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Abstract: Yellow mosaic disease (YMD), incited by mungbean yellow mosaic virus (MYMV), is a
primary viral disease that reduces mungbean production in South Asia, especially in India. There
is no detailed knowledge regarding the genes and molecular mechanisms conferring resistance of
mungbean to MYMV. Therefore, disclosing the genetic and molecular bases related to MYMV resis-
tance helps to develop the mungbean genotypes with MYMV resistance. In this study, transcriptomes
of mungbean genotypes, VGGRU-1 (resistant) and VRM (Gg) 1 (susceptible) infected with MYMV
were compared to those of uninfected controls. The number of differentially expressed genes (DEGs)
in the resistant and susceptible genotypes was 896 and 506, respectively. Among them, 275 DEGs
were common between the resistant and susceptible genotypes. Functional annotation of DEGs
revealed that the DEGs belonged to the following categories defense and pathogenesis, receptor-like
kinases; serine/threonine protein kinases, hormone signaling, transcription factors, and chaperons,
and secondary metabolites. Further, we have confirmed the expression pattern of several DEGs by
quantitative real-time PCR (qRT-PCR) analysis. Collectively, the information obtained in this study
unveils the new insights into characterizing the MYMV resistance and paved the way for breeding
MYMV resistant mungbean in the future.
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1. Introduction

Yellow mosaic disease (YMD) is a major virus disease, and its incidence has become
severe in the past three decades throughout most mungbean (Vigna radiata) producing
regions in South Asia and particularly in India. Three different begomoviruses, i.e., mung-
bean yellow mosaic virus (MYMV), mungbean yellow mosaic India virus (MYMIV), and
horse gram yellow mosaic virus (HgYMV), have been found to cause YMD in various
mungbean producing regions of Asia [1]. MYMV and MYMIV cause the YMD in India.
It was reported that MYMV is primarily in India’s southern region, while MYMIV is in
the northern, central, and eastern regions of India [2,3]. The viruses are spread by whitefly
in a persistent and circulative manner but cannot be transmitted mechanically through
sap or seed. The effectiveness of whitefly transmission and behavior varies with that of
the genotype and growth stage and virus strains [4]. The most common virus symptoms
include yellowing or chlorosis of the leaves preceded by necrosis, fewer flowers and pods,
and pods containing immature and abnormal seeds and stunting plants. Mungbean plants
infected within 3 weeks of sowing may reduce yield up to 85%. So far, many investigations
on the mungbean-MYMV have concentrated on the occurrence, characterization of isolates,
symptoms, transmission and epidemiology, chemical and biological control of the virus
reviewed by Karthikeyan et al. [5]. The use of mungbean cultivars resistant to MYMV
has long been considered an effective and economical way to control the virus [6]. Many
studies evaluated the mungbean germplasm for resistance to MYMV. However, only a
few germplasm were found to be resistant [4,7–9]. Despite the advances in deciphering
the mungbean genome, limited information is known about the genes and mechanisms
underlying mungbean resistance to MYMV, which is essential for developing effective
control methods. Therefore, comprehensive knowledge of mungbean responses to MYMV
infection is needed for developing methods for the management of virus.

Mungbean responses to the virus are complex and associated with the numerous
biological and physiological processes involving the up- or down-regulation of genes. The
discovery of the differentially expressed genes (DEGs) regulating the mungbean defense
response to MYMV is vital in understanding genes and molecular mechanisms associated
with resistance. This information is helpful for mungbean researchers to understand the
complex interactions between mungbean and the virus. Taking advantage of second and
third-generation sequencing technologies, comparative transcriptome analysis through
RNA sequencing (RNA seq) is the most popular method for detecting DEGs between
two models [10–13]. Moreover, transcriptome analysis provides detailed information
to understand the dynamics of interaction between the host and pathogen [14,15]. By
comparing the transcriptome data from the pathogen-infected and control, countless studies
have been attempted to elucidate the complete details of the genes and pathways involved
in the molecular mechanism of resistance to pathogens [16–18].

