass of FG repeats does not 

correlate with in vivo transport capacity. We also found that for 

a given FG deletion (designated FG∆) mutant, only a subset of 

the Kapβ transport receptors were perturbed. This suggests that 

different transport receptors require distinct combinations of 

FG domains for function (Strawn et al., 2004). In support of 

this, biochemical studies have demonstrated that different Kaps 

have different relative in vitro binding levels for the same FG 

Nup (Aitchison et al., 1996; Allen et al., 2001). There is also 

evidence that Kap95 might use different FG-binding sites than 

those used by Mex67 (Allen et al., 2001; Strawn et al., 2001; 

Blevins et al., 2003). Collectively, these studies suggest that the 

NPC may harbor multiple translocation pathways for different 

transport receptors.

To further investigate the FG-dependent transport path-

ways through the NPC, we generated a new collection of FG 

domain deletion mutants. We specifi cally compared Kapβ ver-

sus non-Kapβ translocation pathways by dissecting the require-

ments for Mex67-Mtr2–dependent mRNA export. Multiple 

laboratories have identifi ed nup-null or temperature-sensitive 

alleles that cause mRNA export defects, and overproduction of 

the Nup116 GLFG domain inhibits mRNA export (Strasser and 

Hurt, 1999; Cole, 2000; Strawn et al., 2001). However, our new 

mutants have allowed the fi rst global analysis of specifi c FG 

domain requirements in mRNA export. We have found striking 

differences in the requirements for Mex67-mediated mRNA 

export versus Kapβ-mediated transport. These results impact 

models for the in vivo NPC translocation mechanisms and 

support our hypothesis that multiple FG pathways exist for 

receptor-mediated translocation across the NPC.

Results
mmp FG𝚫 mutants have distinct Kap 
transport defects
In our previous study, we generated an S. cerevisiae mutant that 

lacked all of the asymmetric FG domains on the N and C faces 

of the NPC, which is designated the ∆N∆C mutant (Strawn 

et al., 2004). The ∆N∆C mutant has a slight rate delay in import 

via Kap95 and Kap104; however, it has no marked steady-state 

defect for any transport receptor assayed. Thus, the asymmetric 

FG domains do not serve essential functions. However, we spec-

ulated that the asymmetric FG domains could be key to maxi-

mal transport effi ciency. In addition, because the FG domains can 

presumably occupy multiple topological positions in the NPC 

(Fahrenkrog et al., 2002; Denning et al., 2003; Lim et al., 2006b), 

it is possible that the asymmetric FG domains functionally 

compensate when individual symmetric FG domains are de-

leted. Therefore, we selected the ∆N∆C mutant as a founda-

tion for studying the transport roles of individual symmetric 

FG domains. In frame, internal chromosomal deletions of the 

sequence encoding individual symmetric FG domains were con-

structed in the ∆N∆C background. If lethality was observed 
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when a symmetric FG domain was removed in the ∆N∆C back-

ground, control complementation experiments were conducted 

with plasmids expressing the full-length NUP or FG∆ mutant 

versions (see Plasmids and yeast strains section in Materials and 

methods). This generated a series of more minimal pore (mmp) 

FG∆ mutant strains. Specifi cally, the ∆N∆C mutant was com-

bined with individual deletions of the GLFG regions in Nup49, 

Nup57, Nup145, Nup100, Nup116, or the FG and FXFG regions 

in Nsp1. We found that all of the mmp FG∆ mutant strains with 

only one symmetric FG domain removed were viable (Fig. 1 A; 

Strawn et al., 2004). Additionally, the ∆N∆C nup100∆GLFG 
nup145∆GLFG mutant was viable despite having only four FG 

Nups intact (Nsp1, Nup49, Nup57, and Nup116).

The strains in this new mmp FG∆ mutant collection were 

characterized for growth properties at a range of tempera-

tures. As shown in Fig. 1 A, the ∆N∆C mutant showed robust 

growth at all temperatures tested. In comparison, the ∆N∆C 
nup57∆GLFG mutant had inhibited growth at 37°C, whereas 

the ∆N∆C nup145∆GLFG mutant was cold sensitive at 16°C. 

The ∆N∆C nup49∆GLFG mutant showed both temperature 

sensitivity at 37°C and cold sensitivity at 16°C. Overall, the 

∆N∆C nup116∆GLFG mutant and the ∆N∆C nup100∆GLFG 
nup145∆GLFG mutant strains had the most severe growth 

phenotypes with both temperature sensitivity at 34°C and cold 

sen sitivity (Fig. 1 A). The ∆N∆C nsp1∆FG∆FXFG mutant gen-

erated in our previous study is cold sensitive at 23°C and also 

inhibited at 37°C (Strawn et al., 2004).

We speculated that the temperature-dependent growth 

defects were linked to perturbations of an essential transport 

receptor. To test for defects in transport, the mmp FG∆ mutants 

were transformed with a panel of GFP-based reporters for dif-

ferent Kapβ transport receptors. Each transport reporter was 

based on a Kapβ- or Kapα-specifi c NLS fused to GFP or a tan-

dem NLS-NES fused to GFP. In wild-type cells, all of the NLS-

GFP reporters are predominantly nuclear, whereas NLS-NES-GFP 

is mostly cytoplasmic. The basic classic NLS (cNLS) of SV40 

large T antigen is imported by the Kap95–Kap60 heterodimer 

(Shulga et al., 1996; Chook and Blobel, 2001), and Nab2 and 

the Nab2-NLS-GFP reporter are imported by Kap104 (Aitchison 

et al., 1996; Shulga et al., 2000). Spo12-NLS is recognized pri-

marily by Kap121/Pse1 (Chaves and Blobel, 2001). The NLS-

NES-GFP reporter includes a cNLS for Kap95–Kap60 import 

and a leucine-rich NES for Xpo1/Crm1 export (Stade et al., 

1997). Steady-state transport assays in the wild-type and mmp 

FG∆ mutants were conducted at both the permissive temperature 

and after shifting to growth at 37°C for 1 h. The results are sum-

marized in Table I. For all of the mutants, no defects at steady 

state were detected with either the cNLS (Kap95–Kap60) or NLS-

NES-GFP (Crm1/Xpo1) reporters (Table I and not depicted). 

