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Abstract

The grand challenge currently facing metabolomics is the expansion of the coverage of the metabolome from a minor
percentage of the metabolic complement of the cell toward the level of coverage afforded by other post-genomic
technologies such as transcriptomics and proteomics. In plants, this problem is exacerbated by the sheer diversity of
chemicals that constitute the metabolome, with the number of metabolites in the plant kingdom generally considered to be
in excess of 200 000. In this review, we focus on web resources that can be exploited in order to improve analyte and
ultimately metabolite identification and quantification. There is a wide range of available software that not only aids in this
but also in the related area of peak alignment; however, for the uninitiated, choosing which program to use is a daunting
task. For this reason, we provide an overview of the pros and cons of the software as well as comments regarding the level
of programing skills required to effectively exploit their basic functions. In addition, the torrent of available genome and
transcriptome sequences that followed the advent of next-generation sequencing has opened up further valuable resources
for metabolite identification. All things considered, we posit that only via a continued communal sharing of information
such as that deposited in the databases described within the article are we likely to be able to make significant headway
toward improving our coverage of the plant metabolome.
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Background

Metabolomics emerged in the late 1990s, with the term coined
in a review of Steven Oliver [1]. However, the 2000 paper by
Fiehn and co-workers wherein gas chromatography (GC) cou-
pled to mass spectrometry (MS) defined the chemical compo-
sition of a morphological and metabolic mutant of the model
plant Arabidopsis thaliana [2]; in doing so, they were able to de-
scribe changes in the level of 326 analytes. Thiswork thus greatly
extended the early metabolite profiling study of Sauter et al. [3],
which presented the technology as a means of putative clas-
sification of the mode-of-action of pesticides. Thus the advent
of metabolomics in plants arguably preceded that in microbes
and mammals although the approach was rapidly adopted in
these communities also [2, 4–6]. During the next 2 decades,
metabolomics had 1 considerable advantage over profiling

technologies such as transcriptomics and proteomics in that it
is not directly reliant on the genome sequence, and during this
time the species scope of metabolomics rapidly expanded, such
that it was no longer merely a tool for identifying biomarkers of
cellular circumstance but additionally 1 of the cornerstones of
systems biology and an approach that could provide mechanis-
tic insight into metabolic regulation [7–11]. This advantage has
subsequently disappeared following the widespread adoption of
next-generation sequencing, and the lack of linear relationship
between the genome and the metabolome now represents part
of the problem in identification of unknown analytes [12]. This
is nicely exemplified by the fact that computation of the size of
the metabolome on genome information as attempted by No-
beli and co-workers in 2003 for the Escherichia coli metabolome
[13] rendered values far smaller than the number of metabolites
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actually measured to date [14]. Whilst the size of the
metabolome for prokaryotes has been estimated at a couple of
thousand, that of the plant kingdom dwarves these numbers,
with estimates ranging between 200 000 and 1 million metabo-
lites [15]. Within the last 2 decades, metabolomics has been
employed to address a wide range of important questions in
plant biology, including pathway structure [15], the influence of
metabolism on growth [8, 16], plant ecology [17], various aspects
of plant genetics including evolution and the domestication syn-
drome [18–20], and detailed characterizations of the metabolic
response to biotic and abiotic stressors [21, 22].

In this review, we discuss 2 topics. The first is the availabil-
ity of tools to aid in chromatogram evaluation. Since we last re-
viewed this in 2009 [23], the number of resources has exploded,
as has their diversity in type. In 2009, a number of pathway an-
alytical standards, analytical samples, and literature databases
were available. In the intervening period, additional sites pro-
viding information on experimental and in silico mass fragmen-
tation, isotopic labeling, pathway predicted metabolites, inte-
gration of metabolomics with other platforms, and mass spec-
trometry imaging have become available. For each resource, we
will briefly outline functionality and provide illustrative exam-
ples of their utility. The second is a review of the current status
of the broad variety of plant metabolomics databases. In this
respect, we list sources of archived data and their respective
volumes of data. We also briefly discuss recent meta-analyses,
which illustrate that despite current hurdles regarding compa-
rability of data, there is great potential for cross-study com-
parisons on metabolite responses in determining common re-
sponses between either genetic or environmental perturbations
of metabolism. Finally, we will provide an outlook as to how the
grand challenge of comprehensitivity will best be met and how
the power of archived plant metabolic responses will be best ex-
ploited in the future.

It is not the scope of this review to discuss the theoretical
details of every procedure or to document the subtle differences
between the many similar tools referred to here. We rather aim
to provide a general idea of the importance and challenges of
each step in the metabolomics workflow and to summarize the
major functions of each tool while referring to the more com-
prehensive literature supporting them. We attempt to classify
all the resources in a simple and logical manner in order to fa-
cilitate understanding of the main functionalities of each one.
It is, however, important to mention that while few of the tools
presented here provide a complete workflow, most of them are
able to perform multiple complementary functions, somewhat
blurring any initiative to accord their functions specific classi-
fications. Other important information that we include here is
how these tools can be accessed. This is usually performed ei-
ther via command line or graphical user interface (GUI); the for-
mer provides flexibility and facilitates integration, automation,
and development, while the latter was developed to be intu-
itive and friendly for unexperienced users. Finally, it is impor-
tant to highlight that the active developments in the field result
in frequently outdated and discontinued resources. While many
groups keep releasing new upgraded versions of their tools, it
is often the case that the projects are just discontinued and
the tools are kept available online. We tried to represent this
by including the most recent references as well as the last up-
date dates for each of the resources in Supplementary Table 1.
All these features considered allow the researcher to access the
information required to choose the “winning horse” under the
conditions or “course” in which they are racing. Finally, it is also
important to highlight that these tools are constantly being up-

dated, integrated, and discontinued, and while we ensured that
all the links provided here were functioning at the time of writ-
ing, it is impossible to ensure that to be the case in the future.

Sample Preparation and Data Acquisition

The metabolomics workflow (Fig. 1) starts with sample prepara-
tion including extraction and is often coupled to pre-treatment
and chemical derivatization, followed by data acquisition, which
will depend on the chromatographic system, ionization source,
and analyzer. Optimization of sample preparation and data ac-
quisition can considerably improve the analysis and is partic-
ularly interesting for plant metabolomics, where matrix com-
plexity is very high; nevertheless, this step is often skipped
over in favor of standardization and simplicity, which allow for
greater sample throughput. Methods for chromatography mass
spectrometry–based optimization are well developed and usu-
ally rely on statistical designs collectively known as design of
experiments [24].