Recently, transcriptome comparisons among resistant and susceptible genotypes to
pathogens in various crops, including mungbean [19], urdbean [20,21], soybean [22,23],
rice [24,25], and tomato [16] extended our knowledge on the genes and mechanisms under-
lying the resistance to plant pathogens. In regard to the available literature information,
RNA-Seq has yet to be used to investigate the transcriptome response of mungbean to
MYMV. In the present investigation, the transcriptome response of two mungbean geno-
types to MYMV was analysed using RNA seq. Our study identified specific and mutual
DEGs and unveiled the different responses to MYMV infection in these two mungbean
genotypes. This information has given new insights into MYMV-resistant and paved the
way for breeding MYMV resistance in the future.

2. Materials and Methods
2.1. Genotype Panel and Pathogen Inoculation

Two mungbean genotypes were received from Agricultural Research Station, Tamil
Nadu Agricultural University, Virinjupuram, India, i.e., MYMV-resistant genotype ‘VGGRU-
1’ and the susceptible genotype ‘VRM (Gg) 1” [4]. Healthy seeds of both genotypes were
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agroinoculated with infectious virus construct VA 239 (KA30 DNA A + KA27 DNA B) [26]
and raised in a plant growth chamber at ideal condition [Temperature (25 ◦C), relative
humidity level (60–70%) and light/dark photoperiod (16/8 h)]. Agroinoculation, assess-
ment of MYMV symptoms, and virus detection was performed following the procedure
detailed by Karthikeyan et al. [6] and Sudha et al. [4,27]. The agroinoculation screening of
mungbean genotypes was completed thrice.

2.2. Library Preparation and Illumina Sequencing

Leaves were collected at mock and inoculated plants at 25- and 40-days post-inoculation
(DPI) and finely ground using liquid nitrogen and stored at −70 ◦C. For the construction
of the cDNA libraries, the 25 and 40 DPI leaves were pooled together for RNA isolation
and made as an infection library following the pooled cDNA library construction proce-
dure [28], while leaves were uninoculated (Control) served as a non-infection library. Total
RNA was isolated by the RNeasy plant mini kit (Qiagen, Hilden, Germany) following
the user guidelines and treated with RNase-free DNAseI (Promega, Madison, WI, USA).
RNA quantity and quality were determined by the bio spectrometer (Eppendorf, Hamburg,
Germany) based on the absorbance ratio at 260 nm and 280 nm. The RNA integrity value
(RIN) of the samples was confirmed by the Agilent Bioanalyzer 2100 system (Agilent
Technologies, Santa Clara, CA, USA). Four cDNA libraries derived from VGGRU-1 control,
VGGRU-1 infected, VRM (Gg) 1 control, and VRM (Gg) 1 infected were constructed by
Illumina TruSeq RNA sample preparation kit following the user guidelines (Illumina Inc.,
SanDiego, CA, USA). Four cDNA libraries were sequenced by IlluminaHiSeq2000 platform
with paired-end (PE) reads of 101 bp at Phyzen Genomics Institute, Seoul, South Korea.

2.3. Reads Filtering and Mapping

Before alignment, raw reads obtained from each library were filtered to get clean
high-quality reads by removing low-quality reads. The clean high-quality reads were
obtained by following the method with three steps: in the first step, bacterial contaminants
were removed from raw reads by mapping onto the available bacterial genomes through a
burrows wheeler aligner (BWA) [29]. The second step included PCR copies, and ribosomal
(rRNA) reads filtering by FastUniq [30] and SortMeRNA [31], respectively, and the uncom-
promising quality control and taking out the adapter contamination by NGS QC Toolkit
(v2.3.3) was followed in the third step [32]. The clean high-quality reads were mapped to the
mungbean reference genome (https://legumeinfo.org/genomes/gbrowse/Vr1.0; accessed
on 6 February 2018) using burrows-wheeler aligner (BWA) [29] with default parameters.

2.4. Analysis of Differentially Expressed Genes

The expression levels of the gene transcripts were measured using fragments per
Kilobase per million (FPKM) values estimated by RNA-Seq by Expectation-Maximization
(RSEM) [33]. DEGs in VGGRU-1 control vs VGGRU-1 infected, and VRM (Gg) 1 control
vs VRM (Gg) 1 infected were identified by Bioconductor package edgeR [34] using the
threshold of false discovery rate (FDR) of ≤0.001 and the absolute value of Log2 fold-
change ≥2. DEGs were signified in Venn diagrams using VENNY v.2.1 (http://bioinfogp.
cnb.csic.es/tools/venny/; accessed on 18 August 2018). To investigate the function of the
DEG transcripts, gene ontology (GO) analysis was conducted by the BLAST2GO software
program (http://www.blast2go.org; accessed on 11 December 2018) with the default
parameter. The main GO categories to which the DEGs be appropriate were confirmed
next, and then genes were subject to BLAST, mapping, and annotation.