However, several of the mutants showed altered Spo12-NLS-GFP 

(Kap121) import. This included the ∆N∆C mutant combined with 

either the nup100∆GLFG, nsp1∆FG∆FXFG, nup116∆GLFG, 

or nup100∆GLFG nup145∆GLFG alleles (Table I and Fig. 2; 

Strawn et al., 2004). At 37°C, the Spo12-NLS-GFP reporter 

Figure 1. The more minimal NPC (mmp) FG𝚫 mutants have temperature-sensitive growth defects. (A) Wild-type, ∆N∆C, and new mmp FG∆ yeast strains 
were spotted onto YPD in fi vefold serial dilutions and grown at the temperatures shown. (B) Schematic representation of the distribution of FG Nups within 
the NPC.
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showed a coincident increased cytoplasmic signal and decreased 

nuclear intensity in the ∆N∆C nup100∆GLFG nup145∆GLFG 

mutant and ∆N∆C nup116∆GLFG mutant cells (Fig. 2 B). This 

indicated that these strains had defects in Kap121 transport.

Interestingly, only one of the mmp FG∆ mutant strains, 

∆N∆C nup116∆GLFG, showed a strong perturbation in steady-

state Nab2 import by Kap104, with diminished nuclear localiza-

tion and increased cytoplasmic signal at all growth temperatures. 

The defect was apparent using either the Nab2-NLS-GFP reporter 

(not depicted) or via indirect immunofluorescence for Nab2 

 localization (Fig. 2 A). Steady-state transport defects for Kap104 

or Kap121 were not observed in the ∆N∆C nup57∆GLFG mutant, 

the ∆N∆C nup49∆GLFG mutant, or the ∆N∆C nup145∆GLFG 

mutant strains (Fig. 2 and Table I). When comparing the Kap104 

and Kap121 transport defects, it was especially striking that 

the ∆N∆C nup100∆GLFG nup145∆GLFG mutant showed dif-

ferential perturbations. The Kap104 cargo Nab2 was effi ciently 

imported (Fig. 2 A, far right), whereas the Kap121 reporter ac-

cumulated in the cytoplasm at 23 and 37°C (Fig. 2 B, far right). 

This is the fi rst reported in vivo separation of FG-domain require-

ments for Kap104 and Kap121 NPC translocation. Overall, the 

mmp FG∆ mutant strains showed distinct defects for transport 

by specifi c Kaps.

Symmetric FG𝚫 and mmp FG𝚫 mutants 
have poly(A)+ RNA export defects
To understand the contributions of FG domains to mRNA ex-

port, we screened a subset of our existing FG∆ mutant strains 

and our new mmp FG∆ mutant strains for mRNA export defects. 

This was evaluated using in situ hybridization with an oligo 

d(T) probe, which detects poly(A)+ RNA. All of the viable FG∆ 

mutant strains with three symmetric FG domains deleted showed 

the nuclear accumulation of poly(A)+ RNA after a 1-h shift to 

37°C (Fig. 3, Table I, and not depicted). However, the ∆N∆C 

mutant cells did not show the nuclear accumulation of poly(A)+ 

RNA. We also did not observe mRNA export defects in the ∆N∆C 
nup100∆GLFG mutant, the ∆N∆C nsp1∆FG∆FXFG mutant, 

the ∆N∆C nup100∆GLFG nup145∆GLFG mutant, or the ∆N∆C 
nup116∆GLFG mutant cells. For mutants that showed no nu-

clear poly(A)+ RNA accumulation, we also used an indepen-

dent assay for mRNA export capacity and analyzed the effect 

on heat shock protein production. After heat shock in wild-type 

cells, elevated levels of Hsp104, Hsp82, Ssa4, and Ssa1 are a 

direct refl ection of proper export and translation for the respec-

tive heat shock–induced mRNAs (Saavedra et al., 1997; Stutz 

et al., 1997). The ∆N∆C mutant and the ∆N∆C nup116∆GLFG 

mutant were competent for heat shock protein production (un-

published data). We concluded that FG domains of the asym-

metric FG Nups (Nup159, Nup42, Nup1, Nup2, and Nup60) and 

three specifi c symmetric FG Nups (Nup100, Nup116, and Nsp1) 

were not individually essential for mRNA export. In contrast, the 

∆N∆C nup57∆GLFG and the ∆N∆C nup49∆GLFG mutant strains 

showed strong perturbations in mRNA export with marked 

nuclear accumulation of poly(A)+ RNA (Fig. 3 and Table I). 

This indicated that Nup57 and/or Nup49 were preferentially 

required for mRNA export.