While some studies have detailed their application in plant
metabolite extraction [25] and liquid chromatography (LC) anal-
ysis [26], very few software tools have been developed so
far focusing on this kind of approach for metabolomics data.
That said, a couple of interesting software packages have been
published and appear to be highly promising: Multi-Platform
Unbiased Optimization of Spectrometry via Closed-Loop Exper-
imentation (MUSCLE) [27], a tool for the automated optimiza-
tion of targeted LC-tandem mass spectrometry (MS/MS) analy-
sis that was shown to significantly shorten analysis times and
increase analytical sensitivities of targeted metabolite analysis,
and FragPred [28], which uses experimental fragmentation from
a database to select common fragmentation products that mini-
mize uncertainty about metabolite identities in large-scale mul-
tiple reaction monitoring (MRM) experiments.

Data Processing

Rawmass spectrometry chromatograms are 3-dimensional data
consisting of a distribution of mass-to-charge ratio (m/z) inten-
sities over the time. Processing this data requires filtering, de-
tecting, and integrating relevant features, aligning signals across
different samples, extracting compound mass spectra, and nor-
malizing the data, all with the final goal of simplifying andhence
facilitating data interpretation.

Feature detection and peak alignment are the initial steps
for extracting information from raw data and correspond to the
process in which relevant signals are identified and quantified
across samples, having peak alignment as 1 of the big challenges
to overcome, particularly for liquid chromatography mass spec-
trometry (LC-MS), where retention time ismore prone to fluctua-
tions in relation to gas chromatographymass spectrometry (GC-
MS). The many different approaches available to perform these
steps of data processing were recently reviewed by [29, 30], and
some of the most popular algorithms for feature detection and
peak alignment were compared in different works [31, 32]. Most
software somehow integrates both steps in the same pipeline
to generate a report of signal intensities over samples from raw
data, and many of them also include some resources for data
analysis and peak annotation, which will be discussed later in
more detail. In the following section, we will detail the avail-
able tools for this step, adopting a similar approach in all subse-
quent sections also (the details of the programs are all given in
Additional file 1). MetAlign [33] is a versatile tool that performs
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Figure 1: Typical mass spectrometry–based metabolomics workflow.

well with both LC-MS and GC-MS and allows direct conversion
from and to vendor formats while most other tools need an ex-
tra software package for this step. It additionally provides a se-
ries of functionalities through other tools that are developed by
the same group and integrates directly in the output of MetAl-
ign. XCMS appears to be the most cited software for LC-MS data
processing. It was developed for R and implements different al-
gorithms for feature detection and alignment suitable for dif-
ferent kinds of data; while it can be argued that the software
requires familiarity with programming and lacks resources for
simple data inspection, its platform is, nevertheless, powerful
and easily integrated with other tools, and its extensive commu-
nity of users provides a great resource for troubleshooting.More-
over, a great number of other tools are built upon the functions of
XCMS [34]. Amongst these, TracMass 2 [35], a MATLAB software
that provides a GUI in amodular suite, was developed to provide
immediate graphical feedback of every step of the processing
pipeline. Its benchmark paper compared the complexity of dif-
ferent algorithms, highlighting the importance of low complex-
ity when dealing with large data files and demonstrating it to be
more efficient than MZmine 2 (see below for a discussion of this
software) and comparable to XCMS, 2 of the most popular cur-
rent data processing tools. The particularities of the TracMass
algorithmmake it more suitable for detecting mass traces in the
lowmass region that can bemissed by other approaches. Intelli-
gent Metabolomic Quantitation (iMet-Q) [36], a C# software with

a GUI whose algorithm includes automatic detection of charge
state and isotope ratio of detected peaks and that was devel-
oped to minimize the amount of necessary input parameters,
significantly facilitates the pipeline for new users. GridMass [37]
is a 2D feature detection algorithm implemented in MZmine 2
that is faster than other algorithms and potentially improves de-
tection of low-intensity masses. Metabolomics Spectral Format-
ting, Alignment, and Conversion Tool (MSFACT) [38] was 1 of the
first tools developed for peak alignment. It uses peak tables or
raw data in the American Standard Code for Information Inter-
change (ASCII) format as input that is limited only to the chro-
matographic domain. This approach can, however, now be con-
sidered outdated when compared with many other resources
currently available. Metabolomics Ion-Based Data Extraction Al-
gorithm (MET-IDEA) [39] is a more recent and flexible tool, de-
veloped by the same group as MSFACT, for feature detection and
alignment, with a friendly interface developed in the .NET plat-
form. Its features include visualization of integrated peaks and
manual integration and display of mass spectra, which can be
very helpful for quick data inspection. EasyLCMS [40] is a web
application tool with a focus on calibration and calculation of
targeted metabolite concentration in terms of μmol using algo-
rithms developed for MZmine 2. IDEOM [41] is a metabolomics
pipeline using functions from XCMS and MZmatch from an Ex-
cel GUI. It also includes automated annotation based on an in-
ternal database of exact mass and retention time that can be
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updated by users according to the machine. Massifquant [42] is
a feature detection algorithm integrated into XCMS based on a
Kalman filter for the detection of isotope trace. This approach
was shown to be particularly useful for low-intensity peaks.
Metabolite Compound Feature Extraction and Annotatio (MET-
COFEA) [43] is a C++ software accessed via a GUI that imple-
ments a novel mass trace-based extracted-ion chromatogram
extraction that copes better with drifts in the mass trace. It ad-
ditionally uses compound-associated peak clusters instead of
individual features for alignment (this clustering process is an
important step to extract metabolite information and simplify
data, as will be discussed below). MET-Xalign [44] is an extension
for MET-COFEA that can potentially align compounds of sam-
ples from different experiments, a hard task for metabolomics
datasets that is not approached by most other tools. Adaptive
Processing of High-Resolution LC-MS data (apLCMS) [45] is an R
package for high mass accuracy LC-MS, which tries to be user
friendly by providing a file-based operation and a wrapper func-
tion for a single command line batch process of LC-MS data, but
still requires some computational knowledge to operate. xMSan-
alyzer [46] is an R package for improving feature detection that
integrates with existing packages such as apLCMS and XCMS.
It systematically re-extracts features with multiple parameter
settings and merges data to optimize sensitivity and reliability.
Yet Another Mass Spectrometry Software (yamss) [47] is a re-
cently developed R package focused on providing high-quality
differential analysis implementing a method based on bivari-
ate approximate kernel density estimation for peak identifica-
tion. In addition to the tools mentioned above, there are a few
tools for data processing that exclusively perform peak detec-
tion or alignment, such as peak-grouping alignment [48], an ap-
proach where information from grouping peaks within samples
improves alignment across samples, and parametric time warp-
ing [49], a fast alignment algorithm based on a variation of para-
metric time warping working on detected features rather than
on complete profile data. In addition, combining single masses
into quantities (cosmiq) [50] is a peak detection algorithm to im-
prove detection of low abundant signals that can be easily in-
tegrated with XCMS. These algorithms represent an important
effort in improving the existing approaches, but they are much
less accessible since they need to be integrated with other tools
that usually perform similar functions, and in some instances
this requires quite advanced computational skill.