2.5. Quantitative Real-Time PCR (qRT-PCR) Analysis

Based on the functional annotation importance, seven genes related to plant defense
response to pathogen infection were chosen for validation through quantitative real-time
PCR (qRT-PCR). Primer pairs from the gene sequences were designed using Primer 5.0,
and the primer specificity was verified by blasting the sequences at National Center for

https://legumeinfo.org/genomes/gbrowse/Vr1.0
http://bioinfogp.cnb.csic.es/tools/venny/
http://bioinfogp.cnb.csic.es/tools/venny/
http://www.blast2go.org
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Biotechnology Information (NCBI) database. For normalizing the gene expression level,
ubiquitin was used as a reference gene. Total RNA was isolated by RNeasy plant mini kit
(Qiagen, Hilden, Germany). Consequently, the DNA-free RNA was used for first-strand
cDNA synthesis by transcriptor First Strand cDNA Synthesis Kit (Roche Applied Science,
Penzberg, Germany) following the manufacturer’s instructions. PCR amplification was
performed using 2× SYBR Green PCR Master Mix (TaKaRa, Kusatsu, Shiga, Japan) and
Light-Cycler® 480 (Roche Applied Science, Penzberg, Germany) following the standard
protocol. Three independent replicates were completed, and each gene’s relative expression
was measured by the comparative 2-∆∆Ct method.

3. Results
3.1. Mungbean Genotypes Reaction to MYMV

Two mungbean genotypes, VRM (Gg) 1 and VGGRU-1, were inoculated with MYMV,
and symptoms were observed in uninfected control and infected plants. A typical mosaic
symptom was observed in susceptible mungbean genotype VRM (Gg) 1. On the contrary,
there were no visible symptoms on the resistant genotype VGGRU-1 until 40 DPI (Figure 1).
The viral DNA was detected in inoculated plants using PCR analysis of the coat protein
gene of MYMV, while absent in uninfected control plants. The response of VRM (Gg) 1 and
VGGRU-1 after infection with MYMV was as expected; thus, it is meaningful to use their
leaves for further transcriptome analysis.
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Figure 1. Development of symptoms of MYMV in the agroinoculated plants (A) VGGRU-1 and
(B) VRM (Gg) 1.

3.2. Summary of Transcriptome Data Set

We sequenced four cDNA libraries (VGGRU-1 control, VGGRU-1 infected, VRM (Gg)
1 control, and VRM (Gg) 1 infected) and generated a total of 95.8 million raw reads ranging
from 23.2 to 25.1 million raw reads per library. All the raw reads were submitted to the
NCBI database (Sequence Read Archive (SRA) with the accession number PRJNA742191).
The read length from each library was 101 bp. GC percentage of the sequence data was
about 43% in four libraries. Further, we used stringent criteria to filter the clean high-
quality reads and aligned more than 80% reads based on the reference genome and used
for DEG analysis.

3.3. DEGs in Response to MYMV Infection

We used the criteria of false discovery rate (≤0.001) and fold change greater than or
equal to identify DEGs in resistant and susceptible genotypes. The total number of DEGs
was greater in VGGRU-1 than in VRM (Gg) 1. The Venn diagram shows the distribution
of DEGs in both genotypes (Figure 2). There were 896 DEGs between the VGGRU-1
control and infected samples. Among them, 583 genes were upregulated, and 313 genes
were down-regulated (Tables S1 and S2). Likewise, 506 DEGs were detected between the
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VRM (Gg) 1 control and infected samples. Of these, expression levels of 204 genes were
upregulated, and 302 genes were down-regulated (Tables S3 and S4). A total of 275 DEGs
were common between VGGRU-1 and VRM (Gg) 1. The number of up and down-regulated
genes in both genotypes was 95 and 62, respectively. Notably, in response to MYMV
infection, 82 upregulated genes in VGGRU1 were downregulated in VRM (Gg) 1, and
36 downregulated genes in VGGRU-1 were upregulated in VRM (Gg) 1.