To further probe the requirements for the GLFG domains of 

Nup57 or Nup49, we examined a nup57∆GLFG nup49∆GLFG 

double mutant strain. The nup57∆GLFG nup49∆GLFG mutant 

was assayed for mRNA export defects. Nuclear poly(A)+ RNA 

accumulation was observed in 9.9 ± 0.9% of the nup57∆GLFG 
nup49∆GLFG cells. Although this defect is signifi cantly differ-

ent from the level observed in wild-type cells (P = 0.0031), it is 

not as penetrant as the defect in either the ∆N∆C nup49∆GLFG 

mutant or ∆N∆C nup57∆GLFG mutant cells (30.3 ± 2.5% and 

26.7 ± 6.1%, respectively). Thus, the GLFG domains of Nup57 

and Nup49 are not essential for mRNA export, either individu-

ally or in combination. This suggested that other symmetric FG 

domains (Nup116, Nup100, Nup145, and Nsp1) functionally 

compensate in the absence of the Nup57 and Nup49 GLFG 

domains. However, when the asymmetric FG domains were 

 removed (∆N∆C), the GLFG domain of Nup57 or Nup49 was 

specifi cally required, and the FG domains from Nup116, Nup100, 

Nup145, and Nsp1 were not suffi cient. Collectively, these results 

revealed a combinatorial requirement in mRNA export for spe-

cifi c GLFG domains with the asymmetric FG domains. More-

over, such differential requirements for FG domains in mRNA 

export were unanticipated. Previous studies have reported that 

Mex67 interacts in vitro with several of the asymmetric FG do-

mains (Nup159, Nup42, Nup1, and Nup60) and with three sym-

metric FG domains (Nup100, Nup116, and Nsp1; Strasser et al., 

2000; Allen et al., 2001; Strawn et al., 2001; Fischer et al., 2002). 

Table I. Summary of transport assay results

Strain cNLS import Nab2 import Spo12NLS import Leu-rich NES export mRNA export

Wild type +a +a +a +a +

nup100∆GLFG nup145∆GLFG nup57∆GLFG +a −a −a +a −

∆N∆C +a +a +/−a +a +

∆N∆C nup57∆GLFG + + + + −

∆N∆C nup100∆GLFG +a +/−a −a +a +

∆N∆C nsp1∆FG∆FXFG +a +/−a −a +a +

∆N∆C nup145∆GLFG + + + + +/−

∆N∆C nup116∆GLFG +/− − − + +

∆N∆C nup100∆GLFG nup145∆GLFG + + − + +

∆N∆C nup49∆GLFG + + + + −

Summary from the analysis of steady-state transport defects after shifting to growth at 37°C.
aStrawn et al., 2004.
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Although the GLFG domains of Nup57 and Nup49 have not 

previously been reported to bind Mex67, these results suggested 

that the FG domains of Nup57 and Nup49 are key sites in vivo 

for mRNA export.

mRNA export requires GLFG domains 
of Nup57 and nuclear face Nups
Nup57 and Nup49 are both GLFG Nups that assemble in a hetero-

trimeric complex with Nsp1 (Grandi et al., 1993; Schlaich 

et al., 1997; Fahrenkrog et al., 1998). Given this shared NPC 

localization, the common FG types (GLFG), and the growth and 

transport phenotypes in the mmp FG∆ analysis, we concluded 

that the ∆N∆C nup57∆GLFG mutant and ∆N∆C nup49∆GLFG 

mutant strains were functionally comparable. We selected the 

∆N∆C nup57∆GLFG mutant for further analysis, as it was geno-

typically less complex (see Plasmids and yeast strains section 

in Materials and methods). To pinpoint which of the FG do-

mains in the ∆N∆C nup57∆GLFG mutant were most critical for 

mRNA export, we systematically generated strains with fewer 

FG∆ combinations. Each mutant strain was assayed for poly(A)+ 

RNA localization by in situ hybridization with the oligo d(T) 

probe, and the percentage of cells in the population showing 

nuclear accumulation of poly(A)+ RNA was scored (Fig. 4). The 

nup57∆GLFG single mutant and the ∆N∆C mutant did not have 

defects, as the percentage of cells showing nuclear poly(A)+ 

RNA accumulation was not signifi cantly different from wild 

type (P > 0.0602). The ∆C nup57∆GLFG mutant strain also 

did not have a poly(A)+ RNA export defect. In contrast, ∆N 
nup57∆GLFG mutant cells had a strong export defect after 

shifting to growth at 37°C for 1 h, with nearly 80% of the cells 

showing the nuclear accumulation of poly(A)+ RNA. It was 

striking that the defect in the ∆N nup57∆GLFG mutant (in 79.9 ± 

9.4% of the cells at the assay time point) was more severe than 

that in the ∆N∆C nup57∆GLFG mutant (in 26.7 ± 10.6% of the 

cells; see Discussion).

To further dissect the ∆N nup57∆GLFG mutant pheno-

type, we assayed mutants with all possible FG∆ combina-

tions of nuclear face FG domains (Nup1, Nup2, and Nup60) 

with the nup57∆GLFG allele. The nup1∆FXFG nup2∆FXFG 
nup57∆GLFG triple mutant had a poly(A)+ RNA export defect 

with penetrance similar to the ∆N nup57∆GLFG mutant (Fig. 4). 

This indicated that the nup60∆FXFG allele did not contribute 

considerably to the ∆N nup57∆GLFG mutant phenotype. In 

fact, addition of the nup60∆FXF mutant allele to any single or 

Figure 2. The mmp FG𝚫 NPC mutants have distinct defects in Kap104 and Kap121 steady-state import. (A) Indirect immunofl uorescence with an anti-Nab2 
antibody in yeast mmp FG∆ strains was conducted after a 1-h shift to 37°C. Nab2 localization, indicating Kap104 import, and DAPI-staining panels are 
shown. (B) Localization of a Spo12-NLS-GFP reporter, which is imported by Kap121, was evaluated at 23°C and after a 1-h shift to 37°C in mmp FG∆ strains.
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double FG∆ nup57∆GLFG mutant did not result in a statisti-

cally signifi cant difference in the level of nuclear poly(A)+ RNA 

accumulation (P > 0.07 for all comparisons). The nup1∆FXFG 
nup57∆GLFG double mutant and the nup2∆FXFG nup57∆GLFG 

double mutant strains also had defects; however, the percentage 

of cells with nuclear poly(A)+ RNA accumulation was signifi -

cantly less in the nup1∆FXFG nup57∆GLFG double mutant 

and nup2∆FXFG nup57∆GLFG double mutant strains than in 

the combined nup1∆FXFG nup2∆FXFG nup57∆GLFG triple 

mutant (P = 0.0018 and P = 0.0011, respectively). Overall, 

these results suggested that the export of mRNA requires both a 

symmetric GLFG domain (Nup57 and Nup49) and the FXFG 

domains on the nuclear face (Nup1 and Nup2). This is the fi rst 

evidence for an in vivo role for the specifi cally asymmetric FG 

domains in active NPC translocation.