It is important to note the significant differences between
GC-MS and LC-MS, which are intrinsic to the features of each
system and can be summarized as a much higher efficiency
and stability in GC over LC separation followed by a very sta-
ble fragmentation in traditional GC ion sources, in contrast with
the typical atmospheric pressure ionization employed with LC.
This significantly influences the processes of peak alignment
and spectra annotation, and while most of the tools developed
with a focus toward LC-MS can also be used for processing
GC-MS data, there are many developed with a particular focus
on processing GC-MS data, making use of different strategies
for peak alignment and integrating metabolite annotation by
matching spectra to libraries. Automated Mass Spectral Decon-
volution and Identification System (AMDIS) [51], developed with
the support of US Department of Defense, is 1 of the most pop-
ular GC-MS processing tools. It automatically extracts compo-
nent mass spectra from GC-MS data and uses it to search mass
spectral libraries. A disadvantage of this software is that the out-
put requires extensive treatment to be used for further analysis.
However, Metab [52], an R package based on functions of XCMS,
was developed to automate the pipeline for analysis of GC-MS

data processed by AMDIS facilitating the use of its results for
further data analysis. MetaQuant [53] is a tool that uses a re-
tention index to define metabolites, but it depends on other de-
convolution software like AMDIS to extract mass spectra. Both
MetaboliteDetector [54] and TagFinder [55] provide an efficient
pipeline to perform deconvolution, peak detection, compound
identification, and alignment based on Kovats retention index
using alkane mix and quantification and provide an interactive
user interface facilitating use by unexperienced users. They do,
however, require severalmanual input and data check steps that
are time consuming and negate truly high throughput. Target-
Search [56] uses similar approaches to process data and identify
and quantify targetedmetabolites based on retention time index
and spectra-matching of multiple correlated masses, but they
are highly automated and efficient, thus allowing the processing
of large sample sets. PyMS [57] is an alternative to the previously
mentioned interactive software, providing similar functions but
being particularly suitable for scripting of customized process-
ing pipelines and for data processing in batch mode working
in Python. Metabolite Compound Feature Extraction and Iden-
tification (MET-COFEI) [58] uses reconstructed compound spec-
tra instead of individual peaks to align signals across samples,
which is expected to improve peak information for downstream
analyses. It also matches the spectrum against a user-specific li-
brary. TNO-DECO [59] uses a segmentation approach to allow the
performance of simultaneous deconvolution of multiple chro-
matographic MS files in a semi-automated fashion in MATLAB,
thereby eliminating peak alignment. By contrast, MetaMS [60]
is a pipeline for high-throughput GC-MS processing based on
XCMS for peak detection and alignment and Collection of Al-
gorithms for Metabolite Profile Annotation (CAMERA) for com-
pound spectra extraction. Compound spectra is further anno-
tated based on matching with a database. This tool may be
convenient for users that already implement XCMS analysis of
other data, but this kind of processing is not optimal for GC-MS
when compared with other processing types. Maui-VIA [61] im-
plements a graphical interface that facilitates visual inspection
of identifications and alignments, providing faster interaction
with the data. eRah [62] is an R tool that integrates a novel spec-
tral deconvolution method using multivariate techniques based
on blind source separation, alignment of spectra across sam-
ples without the need of internal standards for calculating re-
tention indexes, quantification, and automated identification of
metabolites by spectral library matching; in a fully automated
pipeline, even though internal standards are not necessary, they
are still recommended to increase reliability in metabolite iden-
tification. The software Automated Data Analysis Pipeline for
Untargeted Metabolomics (ADAP-GC) 3.0 [63] uses a deconvolu-
tion algorithm based on hierarchical clustering of fragment ions.
The updated version is incorporated into theMZmine 2 platform
and addresses issues from the first version such as fragment
ions that are produced by more than 1 co-eluting components,
as well as improved sensitivity and robustness. Finally, MetPP
[64] is a processing tool that includes normalization and statis-
tical analysis but is directed toward data emanating from the GC
× GC–time of flight MS system.

Extracting compoundmass spectra is another important step
of data processing that reduces data complexity by many or-
ders of magnitude by identifying m/z signals that belong to the
same compound and providing essential information for fur-
ther metabolite annotation through the reconstructing of mass
spectra. While this process is usually integrated in GC-MS tools
for feature detection, alignment, and annotation, as mentioned
above, there aremany approaches to deal with LC-MS data, such
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as the ones employed by CAMERA [65], a package developed in
R to extract compound spectra, annotate isotopes and adducts,
and propose compoundmass as an extension to XCMS. It is easy
to use in combination with this software and provides a signif-
icant reduction on data complexity. AStream [66] is another R
package very similar to CAMERA but using a simpler algorithm
for grouping the peaks. ALLocator [67] is a web-based workflow
that applies centwave fromXCMS for feature detection, followed
by spectra deconvolution either by CAMERA or by the ALLoca-
torSD algorithm, which is optimized for dealing with the par-
ticularities of 13C labeled data by grouping mirrored isotopes
(lighter isotopologues from the feeding experiment). MSClust
[68] has the same general features as the others, but it was de-
veloped in the C++ language and it is optimized to work with
the output files of MetAlign. RAMClustR [69] was developed in
MATLAB and implemented in R, accepting directly the output of
XCMS. The authors suggest the use of a workflow consisting of
data acquisition under both low and high collision energy as a
way to improve the quality of the spectra generated by feature
clustering and provide a data format that can be submitted di-
rectly to the MassBank Database and NIST MSSearch program.
By contrast, Ratio Analysis of Mass Spectrometry (RAMSY) [70]
uses average peak ratios and their standard deviations rather
than correlation to allow the recovery of compound spectra. The
performance of this approach is typically better than the results
from correlation methods. Furthermore, the script for MATLAB
is available, or it can be run from aweb interfacewith a .csv table
as input.