1 
 

 Figure 2. Differentially expressed genes (DEGs) identified through RNA-Seq analysis in resistant
(VGGRU_1) and susceptible (VRM (Gg) 1) genotypes upon MYMV infection. (A) The total number of
up- and down-regulated DEGs identified in resistant and susceptible genotypes. (B) A Venn diagram
depicting the number of DEGs expressed in resistant and susceptible genotypes after MYMV infection.

3.4. Gene Ontology Analysis of DEGs

Differentially expressed genes identified after MYMV infection were classified into
one of the three GO categories: biological processes (BP), molecular function (MF), and
cellular components (CC). The DEGs with the unknown function were not related to any
GO categories taken as novel genes responding to MYMV infection. In the biological
processes category, most of the DEGs were related to the cellular process, metabolic process,
biological regulation, regulation of the biological process, response to stimulus, localization,
and signaling (Figure 3). The amount of DEGs related to the class of cellular and metabolic
processes was higher in the resistant genotype (49 and 45%) compared to the susceptible
genotype (42 and 41%), whereas DEGs in the biological regulation, regulation of the
biological process, response to stimulus, localization, and signaling was marginally higher
in the resistant genotype than that in the susceptible genotype. Besides, some of the DEGs
were mainly related to cell killing and proliferation, and growth in the susceptible genotype,
whereas several DEGs were related to the rhythmic process in the resistant genotype. On
the other hand, the molecular function category large number of DEGs were associated
with the catalytic activity, binding activity, transporter activity, transcription regulator
activity, and antioxidant activity. Protein tag- and nucleic acid-binding factor activity-
related DEGs were detected only in the susceptible genotype. Likewise, DEGs are related to
protein folding chaperone, enzyme activator activity, and toxin activity specific to resistant
genotype. Eventually, in the cellular components category, many DEGs were related to the
proteins that are localized in the cell, organelle, membrane, protein-containing complex,
membrane-enclosed lumen, and extracellular region. Some DEGs were solely related to
cell junction and symplast in the susceptible genotype. These results collectively show the
vital role of these GO categories in the MYMV resistance of the mungbean.
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3.5. Analysing DEGs Related to Defense Response to Pathogen Infection

Though many differences among the resistant and susceptible genotypes were un-
veiled by the DEGs and GO analysis, we were mainly focused on common DEGs (275)
between the resistant and susceptible genotypes (Table S5). Of these, several DEGs were
found to be related to the plant defense response to pathogen infection, and they belonged to
the following categories; defense and pathogenesis, receptor-like kinases; serine/threonine
protein kinases (STKs), hormone signaling, transcription factors, and chaperons, and sec-
ondary metabolites Figure 4 and Table S6. Here, we outlined a few examples for each
category; defense and pathogenesis-related DEGs; TIR/CC-NBS-LRR disease resistance
protein (Vradi02g09230 and Vradi10g01550), and LRR and NB-ARC domain disease resis-
tance protein (Vradi08g04110), disease resistance-responsive (dirigent-like protein) family
protein (Vradi08g01660), protein phosphatase 2C family protein (Vradi06g14190), small GTP-
binding protein (Vradi04g06840), and DEAD-box ATP-dependent RNA helicase-like protein
(Vradi02g13500). Receptor-like kinases (RLK); serine/threonine protein kinases (STKs)
related to DEGs (Vradi04g06770, Vradi08g04480, and Vradi09g06830). Hormone signaling-
related DEGs, including jasmonic acid carboxyl methyltransferase (Vradi04g07450) and
ethylene-responsive transcription factor (Vradi0215s00360). Transcription factors and chap-
erons related to DEGs including, WRKY (Vradi06g13520), bHLH (Vradi02g14260), MYB
(Vradi08g21650), and HSP (Vradi11g06880). Secondary metabolite-related DEGs such as
terpene synthase (Vradi02g10990), galactinol synthase (Vradi08g11570), β-galactosidase
(Vradi06g16920), UDP-Glycosyltransferase superfamily protein (Vradi02g04560), Cytochrome
P450 superfamily protein (Vradi01g08930), and alcohol dehydrogenase (Vradi06g11500).