Mex67 binds the Nup57 GLFG 
domain in vitro
We speculated that the deletion of FG domains critical for Mex67 

docking at the NPC was the mechanistic basis for the mRNA 

export defects in the respective mmp FG∆ mutants. Specifi cally, 

the in vivo results suggested that Mex67 required binding sites 

in the FG domains of Nup57 or Nup49 and Nup1 or Nup2. Pre-

vious studies have documented that Mex67-Mtr2 can bind rep-

resentative FG, FXFG, and GLFG domains (Strasser et al., 2000; 

Allen et al., 2001; Strawn et al., 2001). The FXFG domain of 

Nup1 has been directly analyzed (Strasser et al., 2000); however, 

tests of the Nup57 GLFG region have not been reported. We 

conducted studies to verify this interaction biochemically with 

recombinant proteins and a soluble binding assay. Clarifi ed bac-

terial lysates from cells expressing GST alone or GST fused 

with the GLFG regions of Nup57 or Nup116 (GST-GLFG-Nup57 

or GST-GLFG-Nup116) were incubated with glutathione-

Sepharose. Purifi ed maltose-binding protein (MBP)–Mex67 

was then applied to the resin with the respective immobilized GST 

fusion proteins. As shown in Fig. 5, GST-GLFG-Nup57 bound 

MBP-Mex67, whereas GST alone did not bind MBP-Mex67. 

Binding was also detected between MBP-Mex67 and GST-

GLFG-Nup116, as has previously been shown (Strawn et al., 

2001). Thus, the GLFG domain of Nup57 directly binds Mex67 

in vitro.

Effi cient Mex67 recruitment 
to NPCs requires asymmetric FG 
domains and Nup57-GLFG
An mRNA export defect in an FG∆ mutant could result from 

either a direct effect on Mex67–NPC interactions or an indirect 

perturbation on Kap-mediated import of an essential mRNA 

 export factor. We speculated that FG∆ mutants with primary 

defects in Mex67-mediated mRNA export would have decreased 

rates of Mex67-GFP recruitment to the NE/NPC as a result of 

the lack of critical FG-binding sites. To directly examine the 

dynamic properties of Mex67-GFP, we developed a live cell as-

say (Fig. 6 F). This strategy was based on the well-established 

assay for monitoring NLS-GFP import in live yeast cells (Shulga 

et al., 1996). Wild-type parental or FG∆ mutant cells expressing 

chromosomally tagged Mex67-GFP were incubated in glucose-

free media in the presence of 10 mM 2-deoxy-d-glucose and 

10 mM sodium azide for 45 min. This treatment results in cellular 

energy depletion and inhibits active nuclear transport (Shulga 

et al., 1996). The process of mRNA export is energy dependent 

(Paschal, 2002), at a minimum requiring the ATPase Dbp5 

(Snay-Hodge et al., 1998; Tseng et al., 1998). As shown in Fig. 6, 

before energy depletion, all strains showed a strong Mex67-

GFP signal at the nuclear rim. After energy depletion in all of 

the strains, Mex67-GFP was no longer concentrated at the 

NE/NPC, and the cytoplasmic and nuclear signals increased. Co-

expression of a dsRed-HDEL (histidine-aspartate-glutamate-

leucine; fusion protein with amino acid signal sequence for the 

ER retention) was used to facilitate visualization of the NE/ER. 

Localization of the dsRed-HDEL protein was not altered by 

 energy depletion. As a control, we monitored the localization of 

two structural non-FG Nups, GFP-Nic96 and Nup170-GFP 

(Fig. 6 E), and found that a strong punctate NE/NPC signal was 

Figure 3. mRNA export is inhibited in the symmetric FG𝚫 mutants and the mmp mutant 𝚫N𝚫C nup57𝚫GLFG. In situ hybridization with an oligo d(T) probe 
was conducted in the FG∆ NPC mutants after a 1-h shift to 37°C. Signal for the oligo d(T) probe indicates the subcellular distribution of poly(A)+ RNA in 
comparison with the nuclear signal (by coincident DAPI staining).
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present both before and after energy depletion. Nuclear rim lo-

calization of Nup49-GFP was also not altered by energy deple-

tion in wild-type cells or in ∆N∆C mutant cells (Fig. 6 E and not 

depicted, respectively). This indicated that energy depletion 

 results in the mislocalization of Mex67-GFP without a general 

perturbation of NE/NPC structure.

Using this assay, NE/NPC reassociation kinetics was 

determined by fl uorescence microscopic monitoring of Mex67-

GFP localization. At the start of the assay, the energy-depleted 

cells were washed and resuspended in 23°C glucose-containing 

media. The cells were then incubated until the NE/NPC signal 

recovered to pretreatment levels. Individual cells (n > 150) in a 

population were scored for normal continuous NE/NPC signal 

and relative levels of nucleoplasmic and cytoplasmic staining 

(Fig. 6 G). By plotting the percentage of cells with normal con-

tinuous NE/NPC signal as a function of time, relative associa-

tion rates were determined. We then compared the association 

kinetics wherein a single variable was changed (e.g., the FG∆ 

mutant background).