The last step of data processing, data normalization, is es-
sential for further data analysis in order to remove bias intro-
duced by sample preparation from meaningful biological varia-
tion. Most methodologies rely either on the use of internal stan-
dards or statistical means for normalization. Most data normal-
ization procedures are usually integrated in data analysis tools,
but there are few examples of more specialized tools such as
MetTailor [71] that use a dynamic block summarization method
for correcting misalignments, reducing missing data, and apply
a retention time–based local normalization procedure, or Nor-
malyzer [72], that uses 12 different well-known normalization
methods and compares the results based on different parame-
ters. IntCor [73] corrects for peak intensity drift effects based on
variance analysis, MetNormalizer [74] allows for normalization
and integration of multiple batches in large-scale experiments
using support vector regression, and EigenMS [75] detects bi-
ased trends in the data and eliminates them using single-value
decomposition. All of these software packages are highly use-
ful and are implemented in R; however, with the exception of
Normalyzer, which can be also used in a web interface, they all
require considerable familiarity with this programing language.
A couple of other tools that help to extract specific information
previous to data analysis include the programSpectConnect [76],
which identifies conserved metabolites in GC-MS datasets, and
the Mathematica package for Differential Analysis of Metabolite
Profiles (MathDAMP) [77], which highlights differences within
raw LC-MS and GC-MS datasets.

A common feature ofmass spectrometry data is the presence
of multiple peaks for individual fragments resulting from the
distribution of natural isotopes, which are particularly interest-
ing and explored in stable isotope labeling experiments. There
are a few tools for correcting and extracting label enrichment
from processed data, such as Corrector [78], IsoCor [79], and Iso-
tope Correction Toolbox (ICT) [80]. These tools are very similar,
all being based on the same matrix calculation. Corrector was
developed to work on the output of TagFinder, but data pro-

cessed with most other tools can be easily arranged in a similar
table format. IsoCor provides a GUI with a few different options,
including corrections for the label input, whereas ICT includes
features to process data from tandem MS. Nevertheless, most
data processing pipelines available are not particularly efficient
for dealing with this kind of experiment. To fill this gap, there
are some specialized tools like mzMatch–ISO [81], integrated in
the mzMatch pipeline. This software is capable of targeted and
untargeted processing of labeled datasets, and the output in-
cludes a set of plots summarizing the pattern of labeling ob-
served per peak, allowing users to quickly explore data. MetEx-
tract [82] relies on amixture of cultures from the same organism
under natural and labeled media to select signals that show a
clear pattern of isotopic enrichment. However, the approach re-
quires the labeled fraction to be fully labeled and the tracer to be
highly pure to get the proper isotopic distributions. X13CMS [83]
and geoRge [84], both run on the R platform using GC-MS out-
put. The former algorithm iterates over MS signals in each mass
spectra using the mass difference due to the label, while the lat-
ter uses statistical testing to distinguish spectral peaks originat-
ing from labeled metabolites, resulting in significantly less false
positives. The Mass Isotopolome Analyzer (MIA) program [85]
detects isotopic enrichment in GC-MS datasets in a non-targeted
manner, providing an easyGUI to visualizemass isotopomer dis-
tributions (MID) of the detected fragments as barplots, including
confidence intervals and quality measures, tools for differential
analysis of relative mass isotopomer abundance across samples
and network assembly based on pairwise similarity of MID that
can reveal related metabolites.

Another important feature of many mass spectrometry sys-
tems is their capability of performing tandem mass spectrom-
etry. While this can significantly improve data in many ways,
it adds another level of complexity for data processing. A very
common use of tandem MS is to increase selectivity and ac-
curacy in targeted analysis, and MRMAnalyzer [86], Metabolite
Mass Spectrometry Analysis Tool (MMSAT) [87], andMultiple Re-
action Monitoring–Based Probabilistic System (MRMPROBS) [88]
are useful tools developed for processing data from multiple re-
action monitoring experiments. MMSAT [87] is a web tool that
takes mzXML files as the input. It is able to automatically quan-
tify MRM peaks but lacks metabolite identification capability. By
contrast, MRMPROBS [88] detects and identifies metabolites au-
tomatically, providing a user-friendly GUI for data analysis. The
algorithm has 1 limitation, that it needs at least 2 transitions per
metabolite in order to discriminate the target metabolite form
isomeric metabolites and background noise. Similarly, MRMAn-
alyzer [86] is an R tool that allows for processing, alignment,
metabolite identification, quality control check, and statistical
analysis of large datasets and transforms data in “pseudo” accu-
rate m/z in order to use the centwave algorithm from XCMS for
peak detection. Untargetedmetabolomics analysis can also take
advantage of tandemMS, particularly for compound annotation,
and there are a few resources for dealing with the complexity of
such experiments, such as decoMS2 [89], an R package for de-
convoluting MS2 spectra, eliminating contaminating fragments
without the need of sacrificing sensitivity in favor of sensibil-
ity by narrowing the window of isolation for collision-induced
dissociation (CID) during data acquisition. This approach re-
quires MS2 data to be acquired under low and high collision en-
ergies to solve the mathematical equations, potentially reduc-
ing the sensitivity of the method. Mass Spectrometry–Data In-
dependent Analysis (MS-DIAL) [90] and MetDIA [91] both deal
with data-independent acquisition (DIA) data, an interesting ap-
proach for untargeted metabolomics that acquire MS2 spectra
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for all precursor ions simultaneously, with the complication that
it uses larger isolation windows, hence increasing the probabil-
ity of contamination in the MS2, and it loses the relation be-
tween precursor and fragment ions. MS-DIAL addresses these
problems by a mathematical deconvolution based on GC-MS
processing tools in a fully untargeted manner, whilst achieving
the metabolite identification through a spectrum-centric library
matching. MS-DIAL is applicable to both data-independent and
data-dependent MS/MS fragmentation methods in LC-MS and
GC-MS. By contrast, MetDIA [91] uses algorithms from XCMS for
peak detection and alignment, combined with a targeted ap-
proach based on matching metabolites in a library to the de-
tected peaks, thus achieving higher sensitivity and specificity on
metabolite identification and wider metabolite coverage.

A trade-off for most of the more flexible and powerful re-
sources presented here is that they have multiple parameters
that need to be optimized, and recently a number of tools
have tried to assist in evaluating and automatizing this pro-
cess. In this context, Isotopologue Parameter Optimization (IPO)
[92] was developed to perform automatic optimization of XCMS
parameters based on design of experiment. Credentialing fea-
tures [93] optimize detection based on regular and 13C-enriched.
MetaboQC [94] is a quality control approach that evaluates align-
ment and suggests optimal parameters for feature detection
based on discrepancies between replicate samples, and SIMAT
[95] allows the selection of the optimal set of fragments and
retention time windows for target analytes in GC–single ion
monitoring–MS-based analysis.