3.6. Validation of Defense Response-Related DEGs

At least one representative DEG from each functional category was selected for qRT-
PCR analysis to confirm the expression pattern of DEGs identified by RNA-Seq. A to-
tal of six DEGs, including Vradi08g04110, Vradi09g06830, Vradi04g07450, Vradi06g13520,
Vradi06g11500, and Vradi01g04820, were used for qRT-PCR analysis. The results were
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consistent with the RNA-Seq results and had almost similar expression patterns in all the
analysed DEGs. Overall, these data gave a detailed picture of how these DEG’s expression
patterns occurred in the resistant and susceptible genotypes. Figure 5 shows the expression
of the DEGs in the resistant and susceptible genotypes after MYMV infection.
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4. Discussion

The publically accessible mungbean whole genome sequences, integrated with the
second-generation RNA seq platform, offered a potential method for investigating the DEGs
in mungbean in response to pathogen infection. YMD in the mungbean and its relatives,
including blackgram and cowpea, is mainly caused by MYMV and MYMIV. Transcriptomics
analysis of resistant and susceptible genotypes in response to MYMIV was investigated in
blackgram and mungbean [19,21]. It revealed the major genes and metabolism pathways
linked to the disease resistance. However, no such investigation on the interaction of
the mungbean and MYMV has been published. Previously, in our lab, we identified that
mungbean genotype VGGRU-1 is resistant to MYMV, while VRM (Gg) 1 is susceptible [4].
In the present investigation, we prolonged the fundamental understanding of mungbean
response to MYMV infection by comparing the transcriptome changes between VGGRU-1
and VRM (Gg) 1. Since MYMV is not transmitted mechanically, whiteflies-based inoculation
cannot assure a 100% infection rate. Therefore, we used an infectious clone of MYMV (VA
239) to infect the mungbean genotypes using the agroinoculation method. This method
provides the systemic infection compared to previous studies [19,21], which used the
viruliferous whiteflies to inoculate the resistant and susceptible genotypes, and analysed
the transcriptome changes. We used the RNA seq approach to obtain the transcriptomes
of MYMV infected and uninfected control of VGGRU-1 and VRM (Gg) 1. The number
sequence reads from four libraries ranged from 23.2 to 25.1 million reads, and more than 80%
clean high quality reads matched on the reference genome, which was similar to reported
mungbean RNA-seq data [35–37], confirming that the sequencing depth was satisfactory for
the transcriptome coverage and further data analysis. We have found 896 genes in resistant
genotype and 506 genes in susceptible genotype differentially expressed between their
respective infected and uninoculated control. The number of DEGs in the resistant genotype
VGGRU-1 was higher than the susceptible genotype, VRM (Gg) 1, following virus infection.
This finding is consistent with the reports of Kundu et al. [21] and Dasgupta et al. [19],
who detailed that resistant lines had greater DEGs than the susceptible. GO analysis found
that pathogen response was related to the DEGs involved in transcription factor activity,
hormone signaling, protein kinase activity, and metabolic process. Despite VGGRU-1 and
VRM (Gg) 1 having different MYMV infection responses, 275 common DEGs were found in
both mungbean genotypes. Previous studies have shown the advantage of focusing on the
common DEGs between the resistant and susceptible genotypes to discover the possible
candidate resistance genes in various diseases [15,22]. Therefore, we were mainly focused
on 275 common DEGs. Among them, several DEGs were found to be related to the plant
defense response to pathogen infection, and they belonged to the following categories;
defense and pathogenesis, receptor-like kinases; serine/threonine protein kinases (STKs),
hormone signaling, transcription factors, and chaperons, and secondary metabolites.