After restoring energy to the system, Mex67-GFP in the 

wild-type cells returned to the pretreatment phenotype with 

Mex67-GFP predominantly at NE/NPCs (Fig. 6 A). The ∆N∆C 

mutant cells recovered more slowly than wild-type cells, and, at 

intermediate time points, an increased frequency of cells had el-

evated intranuclear signal relative to cytoplasmic. The recovery 

process in the ∆N∆C nup57∆GLFG mutant was substantially 

more delayed. After 15 min, the ∆N∆C nup57∆GLFG cells 

showed only a minimal recovery of Mex67-GFP localization to 

the NE/NPC. Moreover, at the intermediate time points, Mex67-

GFP localization in the ∆N∆C nup57∆GLFG cells was mostly 

intranuclear with no distinct NE/NPC staining (Fig. 6 C). This 

phenotype was also observed in the ∆N nup57∆GLFG mutant, 

in which >50% of the cells accumulated Mex67-GFP in the 

nucleus and concentrated nuclear rim localization was not 

achieved over the time course of the assay (Fig. 6, D and G).

Again, as in the assays of poly(A)+ RNA accumulation, 

the rate of Mex67-GFP localization to the NE/NPC was clearly 

more inhibited in the ∆N nup57∆GLFG mutant than in the 

∆N∆C nup57∆GLFG mutant (see Discussion). Overall, we 

concluded that Mex67-GFP recruitment to the NPC in the 

∆N∆C nup57∆GLFG mutant and ∆N nup57∆GLFG mutant 

was impaired. The intranuclear localization before distinct NE/

NPC staining might refl ect the effi cient import of Mex67-GFP 

with specifi c mRNA export inhibition. These results correlate 

with our assays for poly(A)+ RNA export and suggest that the 

∆N∆C nup57∆GLFG mutant and ∆N nup57∆GLFG mutant are 

blocked for poly(A)+ RNA export as a result of altered Mex67 

recruitment to and/or translocation through the NPC.

Discussion
Many approaches have been used to study the mechanism by 

which transport receptors cross the NPC and the requirements 

for transport receptor interactions with FG Nups. We have used 

a genetic strategy in S. cerevisiae to generate extensive collec-

tions of mutants with specifi c combinations of FG domains re-

moved and have conducted direct tests of the in vivo roles of 

putative FG-binding sites for transport receptors in the intact 

NPC (Strawn et al., 2004). In the present study, we report the 

analysis of new mmp FG∆ mutants wherein the symmetric FG 

domains were removed in the absence of all asymmetric FG 

domains (∆N∆C). In some cases, the FG∆ phenotypes correlate 

directly with reported in vitro binding results. For example, pre-

vious studies have shown in vitro binding of Kap104 to the 

Figure 4. mRNA export requires the FG domains of Nup57 and nuclear 
face Nups. In situ hybridization with an oligo d(T) probe was conducted 
with the FG∆ strains indicated after a 1-h shift to 37°C. The percentage of 
cells showing the accumulation of poly(A)+ RNA was calculated based on 
fi elds of >100 cells in three independent trials. Deletion of the nuclear face 
FG domains (nup1∆FXFG, nup2∆FXFG, and nup60∆FXF) is abbreviated 
as ∆N. Deletion of the cytoplasmic face FG domains (nup42∆FG and 
nup159∆FG) is abbreviated as ∆C. Error bars represent SEM.

Figure 5. Mex67 binds the GLFG domain of Nup57. Bacterially expressed 
GST, GST-GLFG-NUP57, and GST-GLFG-NUP116 were each immobilized on 
glutathione agarose beads. Recombinant purifi ed MBP-Mex67 was added, 
and the bound fraction was eluted. 10% of the input (MBP-Mex67) and the 
eluted fractions was resolved by SDS-PAGE and stained with Coomassie 
blue. Molecular mass (kilodaltons) markers are shown at the left (Mr).
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Figure 6. Mex67-GFP recruitment to the NE/
NPC is severely inhibited in both the 𝚫N𝚫C 
nup57𝚫GLFG mutant and 𝚫N nup57𝚫GLFG 
mutant. (A–D) Mex67-GFP localization in rep-
resentative wild-type (A), ∆N∆C (B), ∆N∆C 
nup57∆GLFG (C), and ∆N nup57∆GLFG (D) 
cells before the assay (untreated; left), after en-
ergy depletion (middle), or after 5-6 min of re-
covery from energy depletion (right). For each, 
the coincident localization of the ER marker 
dsRed-HDEL is shown. (E) As controls, the lo-
calization of GFP-Nic96 and Nup170-GFP or 
Nup49-GFP under the same conditions was 
evaluated. (F) A schematic diagram of the en-
ergy depletion assay for Mex67-GFP localiza-
tion is shown. (G) The kinetics of Mex67-GFP 
recovery to the nuclear rim over time after en-
ergy depletion was determined. For three inde-
pendent experiments, >150 cells were scored 
for the subcellular distribution of GFP signal at 
each time point. Error bars represent SEM. 
DIC, differential interference contrast.
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Nup116 GLFG region (Aitchison et al., 1996; Allen et al., 2001), 

and, indeed, the ∆N∆C nup116∆GLFG mutant has defects in 

Kap104-mediated transport, whereas the ∆N∆C mutant does 

not. This confi rms that the Nup116 GLFG domain is a critical 

Kap104-binding site. On the other hand, we found that not all 

in vitro binding events are essential in vivo. Although Mex67 in-

teracts with the GLFG region of Nup116 in vitro (Strasser et al., 

2000; Strawn et al., 2001), the ∆N∆C nup116∆GLFG mutant 

has no mRNA export defect. As a result, we conclude that in vitro 

binding between a transport receptor and an FG domain does not 

necessarily correlate with a requirement for that FG domain 

in vivo. Rather, the substructural location and physiological con-

text of each FG domain is likely a key determinant in the orga-

nization of transport pathways through the NPC.