Data Analysis

Metabolomics datasets are usually characterized by high di-
mensionality, heteroscedasticity (i.e., the variance in errors is
not constant across the dataset), and differences of orders of
magnitude across metabolite concentrations and fold changes,
making it challenging to extract and visualize useful informa-
tion from processed data. There are numerous approaches for
data scaling, reduction, visualization, and statistical analysis
that are particularly useful for analyzing metabolomics data,
many of them very well established, such as analysis of variance
(ANOVA), hierarchical cluster analysis (HCS), principal compo-
nent analysis (PCA), and partial least squares discriminant anal-
ysis (PLS-DA) to mention just a few. There are many general sta-
tistical software packages capable of performing most of these
functions, but also a variety of software tools exist that combine
procedures relevant to metabolomics in a single pipeline, thus
facilitating the workflow, such as DeviumWeb [96], BioStatFlow
[97], MetaboLyzer [98], metaP-Server [99], Fusion [100], Path-
omx [101], MSPrep [102], MixOmics [103], and Covariance Inverse
(COVAIN) [104].

Other interesting and somehow more specialized tools in-
clude RepExplore [105], which exploits information from tech-
nical replicate variance to improve statistics of differential
expression and abundance of omics datasets, and Kernel
Machine Approach for Differential Expression Analysis of Mass
Spectrometry–Based Metabolomics Data (KMMDA) [106] and
Metabomxtr [107], which deal with the troublesome issue of
missing metabolite values, the former through a kernel-based
score test and the latter through mixed-model analysis. Simi-
larly, PeakANOVA [108] identifies peaks that are likely to be as-
sociated with 1 compound and uses them to improve accuracy
of quantification, a particularly useful approach for experiments
with limited sample size. Selective Paired Ion Contrast (SPICA)
[109] is a tool that aims at extracting relevant information from
noisy datasets by analyzing ion pairs instead of individual ions.

MetabR [110] normalizes data using linear mixed models and
tests for treatment effects with ANOVA. By contrast, Model
Population Analysis–Random Forests (MPA-RF) [111] combines
random forests with model population analysis for selecting in-
formative metabolites. Qcscreen [112] helps to verify data con-
sistency, measurement precision, and stability of large-scale
biological experiments.

Metabolite Annotation

Metabolite annotation is often considered the most chal-
lenging step and as such represents a major bottleneck for
metabolomics studies. Even though the gold standard for struc-
tural characterization remains NMR characterization of the pure
compound [113, 114], MS-based metabolomics offers many ad-
vantages, including lower cost, higher sensitivity and through-
put, and it can be easily hyphenated with chromatography
while still providing considerable structural information. As a
consequence, great efforts have been made to improve mass
spectrometry–based metabolite annotation, and a battery of in-
teresting tools have been developed with this goal in mind. The
great interest from metabolomics and mass spectrometry com-
munities even culminated with the creation of the “Critical As-
sessment of Small Molecule Identification” (CASMI) contest. The
idea of the contest is to challenge multiple approaches and rank
their performance over a series of categories [115, 116]. Struc-
tural information is normally extracted from mass of molec-
ular ion in high-resolution MS (HRMS), which can provide the
molecular formula and fragmentation pattern. It is important to
note that most strategies for metabolite annotation rely heav-
ily on information retrieved from databases of molecular for-
mulas, spectra, and pathways, which will be discussed in more
detail below.

The most common tools are based on matching spectra
or exact masses from unknown compounds against spectral
data deposited in some database. One example using this ap-
proach is MetaboSearch [117], which accepts either a list of
m/z or the output of CAMERA as input and searches against 4
major metabolite databases, the Human Metabolome DataBase
(HMDB), Madison Metabolomics Consortium Database (MMCD),
Metlin, and LipidMaps. Similarly, PUTMEDID-LCMS [118], devel-
oped in the Taverna Workflow Management System, also in-
tegrates a step of compound mass spectra extraction to de-
fine a molecular formula from high-resolution m/z that is then
matched against a predefined list of molecular formulas to an-
notate compounds. MetAssign [119] is integrated in mzMatch,
and it considers the uncertainty related with metabolite an-
notation using a Bayesian clustering approach to assign peak
groups. This approach has the advantage of providing a quan-
titative value for uncertainty/confidence in the outputs that can
be used in further analysis. The program Sum Formula Identi-
fication by Ranking Isotope Patterns Using Mass Spectrometry
(SIRIUS) [120] is a Java-based software that combines high-
accuracymasswith isotopic pattern analysis to distinguish even
molecular formulas in higher-mass regions. Furthermore, it also
analyses the fragmentation pattern of a compound using frag-
mentation trees that can be directly uploaded to compound
structure identification: FingerID (CSI: FingerID; described be-
low) via aweb service. Molecular Formula Searcher (MFSearcher)
[121] is a tool that efficiently searches high-accuracy masses
against a database of pre-calculated molecular formulas with
fixed kinds and numbers of atoms that are further queried
against different databases. HR3 [122] is a similar tool for molec-
ular formula calculation and query in external databases. It
uses different sets of rules for heuristic filtering of candidate
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formulas instead of a pre-calculated database, which makes it
slightly slower than MFSearcher, but HR3 includes compounds
with atoms that are not present in MFSeacher’s list, as well as
considering matches to the isotopic pattern within its annota-
tions. MS-FINDER [123] is a C# program with a GUI providing a
constraint-based filtering method for selecting structure candi-
dates. The workflow begins with molecular formulas from pre-
cursor ions being determined from accurate mass, isotope ratio,
and product ion information. Next, structures of predicted for-
mulas are retrieved from databases, MS/MS fragmentations are
predicted, and the structures are ranked considering bond disso-
ciation energies, mass accuracies, fragment linkages, and, most
importantly, 9 hydrogen dissociation rules. MS-FINDER provides
an interesting theoretical background from which to interpret
MS/MS spectra and their comparison to database matches. Ad-
ditionally, it was shown to be able to predict with 91.8% accuracy
over 80% of the manually annotated metabolites in test sam-
ples [123]. MS2Analyzer [124] is a Java software for identifying
neutral losses, precursor ions, product ions, andm/z differences
fromMS2 spectra based on a list of predefined transitions. These
features are essential for structure elucidation using mass spec-
trometry, and the software provides a fast and high-throughput
platform for extracting this data. MS2LDA [125] is based on la-
tent Dirichlet allocation (LDA), an algorithm originally used for
text mining that was adapted to generate a list with blocks
of co-occurring fragments and losses, providing results similar
to MS2Analyzer but without the need of user-specified precur-
sor/product transitions.