4.1. Defense and Pathogenesis Related Genes

Plant disease resistance genes (R genes) are important components of the genetic
resistance mechanism in plants. In the recent past, many plant R genes exhibiting resistance
to viral pathogens have been identified and cloned in various crops. The majority of
R genes in plants encode CC/TIR-NBS-LRR and LRR and NB-ARC disease resistant
proteins. Two DEGs Vradi09g09840 and Vradi1047s00010 encoding domain of CC-NBS-LRR,
Vradi10g01550 encoding domain of TIR-NBS-LRR, and Vradi08g04110 encoding domain
of LRR and NB-ARC disease resistant proteins differentially expressed. These genes
were markedly reversed in response to resistant (Up-regulated) and susceptible (Down-
regulated) genotypes following virus infection. Besides, three DEGs (Vradi0023s00280,
Vradi02g09230, and Vradi0292s00010) encode TIR-NBS-LRR and CC-NBS-LRR were higher
up-regulation in resistant mungbean genotype compared to the susceptible genotype
upon infection. This was in agreement with Li et al. [38], and Karthikeyan et al. [39],
who reported that the up-regulation of CC/TIR-NBS-LRR and LRR and NB-ARC genes
following infection of soybean with soybean mosaic virus was related to resistance.
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Disease resistance-responsive (dirigent-like protein), small GTP-binding proteins, and
protein phosphatase 2C family proteins are related to disease resistance in plants. DIR
proteins and disease resistance response family proteins have a similar dirigent-conserved
domain. They play a major role in arbitrating the free radical coupling of monolignol plant
phenols in plants to yield lignans and lignins; therefore, DIRs have been involved in disease
resistance responses. Vradi08g01660 encoding disease resistance-responsive (dirigent-like
protein) family protein up-regulated in resistant genotype. Similarly, the involvement
of dirigent genes and their apparent upregulated expression in response to attacks by
pathogens [40–42] is of particular interest. The small GTP-binding gene families are related
to the signal transduction in plants. It involves GTPase activity and activates the protein
kinases and LRR related to disease resistance [43]. The up-regulation of DEG Vradi04g06840
encoding Small GTP-binding protein in the resistant genotype compared to the susceptible
genotype underlines the importance of this gene during plant disease resistance.

Protein phosphatase 2C family proteins have been important in regulating the abscisic
acid signaling pathway and adaptation to environmental stresses. In our study, upregula-
tion of two DEGs (Vradi02g08700 and Vradi06g14190) encoded protein phosphatase 2C was
observed in resistant genotype; in contrast, lower-level expression compared to resistant
genotype or downregulation was seen in susceptible genotype. Protein phosphatase 2C
involves disease resistance by activating defense response in tobacco and soybean [44,45].
The upregulation of protein phosphatase 2C showed ABA-induced functions as a key
regulator of Rsv3-mediated soybean mosaic virus resistance, limiting virus spread in soy-
bean [45]. The involvement and significance of DEAD-box RNA helicases, which is the
major family of RNA helicases, are known for their role against pathogens in plants [46].
Therefore, the expression levels of three DEGs belonging to the DEAD-box RNA helicases
family were examined in the present study. All three DEGs were upregulated in resis-
tant genotype, suggesting their involvement resistance. Notably, Vradi0285s00030 and
Vradi02g13500 were upregulated in the resistant genotype, while they were down-regulated
in the susceptible genotypes. Vradi0007s01650 expression level was highly up-regulated in
the resistant genotype, whereas only a slight up-regulation was observed in the susceptible
genotype after virus infection. Li et al. [47] showed that overexpression of OsBIRH1 encode
DEAD-box RNA helicases in transgenic Arabidopsis plants resulted in an increased expres-
sion of defense-associated genes and improved the disease resistance as well as oxidative
stress tolerance.

4.2. LRR-RLK/STK Genes

LRR-RLKs are important components in regulating hormone signaling, abiotic and
biotic stress responses in plants. STKs are receptor proteins that facilitate the signal trans-
duction in plant defense responses [48,49]. It is mainly involved in identifying and trans-
duction of pathogen-derived signals at the time of plant and microbe interactions. Several
DEGs (Vradi0161s00420, Vradi0253s00140, Vradi0283s00060, Vradi04g06770, Vradi08g04480,
and Vradi09g06830) from this family is upregulated in resistant genotype while downregu-
lated in susceptible genotype. Although, several DEGs (Vradi0252s00080, Vradi02g11170,
Vradi0366s00010, and Vradi05g08520) are highly up-regulated in the resistant genotype, but
only a slight up-regulation was detected in the susceptible genotype after virus infection.
Previous studies showed that overexpression of this gene family is related to disease re-
sistance and defense responses, emphasizing important amino acids in specific regions,
which are closely associated with plant disease resistance signal transmission [50,51].