We have also identifi ed binding events that were not previ-

ously recognized as important. We found that distinct combina-

tions of both symmetric and asymmetric FG domains are needed 

for effi cient nuclear export of poly(A)+ RNA and recruitment of 

Mex67-GFP to the NE/NPC. This includes a GLFG domain 

from the symmetric Nup57 or Nup49 plus the asymmetric FXFG 

domains of Nup1 and Nup2 on the nuclear NPC face. Surpris-

ingly, import by Kaps does not require these same FG domains. 

These results support a model wherein different transport recep-

tors use distinct FG domains, allowing for multiple, preferred, 

and independent transport pathways through the NPC.

mRNA export requires the combinatorial 
use of distinct FG domains and non-FG–
binding sites
Analysis of the mmp FG∆ mutants reveals that at least two FG-

dependent steps are required for mRNA export through the NPC. 

We speculate that the locations in the NPC of the respective FG 

domains are key determinants for effi cient mRNA export. The 

export cargo, a messenger RNP (mRNP) particle, is assembled 

cotranscriptionally and during mRNA processing (for review 

see Hieronymus and Silver, 2004). For such an mRNP, the fi rst 

step in NPC translocation might require the nuclear face FXFG-

binding sites in Nup1 and Nup2 for Mex67 recruitment to the 

NPC. In support of this hypothesis, the ∆N∆C mutant alone has 

a defect in the rate of Mex67-GFP recruitment to the NE/NPC. 

This also provides the fi rst in vivo evidence that asymmetric FG 

domains contribute to the effi ciency of mRNA export.

Second, after initial mRNP recruitment to the NPC, sym-

metrically localized FG domains are needed. Specifi cally, a 

GLFG domain from Nup57 or Nup49 in the symmetric Nsp1–

Nup49–Nup57 subcomplex is required. Our results suggest that 

coupled interactions with the nuclear face FG domains and with 

Nup57 or Nup49 are required for mRNA export. Finally, after 

recruitment to the FXFG Nups on the nuclear face and transloca-

tion dependent on symmetric GLFG Nups, a third non-FG step 

in mRNA export is proposed at the cytoplasmic FG face. Inter-

estingly, the asymmetric Nup159 and Nup42 FG domains on the 

cytoplasmic NPC face are not necessary for mRNA export when 

deleted on their own (∆C; i.e., nup159∆FG nup42∆FG; unpub-

lished data) or in combination with the nup57∆GLFG mutant 

(the ∆C nup57∆GLFG mutant). However, the fl anking non-FG 

domains of Nup159 and Nup42 are required for mRNA export 

and serve as critical docking sites for the mRNA export factors 

Dbp5 and Gle1, respectively (Murphy and Wente, 1996; Hodge 

et al., 1999; Schmitt et al., 1999; Strahm et al., 1999; Weirich 

et al., 2004; Alcazar-Roman et al., 2006; Weirich et al., 2006).

It is striking that in two independent assays (poly(A)+ RNA 

export and Mex67-GFP localization), the ∆N nup57∆GLFG mu-

tant had a more severe phenotype than the ∆N∆C nup57∆GLFG 

mutant. In genetic terms, this indicates that the ∆C FG deletion 

partially suppressed the defect of the ∆N nup57∆GLFG mutant. 

As such, the FG domains of Nup159 and Nup42 might play an 

inhibitory role during mRNA export in the intact NPC or a role 

in regulating terminal mRNP release. Mex67 is a potential tar-

get of the proposed Dbp5 RNP remodeling activity (Lund and 

Guthrie, 2005), and Mex67 binding to the respective Nup159 

and Nup42 FG domains might infl uence this mechanism.

Overall, these results support a model with three coupled 

steps for the effi cient and regulated export of mRNPs through 

the NPC. Alternatively, the mRNA export and Mex67-GFP re-

cruitment defects in the ∆N∆C nup57∆GLFG mutant and ∆N 
nup57∆GLFG mutant strains could be caused by impaired mRNP 

assembly or disassembly rates. To date, however, only non-FG 

domains have been proposed as platforms for transport complex 

assembly or disassembly.

Nup49/Nup57 and Nup116 defi ne 
two distinct pathways through the NPC
Our fi nding of unique transport defects in the mmp FG∆ mu-

tants provides strong evidence for the existence of multiple in-

dependent transport pathways through the NPC. For example, the 

∆N∆C nup57∆GLFG mutant and ∆N∆C nup49∆GLFG mutant 

strains have mRNA export defects but normal steady-state Kap104 

import. In contrast, the ∆N∆C nup116∆GLFG mutant has nor-

mal mRNA export but diminished steady-state Kap104 import. 

We propose that there are at least two distinct FG-dependent 

transport pathways through the NPC, which are defi ned by pre-

ferred FG-binding sites for different transport receptors. The data 

to date pinpoint the GLFG regions of Nup49/Nup57 and Nup116 

as prime determinants for the different pathways. Interestingly, 

comparison of the fi ve GLFG Nups indicates that single GLFG 

domains might be required differentially by transport receptors. 