Another level of biologically relevant information is added
by many tools that incorporate pathway information to
assist annotation and interpretation of results, such as
Metabolome searcher [126], a web-based application to di-
rectly search genome-constructed metabolic databases, which
includes MetaCyc with data on plant metabolism. MassTRIX
[127] is a web interface that takes a mass peak list from HRMS
as input and matches it against a Kyoto Encyclopedia of Genes
and Genomes (KEGG) compounds database, returning a path-
way map with the matches. Organisms can be selected, and the
output represents organism-specific and extra-organism items,
differentially colored to assist interpretation. MetabNet [128] is
an R package to perform targeted metabolome-wide association
study of specificmetabolites. This approach uses the correlation
of all mass signals with the targeted metabolite across samples
to build networks that can be visualized in PDF or exported to
Cytoscape. This can be a very useful approach to identify related
compounds and associate them to metabolic pathways. Simi-
larly, ProbMetab [129] is an R package for probabilistic annota-
tion of compounds based on the method developed by Rogers
et al. (2009) [130] that incorporates information on possible bio-
chemical reactions between the candidate structures to assign
higher probabilities to compounds that form substrate/product
pairs within the same sample. Metabolite Identification Package
(MI-Pack) [131], implemented in python, calculates differences
in mass between all molecular formulas annotated from HRMS
and compares them to known substrate/product pairs from
KEGG, but matches are considered based on the error between
experimental and theoretical masses compared to a threshold
defined by a calculated mass error surface. Plant Metabolite An-
notation Toolbox (PlantMAT) [132] is a particularly interesting
tool designed specifically for the investigation of plant special-
ized metabolism, which uses an approach based on common
metabolic building blocks to predict combinatorial possibilities
of phytochemical structures used for annotation and as such is
a highly effective way to search the chemical space surrounding
a (set of) metabolite(s).

Another more recent and promising approach made pos-
sible by the huge amount of data available uses algorithms,
mostly based on machine learning, to predict molecular prop-
erties of unknown compounds from their tandem mass spec-
tra. All the tools listed below provide similar web interfaces
for putative metabolite identification, differing mainly on the
algorithms used to perform the identification and the overall
performance. MetFrag [133] retrieves candidate structures ei-
ther from databases based on exact mass or from user-specified
structure-data files, a data format based on MDL Molfile, with
a focus on caring structural information. Candidate structures
are fragmented using a bond dissociation approach, and frag-
ments are compared with the input spectra, scoring matches
based on a series of rules. The candidates can also be filtered to
facilitate the analysis based on relevant factors such as metabo-
lite origin, composition, LC retention time, and metadata from
the databases. Besides the Java web interface, a command line
version and an R package are provided, which are more suit-
able for batch processing and integration with other tools. In a
very similar approach, MolFind [134] retrieves candidates from
databases based on exactmass, filters themby comparing an ex-
perimentally measured retention index, ECOM50 (the energy in
eV required to fragment 50% of a selected precursor ion), and
drift time (for ion mobility MS) with predicted ones, and an-
alyzes CID of the best candidates using MetFrag. Competitive
Fragmentation Modeling for Metabolite Identification (CFM-ID)
[135] is based on competitive fragmentation modeling, a prob-
abilistic generative model that uses machine learning to learn
its parameters from data. It can be used to predict spectra of
known chemical structures, to annotate peaks in the spectra
of a known compound, or to predict candidate structures for
an unknown compound by ranking candidates in terms of how
closely the predicted spectra match the input. MS Annotation
Based on In Silico Generated Metabolites (MAGMa) [136] extends
prediction based on substructure assignment by creating hier-
archical trees of predicted substructures capable of explaining
MSn data, where each level takes into account the restrictions
imposed by the assignment of precursor and subsequent frag-
mentation. FingerId [137] developed a model based on a large
dataset of tandemMS fromMassBank and uses a support vector
machine to predict the molecular fingerprint of the unknown
spectra and compare this with the fingerprint of compounds
in a large molecular database. CSI: FingerID [138] is a more re-
cent tool based on fingerID that includes computation of a frag-
mentation tree, achieving 1 of the best search performances. Be-
sides the web interface, it can be also queried directly through
Sirius, but it currently does not support batch mode. CSI: IOKR
was the last CASMI winner approach for the category “Best Au-
tomatic Structural Identification—In Silico Fragmentation Only”
[116]. It is based on the integration of CSI: FingerID with an Input
Output Kernel Regression (IOKR) machine learning approach to
predict the candidate scores [139]. CSI: IOKR outperforms other
approaches in metabolite identification rate while considerably
shortening running time; nevertheless, it is still not available as
an implemented workflow. Finally, MetFusion [140] is a Java web
tool that combines spectra database matching against Mass-
Bankwith the prediction-based annotation provided byMetFrag.

Data Interpretation

Interpretation of omics data is usually complicated by the
amount and complexity of data. There are many tools to as-
sist metabolomics data interpretation, particularly for its visu-
alization by mapping metabolites into pathways and providing
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biological context, and for the integration with data from differ-
ent platforms (e.g., transcriptomics, proteomics; see Tohge et al.
(2015) [15] for details). As for metabolite annotation, these tools
usually rely upon knowledge stored in metabolite and pathway
databases, and many of them include some kind of statistical
analysis such as pathway enrichment and correlation analysis.

Visualization tools provide a simple means of representing
andmappingmetabolic changes in tools like PATHOS [141], Path-
Whiz [142], and Interactive Pathways Explorer (iPath) [143]. They
can often provide some kind of pathway structure analysis such
as PathVisio [144], Functional Enrichment Analysis Tool (Fun-
Rich) [145], BiNChE [146], and Metabolite Pathway Enrichment
Analysis (MPEA) [147] that uses pathway enrichment analysis
and pathway activity profiling [148] that calculates pathway ac-
tivity scores to represent the potential metabolic pathway activ-
ities and performs statistical analysis to investigate differences
in activity between conditions. Tools like Integrated Analysis of
Cross-Platform Microarray and Pathway Data (InCroMAP) [149],
Integrated Interactome System (IIS) [150], Kazusa Plant Pathway
Viewer (KaPPA-View4) [151], MapMan [152], ProMeTra (which is
integrated with MeltDB 2.0) [153], Paintomics [154], Visualiza-
tion and Analysis of Networks Containing Experimental Data
(VANTED) [155], MBROLE [156], and Integrated Molecular Path-
way Level Analysis (IMPaLA) [157] go 1 step further and integrate
metabolomics processed data with other omics platforms, par-
ticularly transcriptomics, providing analysis and visualization of
large integrated datasets to assist data interpretation.