4.3. Genes Involved in SA, JA, and ET Pathway

Plants can develop refined defense systems to prevent themselves against pathogen
infection and cope with pathogen invasion by triggering numerous defense pathways.
Pathogen infection induces the level of hormones such as salicylic acid (SA), jasmonate (JA),
and ethylene (ET). These hormones are determined by the pathogen and play a major role
in developing a strong defense system [52,53]. The plant hormone JA and its derivatives
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have been identified as important regulators in a plant’s immune system, playing critical
roles in pathogen defense responses [54]. Vradi04g07450 encoded S-adenosyl-L-methionine:
jasmonic acid carboxyl methyltransferase (JMT). JMT involves the conversion of JA to
MeJA, and overexpression of the JMT gene in transgenic Arabidopsis and rice plants
induces the constitutive expression of JA-responsive genes and regulates the plants to
defend themselves against infection by pathogens and herbivores [55,56]. Besides, one
DEG Vradi0234s00020 encodes allene oxide synthase (AOS) upregulated in both genotypes
during virus infection, but up-regulation in resistant genotype was slightly high compared
to susceptible genotype. AOS is the first enzyme in the branch pathway leading to the
biosynthesis of JA, and studies reported that expression of AOS determines defense gene
activation in tomato [57]. Two DEGs (Vradi0215s00360 and Vradi01g10800) belong to the
ethylene-responsive transcription factor (ERF) family regulated during virus infection.
ET has been shown to regulate the expression level of pathogenesis-related genes via
ERFs in earlier studies, ERFs were likely to have a role in the control of plant defense
mechanisms by acting as transcriptional activators or repressors of GCC-box mediated
gene expression [58–61].

4.4. Transcription Factors and Secondary Metabolites

Transcription factors WRKY, MYB, and bHLH families have been known for their role
in an elaborate regulation network by interacting with target genes in plants. Additionally,
they are related to activation of defense gene expression and regulation of phytohormones
crosstalk [62–67]. In this study, three types of transcription factors, including three WRKYs,
two bHLH, and two MYB, were differentially expressed. WRKY proteins are an important
family of transcriptional regulators identified solely in plants. They have been implicated in
the plant’s response to biotic stress in different ways, including as transcriptional activators
or repressors [68]. We have identified three DEGs belonging to WRKYs, i.e., Vradi06g13520,
Vradi0338s00060, and Vradi0158s00480, differentially expressed following virus inoculation.
In particular, Vradi06g13520 and Vradi0338s00060 showed a 2–5-fold increase in resistant
genotype and a 2–3-fold decrease in susceptible genotype. Vradi0158s00480 is upregulated
in resistant genotype higher than susceptible genotype. So far, many researchers have
discussed the involvement of WRKYs in plant defense response against various pathogens,
including MYMIV, and how WRKYs interact with their target genes or crosstalk with genes
involved in plant hormone signaling such as SA, JA, and others [69]. The bHLH proteins
belong to a class of superfamily transcription factors, which can bind to particular target
sites in DNA. Increasing evidence indicates that bHLHs regulate plant defense responses to
pathogens [66,70]. Two DEGs (Vradi02g14260 and Vradi09g06110) encoded bHLH showed
up-regulation following virus infection in resistant genotype. In the susceptible genotype,
Vradi02g14260 showed downregulation while Vradi09g06110 expressed a comparatively low
level than resistant genotype. MYB proteins are reportedly involved in several functions,
including pathogen resistance [67]. Two DEG (Vradi02g08100 and Vradi08g21650) showed
upregulation in both genotypes following virus infection. Ibraheem et al. [71] reported
that expression of MYB induces 3-deoxyanthocyanidins and enhances resistance against
leaf blights in maize. The small heat shock proteins (sHSPs) and the related a-crystallins
are virtually ubiquitous proteins that are strongly induced by various other stresses in
prokaryotic and eukaryotic cells. sHSPs were shown to be involved in the defense response
against Ralstoniasolanacearum in Nicotiana plants [72]. In this study, Vradi11g06880 encoded
HSP21 showed differentially expressed. HSP21, a nuclear-encoded chloroplast-localized
sHSP, has been described for its role in stress tolerance in plants [73].