There are several potential explanations for what defi nes such 

functional FG differences: (1) novel spacer sequences between 

FG repeats might contribute to the binding of transport recep-

tors; (2) non-FG–binding sites adjacent to FG domains might 

be important, such as those defi ned for Kap95/Kap60 (Matsuura 

et al., 2003; Pyhtila and Rexach, 2003) and mRNA export com-

ponents (Murphy and Wente, 1996; Murphy et al., 1996; Hodge 

et al., 1999; Schmitt et al., 1999; Strahm et al., 1999; Weirich 

et al., 2004); (3) the substructural location of the FG repeat 

 domain (Lim et al., 2006a) and the conformations it can assume 

within the NPC (Fahrenkrog et al., 2002; Lim et al., 2006b); or 

(4) the number of repeats in the FG domain. Further dissection 

of the Nup49/Nup57 versus Nup116 GLFG domains should 

pinpoint the molecular basis for such functional differences.

These studies of the mmp FG∆ mutants also fully corrob-

orate our previous conclusions from the analysis of asymmetric-

specifi c versus symmetric-specifi c FG∆ mutants. We fi nd no 
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correlation between the number of FG repeats deleted (or amount 

of FG mass removed) and the severity of transport defects. For ex-

ample, the ∆N∆C nup116∆GLFG mutant has 69.5% of its individ-

ual FG repeats remaining, yet it showed more severe transport 

defects than the ∆N∆C nsp1∆FG∆FXFG mutant, which has only 

47.5% of its individual FG repeats remaining (Strawn et al., 2004). 

Perhaps more importantly, even small-scale FG deletions have a 

dramatic impact on transport. For example, the nup1∆FXFG 
nup2∆FXFG nup57∆GLFG mutant retains 84.9% of its FG re-

peats yet has a severe mRNA export defect, whereas the ∆N∆C 
nup116∆GLFG mutant does not. Thus, there is no correlation be-

tween the number of FG repeats deleted and the level of mRNA 

export or Kap transport defects.

We predict that the substructural distribution and location 

of the critical FG-binding sites in the NPC is the fundamental 

basis for effi cient transport. This conclusion is based on our 

fi ndings of clear in vivo molecular requirements for distinct FG 

domains in different transport receptor mechanisms. Export of 

mRNA requires the GLFG domain of Nup57 or Nup49 in the 

Nic96–Nsp1–Nup49–Nup57 subcomplex. In contrast, Kap104 

import requires the GLFG domain of Nup116 in the Nup82–

Nsp1–Nup116 subcomplex. In regard to the debated models for 

NPC translocation (Ribbeck and Gorlich, 2002; Rout et al., 

2003; Frey et al., 2006; Lim et al., 2006b), these results need to 

be taken into account. With distinct FG requirements, each trans-

port receptor would have its own tailored set of FG-binding 

sites that form the basis of its given entropic barrier or selective 

phase for NPC entry and translocation. Overcoming an entropic 

or physical barrier of the NPC is thus achieved through binding 

to specifi c FG Nup domains.

A model of multiple NPC pathways allows 
for competition and regulation of transport
With multiple preferred FG-domain pathways, the transport of 

cargo by different receptors could be regulated by NPC struc-

tural changes and infl uenced by transport receptor relative abun-

dance. Aspergillus nidulans undergoes partial NPC disassembly 

during mitosis, including the dissociation of several FG Nups 

from the NPC (De Souza et al., 2004; Osmani et al., 2006). 

These changes result in altered NPC permeability and transport 

and provide strong evidence that transport through the NPC can 

be regulated at the level of the NPC structure and FG Nup com-

position. Changes in NPC composition are also observed in 

virally infected cells, as interferon triggers up-regulation of the 

FG protein Nup98 as well as Nup96 and Rae1/Gle2 (Enninga 

et al., 2002). Infl uenza virus counteracts this antiviral response 

by forming an inhibitory complex with cellular mRNA export 

factors and by down-regulating Nup98. These mechanisms im-

pair cellular mRNA export and favor viral mRNA export, which 

uses an alternative transport receptor (Neumann et al., 2000; Elton 

et al., 2001). Thus, the use of preferred FG-binding sites could 

allow unique mechanisms for the selective regulation of differ-

ent transport pathways. Our collection of FG∆ mutants fully 

demonstrates the range and specifi city of perturbations that could 

be accomplished by selective NPC composition changes.

Several studies have examined the effect of a given trans-

port receptor’s concentration on its own import efficiency 

(Riddick and Macara, 2005; Timney et al., 2006; Yang and 

Musser, 2006). Mathematical modeling has indicated that excess 

Kapβ/importinβ can impede its own translocation (Riddick 

and Macara, 2005), but experiments in permeabilized mam-

malian cells suggest that increased importinβ levels improve 

the efficiency of nuclear import (Yang and Musser, 2006). 

Recent experiments further show that modulating the levels of 

Kap123 in S. cerevisiae changes the import rate for Kap123 and 

its cargo in proportion to its abundance (Timney et al., 2006). 

However, exactly how the concentration of each Kapβ affects 

the transport of other molecules and receptors has not been 

 examined. Given our proposal for independent FG-domain re-

quirements by different transport receptors, in a wild-type NPC, 

direct competition for the same FG-binding sites or pathways 

might be prevented. However, if the FG Nup composition were to 

change, competition between receptors for the remaining path-

ways and FG-binding sites could impact translocation effi ciency. 

Thus, either NPC structural changes at the level of individual 

FG domains (as shown here with the FG∆ mutants) or recep-

tor competition could modulate nucleocytoplasmic traffi cking 

and allow changes in nucleocytoplasmic transport fl ux in re-

sponse to disease or developmental state. Further analysis of the 

transport properties in the FG∆ mutant collection will directly 

allow future tests of such regulated translocation models.