Few tools try to actually use mass spectra features to build
the networks, which can also improve annotation of unknown
compounds. MetaNetter [158] uses raw high-resolution data and
a list of potential biochemical transformations to infermetabolic
networks. MetaMapR [159] builds chemical and spectral simi-
larity networks based on annotated and unknown compounds.
ChemTreeMap [160] uses annotated structures and a compu-
tational approach to produce hierarchical trees based on com-
pound similarity to assist visualization of chemical overlap
between molecular datasets and the extraction of structure–
activity relationships. MetFamily [161] groups metabolites into
families based on an integrated analysis of MS1 abundances,
with MS/MS facilitating further data interpretation. MetCirc
[162] is an R tool that is particularly useful for comparative anal-
ysis from cross-species and cross-tissue experiments through
computation of similarity between individual MS/MS spectra
and visualization of similarity based on interactive graphical
tools, and TrackSM [163] is a Java tool that uses molecular struc-
ture similarities to assign newly identified biochemical com-
pounds to known metabolic pathways.

Databases

It must be clear from previous sections that mass spectrometry–
based metabolomics, particularly metabolite annotation and
data interpretation, relies heavily upon data from characterized
mass spectra, molecular properties of analytes, and metabolic
pathways. While all the different techniques offer a lot of flexi-
bility, metabolomics struggles with standardization, and a great
volume of metadata when compared with other omics tech-
niques and still lags behind most of them in terms of public
repositories of published data. Nonetheless, there is a wealth of
databaseswith useful information formass spectrometry–based
plant metabolomics, and we try to summarize some of the most
relevant and the structure and functionalities of the resources
available.

Chemspider [164], PubChem [165], Chemical Entities of
Biological Interest (ChEBI) [166], ChEMBL [167], ChemBank [168],
HMDB [169], MMCD [170], and MMsINC [171] are all large
databases of smallmoleculeswith information such as chemical
structure, molecular formula, and molecular/exact mass. Many
of these databases complement each other, and data exchange
between them is very common. Nevertheless, it is important to
be aware of the sources of data in each 1 of them and to which
extent these data are curated. Chemspider, for instance, has
more than 58 million structures automatically retrieved from
over 450 different sources,with only a fraction of this beingman-
ually curated by registered users while the majority of data only
went through some sort of automatic curation and elimination
of redundant entries. Overall, such huge databases are particu-
larly useful for looking for physico-chemical properties of iden-
tified metabolites and checking for possible candidates based
solely on their mass.

There are a few plant-specific databases with curated infor-
mation on chemical composition and distribution across differ-
ent plant species as well, namely KNApSAcK [172], with infor-
mation on more than 50 000 metabolites and chemical com-
position of over 22 000 species, the Universal Natural Prod-
ucts Database (UNPD) [173], with a Flavonoid viewer of 229 358
metabolite structures [174] with 6902 molecular structures of
flavonoids from 1687 plant species, Dr. Duke’s Phytochemical
and Ethnobotanical Databases [175], with information on 29
585 chemicals of 3686 medicinal plants, BioPhytMol [176], a re-
source on anti-mycobacterial phytomolecules and plant extracts
holding 2582 entries including 188 plant families, comprised
of 692 genera and 808 species and 633 active compounds and
plant extracts identified against 25 target mycobacteria, and the
Essential Oil Database (EssOilDB) [177], with 123 041 essential
oil records from 92 plant families. These are very interesting re-
sources for screening chemical composition of specific species
and analyzing chemical distribution species-wide, and all of the
data in these databases are manually curated. Of all these re-
sources, KNApSAcK is particularly useful, not only for the large
amount of data but also for providing an easy platform to access
and extract information quickly.

Databases that provide mass spectra of pure compounds
under controlled conditions developed to allow searching for
common spectra features for the identification of unknown
compounds are an essential resource for MS-based identifica-
tion of metabolites. As previously mentioned, the great sta-
bility and reproducibility of GC-MS generates reliable frag-
mentation patterns and relative retention indexes that are
very efficient for metabolite annotation by spectra matching.
NIST is a very popular commercial library for GC-MS anno-
tation that also provide free access to some data through
NIST Chem WebBook [178], containing mass spectra of 33
000 compounds. Spectral Database for Organic Compounds
(SDBS) [179], with 25 000 mass spectra, is the database of the
National Institute of Advanced Industrial Science and Tech-
nology (AIST) from Japan. Both are limited in the fact that
they do not offer an interface for spectra matching and the
users have limited access to data, so they are only use-
ful for checking the spectra of targeted compounds. Some
more interesting freely accessible plant-specific GC-MS libraries
include the Golm Metabolome Database [180], with a total
of 26 590 spectra and 4663 analytes at the time this arti-
cle was written, and the VocBinBase [181], which included
1537 unique mass spectra at the time this article was writ-
ten. Both of these databases can be downloaded and inte-
grated to processing tools for metabolite annotation based on
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spectra matching. Also worth mentioning is fiehnLib [182];
however, access to the spectral data is highly limited for this re-
source.