Many secondary metabolites found in plants have a role in defense against herbi-
vores, pests, and pathogens. In this study, we found that DEGs encoding terpene synthase
(Vradi02g10900, Vradi02g10990, and Vradi0399s00070) involved in terpene metabolism,
galactinol synthase (Vradi08g11570) involved in raffinose metabolism, β-galactosidase
(Vradi06g16920), and UDP-glycosyltransferase superfamily protein (Vradi0207s00030,
Vradi0387s00030, and Vradi02g04560) involved in glycosylation, cytochrome P450 superfam-
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ily protein (Vradi01g08930, Vradi02g06800, Vradi03g01370, and Vradi11g02370), β-glucosidase
(Vradi05g21890), and alcohol dehydrogenase (Vradi06g11500) were reported to involved
in plant defense mechanism against pathogens and insect pests infection [74–82]. Besides,
we also found several DEGs belong to the family of formate dehydrogenase [83], chloro-
phyllase 1 [84], F-box family protein [85], methionine sulfoxide reductase [86], glutathione
S-transferase family protein [87], and peroxidase superfamily [88] that are known to be
involved indirectly or indirectly in plant defense mechanism against stress.

4.5. Comparison of the Major DEGs with the Previous Reports of YMD Resistance in Mungbean

The information related to genes and molecular mechanisms of YMD resistance in
mungbean is very limited. Two studies, Mathivathana et al. [89] and Dasgupta et al. [19],
discussed the possible candidate genes associated with YMD resistance in mungbean.
The former used the QTL mapping approach, and the latter used the RNA seq approach
like our study. This study identified several DEGs linked to virus resistance, and they
belonged to the gene families that have been reported by Mathivathana et al. [89] and
Dasgupta et al. [19]. For instance, gene families including WRKY, bHLH, MYB S-adenosyl-
L-methionine: jasmonic acid carboxyl methyltransferase, DEAD-box RNA helicases, small
GTP-binding, cytochrome P450, and protein kinase superfamily protein/serine-threonine
kinase. Mathivathana et al. [89] reported the major QTL (qMYMV4_1) governing YMD re-
sistance at nucleotide positions Vr04:14504302 and15788321 on chromosome 4. Three genes
Vradi04g06770 (Protein kinase superfamily protein/serine-threonine kinase), Vradi04g06840
(small GTP-binding), and Vradi04g07450 (S-adenosyl-L-methionine: jasmonic acid carboxyl
methyltransferase) differentially expressed in our study were existed in this genomic re-
gion [89]. These genes are potential candidates to investigate MYMV resistance in the
future. Although we have identified several DEGs from the gene families that are not
previously reported in YMD resistance studies [19,21,89], for instance, DEGs belong to LRR
and NB-ARC, and NBS-LRR gene families (Vradi02g09230, Vradi08g04110, Vradi09g09840,
and Vradi10g01550), which are the largest group of plant R genes that play important roles
in plant defense responses to various pathogens. Plant defense response is a complex
system that requires comprehensive investigation stage by stage. This study only pre-
dicted the likely genes involved in MYMV resistance, and we do not have the functional
validation of the identified genes. Therefore, before utilizing these genes for breeding
purposes and understanding the specific roles of genes involved in the virus resistance, the
identified genes from this study could be verified using the overexpression, gene knockout,
or CRISPR approaches.

In summary, our study postulates the putative genes linked with resistance to MYMV.
It revealed how the mungbean genes interact and respond to MYMV infection and cause re-
sistance and susceptibility. We used RNA sequencing technology to compare the transcripts
changes of control and infected resistant and susceptible genotypes in response to MYMV.
Overall, the information generated from current research will be a valuable foundation for
deciphering the molecular mechanism governing MYMV resistance in mungbean that can
provide insights for future genetic breeding and facilitate the development of mungbean
cultivars resistant against MYMV.
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Table S3: List of DEGs up regulated in susceptible genotype VRM (Gg) 1; Table S4: List of DEGs
downregulated in susceptible genotype VRM (Gg) 1; Table S5: List of common DEGs between
resistant and susceptible genotypes and their annotation details; Table S6: Few examples for DEGs
from different categories related to defense response.
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