Materials and methods
Plasmids and yeast strains
Plasmids and yeast strains used in this study are listed in Tables S1 and S2 
(available at http://www.jcb.org/cgi/content/full/jcb.200704174/DC1). 
Plasmid cloning was performed according to standard molecular biology 
strategies. Yeast strains were grown in YPD (1% yeast extract, 2% peptone, 
and 2% glucose) or in synthetic complete (SC) media with 2% glucose and 
lacking appropriate amino acids. New yeast FG∆ mutants were generated 
using a Cre-Lox system as previously described (Guldener et al., 1996; 
Strawn et al., 2004), with the exception of the ∆N∆C nup49∆GLFG strain. 
Using the Cre-LoxP system, deletion of the sequence encoding amino acids 
2–236 from NUP49 was coincident with insertion of the sequence for a T7 epit-
ope tag and a LoxP site fused in frame with the sequence encoding the 
C-terminal region of Nup49. The lethality of this ∆N∆C nup49∆GLFGLoxP strain 
was rescued by transformation with a nup49∆GLFG plasmid (pSW3261). All 
assays were conducted with the ∆N∆C nup49∆GLFGLoxP pSW3261 strain.

Microscopy and analysis of live cell GFP reporters
Yeast strains carrying pGAD-GFP (cNLS-GFP), pNS167 (Nab2NLS-GFP), 
pKW430 (NLS-NES-GFP2), or pSpo12 76–130-GFP (Spo12NLS-GFP) were 
grown to early log phase in SC media lacking the appropriate amino acid 
and supplemented with 2% glucose. Cells were examined from culture at 
23°C or after 1-h shift to 37°C. All images were acquired using a micro-
scope (BX50; Olympus) with a UPlanF1 100× NA 1.30 oil immersion 
objective (Olympus) and a camera (CoolSNAP HQ; Photometrics). Within 
each experiment, all images were collected and scaled identically. Images 
were collected using MetaVue version 4.6 (Molecular Devices) and pro-
cessed with Photoshop 9.0 software (Adobe).

In situ hybridization and indirect immunofl uorescence
Yeast cells were grown in YPD to early log phase at 23°C, and aliquots 
were shifted to 37°C for 1 or 3 h. Cells were fi xed for 10 min and pro-
cessed as previously described (Wente et al., 1992; Iovine et al., 1995). For 
indirect immunofl uorescence, cells were incubated overnight with affi nity-
purifi ed rabbit anti-Nab2 antibodies (1:4,000) and were detected with 
fl uorescein-conjugated donkey anti–rabbit IgG (1:200; Jackson Immuno-
Research Laboratories). For in situ hybridization, cells were incubated 
overnight with a digoxigenin-dUTP–labeled oligo d(T) probe and were de-
tected with fl uorescein-labeled antidigoxigenin Fabs (1:25; Boehringer). 
DNA was stained with 0.1 μg/ml DAPI, and samples were mounted for 
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imaging in 90% glycerol and 1 mg/ml p-phenylenediamine (Sigma- Aldrich), 
pH 8.0. Images were acquired and processed as described in the previ-
ous section.

Protein purifi cation and GST pull-down
GST, GST-GLFG-Nup57, and GST-GLFG-Nup116 were expressed in Esch-
erichia coli Rosetta (DE3) cells (EMD Biosciences). Clarifi ed lysates of GST 
fusion proteins were prepared in 20 mM Hepes, pH 7.5, 150 mM NaCl, 
and 20% wt/vol glycerol. MBP-Mex67 was expressed in Rosetta cells, af-
fi nity purifi ed over amylose resin according to the manufacturer’s protocol 
(New England Biolabs, Inc.), and dialyzed into binding buffer of 20 mM 
Hepes, pH 7.5, 150 mM NaCl, and 20% wt/vol glycerol. Clarifi ed GST 
fusion protein lysates were bound to glutathione-Sepharose (GE Health-
care) and washed in binding buffer. MBP-Mex67 was applied to beads 
and incubated at 4°C for 30 min. Samples were washed twice in binding 
buffer and eluted on ice for 20 min in binding buffer, pH 7.5, with 20 mM 
glutathione. Equal fractions of bound protein were analyzed by SDS-PAGE 
and Coomassie blue staining.

Mex67-GFP NPC recruitment assay
MEX67 was chromosomally tagged with the sequence encoding GFP in 
haploid wild-type and FG∆ yeast by amplifi cation of the GFP:HIS3MX6 re-
gion from the yeast GFP collection strain YPL169C (Invitrogen). Integrants 
were selected on SC-histidine and verifi ed by PCR and immunoblotting with 
rabbit anti-GFP (1:1,000). To allow integration of the gene for expression 
of dsRED-HDEL, YIplac204/TKC-DsRed-HDEL (Bevis et al., 2002) was lin-
earized with EcoRV and transformed into yeast cells. Cells were selected 
on SC-tryptophan, and integrants were verifi ed by live cell microscopy. For 
energy depletion assays, cells were grown to early log phase in YPD at 23°C. 
A culture aliquot of 2.5 A600 U was used, and the cells were pelleted, 
washed, and resuspended in 1 mL YP (without glucose) with 10 mM NaN3 
and 10 mM 2-deoxy-D-glucose. Cells were treated for 45 min at 23°C and 
were pelleted, washed, and placed on ice before microscopy. At time = 0, 
cells were resuspended in 23°C YPD, mounted on a glass slide, and visualized 
as described in Microscopy and analysis of live cell GFP reporters. Images 
of the GFP and dsRED signals were acquired every 30 s for 15 min. Cells 
were scored for the recovery of Mex67-GFP to the nuclear rim and the relative 
nuclear to cytoplasmic GFP signal. Control strains SWY734 and SWY3302 
were examined before and immediately after energy depletion.

Online supplemental material
Table S1 lists the S. cerevisiae strains with genotypes and sources that are 
used in this study. Table S2 lists the plasmids used in this study and desig-
nates plasmid backbone and source. Online supplemental material is avail-
able at http://www.jcb.org/cgi/content/full/jcb.200704174/DC1.
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