One of the greatest efforts in the field of metabolomics has
been directed to the development of databases of mass spec-
tra obtained from LC-MS analysis. The higher flexibility of this
technique compared to GC-MS in terms of the chemical space
that it can analyze comes with the drawback of a high sensi-
tivity to multiple factors that can influence mass spectra qual-
ity and reproducibility. LC-MS databases are usually character-
ized by the greatest volume of metadata that accompany the
analytical data and a more complex structure for search based
on spectra features when compared to GC-MS databases. Some
large general LC-MS databases include MassBank [183], a public
repository of mass spectra with 41 092 spectra of 15 828 com-
pounds obtained by 26 different systems (at the time of writing).
This database is very accessible, allowing search by submitted
spectra or simply by typing in spectral features, mass, or tar-
geted compound name. It furthermore allows users to directly
extract spectra during data processing through many tools like
RAMClustR, RMassBank, and Mass++. Metabolite Link (METLIN)
[184] currently contains 961 829 molecules, from which 200 000
have in silico MS/MS data. Additionally, over 14 000 metabolites
were analyzed, and mass spectra at multiple collision energies
in positive and negative ionization mode obtained. METLIN also
integrates isoMETLIN [185], which allows the search of isotopo-
logues for all METLIN metabolites based on m/z and isotopes
of interest, and includes experimental data on hundreds of iso-
topic labeled metabolites that can be used to obtain informa-
tion of precursor atoms in the fragments. Both databases can
be accessed after free registration, and searching by mass is fast
and easy, with the advantage that it allows the user to select
possible adducts and spectra conditions and search directly the
mass observed in the spectra. Toxin and Toxin Target Database
(T3DB) [186] is a database for toxin data,many of which are plant
secondary metabolites, with MS, MS-MS, and GC-MS spectra of
3600 common toxic substances (at the time of writing). mzCloud
is a new database with a more complex organizing structure
that can improve and facilitate data interpretation, currently
with 6255 compounds analyzed in different conditions, total-
ing 1 913 621 spectra arranged in 9896 tree structures. It allows
the user to easily navigate through different spectra of a sin-
gle compound through its tree structure and includes visual-
ization of the predicted molecular formula of the fragments in
the spectra [187]. Finally, the recently developed MassBank of
North America (MoNA) [188] is intended to be a centralized, col-
laborative database of metabolite mass spectra and metadata,
currently containing over 200 000 mass spectral records from
experimental and in silico libraries from different sources. The
search is limited to name, compound class, molecular formula,
or exact mass of the metabolite. It can be filtered by type of
spectra, and the results are presented as a single list of individ-
ual interactive spectra next to the metadata, making it easy to
navigate through different spectra. The great diversity of phy-
tochemicals observed in plants represents an important por-
tion of all these numbers, and a few plant-specific databases are
available, such as Spektraris [189], an LC-MS of about 500 plant
natural products that integrates accurate mass–time tag to in-
corporate retention time relative to an internal standard in a
similar fashion, as is usually done for GC-MS-based annotation;
therefore, in order to use this feature, it is necessary to analyze
samples with the addition of the same internal standard used
when developing the database entries. It is important to high-
light that this kind of approach is much less effective for LC-MS,

where relative retention time is prone to larger variation. MS-MS
Fragment Viewer [190] is a very small and not very frequently up-
dated database containing Fourier transform (FT)–MS, ion trap–
(IT-), and FT-MS/MS spectral data on 116 flavonoids. RIKEN MSn
Spectral Database for Phytochemicals (ReSpect) [191] is a collec-
tion of MSn spectra data from 9017 phytochemicals from the lit-
erature and standards with searching functionalities very sim-
ilar to MassBank and WEIZMASS [192], a metabolite spectral li-
brary of high-resolution MS data from 3540 plant metabolites
that uses a probabilistic approach to match library and experi-
mental data with the MatchWeiz software. WEIZMASS is avail-
able for implementation in R as a pipeline for metabolite iden-
tification, which can be easily integrated with data processing.
While this is a much less accessible tool for general use com-
pared with other web-based databases, the results obtained are
far more considerable and the effort required in its use is, there-
fore, more than compensation for the gains that it affords.

A very common issue encountered in data from mass spec-
trometry is the presence of a variety of contaminants from
sample preparation and analysis that can be challenging for
data interpretation. Mass Spectrometry Contaminant Database
(MaConDa) [193] provides a very useful database of common
contaminants and adducts in mass spectrometry, containing
over 200 contaminant records with origin of the contaminant,
its mass, and the adducts formed. MaConDa can be downloaded
in different formats or accessed via a web browser.

Compound spectra databases are essential for identification
of metabolites by mass spectrometry, but a significant effort has
also been directed toward the development of repositories of ex-
perimental data on specific samples to facilitate dereplication
studies and data analysis. These databases are often restricted
to specific species, as is the case for AtMetExpress [194], an LC-
MS database of Arabidopsis with data on 20 different ecotypes
and 36 developmental stages that allows users to download raw
and processed data as well as query using mass chromatogram
features in the web platform and visualize annotation and dis-
tribution of selected features. Metabolite Profiling Database for
Knock-Out Mutants in Arabidopsis (MeKO) [195] is a GC-MS
database of 50 Arabidopsis KO mutants. All raw data can be
downloaded as net common data format (CDF) files, and results
from data analysis can be visualized in a very informative sum-
mary in the web browser that shows plant phenotypes, differ-
entially accumulated metabolites indicated in a pathway map,
and log fold changes for most significantly changed metabo-
lites. MoTo DB [196] is an LC-MS database of Solanum lycoper-
sicum with information on annotated metabolites where the
user can search for specific masses or a range of masses. The
database is based on accurate mass, and the user therefore does
not have access to raw data and chromatograms. Nicotiana at-
tenuata Data Hub (NaDH) [197], a platform for the integration
and visualization of different omics datasets of Nicotiana attenu-
ata including LC-MS data on 14 different tissues, allows search-
ing for spectra based on name and m/z and provides some
interesting tools for data interpretation that are easily acces-
sible directly from the metabolite entry, including metabolite-
metabolite and metabolite-gene coexpression analysis and vi-
sualization of metabolite expression across different tissues in
a bar chart or eFP browser interface. Optimas-DW software [198]
is a data collection for maize data of 15 different experiments.
The interface for metabolites allows easy browsing through all
the metabolites and visualization of values for individual ex-
periments in a table format but no access to raw data. Soy-
bean Metabolome Database (SoyMetDB) [199], a metabolomics
database for soybeans, with GC-MS and LC-MSdata of 4 different
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tissues under 2 different conditions, has a simple interface
that provides search by metabolite name or browsing through
the whole dataset. Metabolite entries provide m/z and reten-
tion time as well as an apparent defunct link to a pathway
viewer. Similar databases with relative broader spectra include
the plant-specific KOMIC Market [200], currently warehousing
LC-MS data on 74 samples from 17 species, in which the user
can search for peaks and browse through samples and the in-
terface shows retention times, m/z, and annotation details clas-
sifying the annotation based on a grading system. MS/MS spec-
tral tag (MS2T) [201] is an MSMS library created using a function
for automatic Tandem MS acquisition from over 150 samples
from 10 different plant species. The web platform allows search
by retention time, m/z, and spectra similarity. Plant/Eukaryotic
and Microbial Systems Resource (PMR) [202] is a database for
plants and eukaryotic microorganisms that includes the earlier
database of medicinal plants Medicinal Plant Metabolomic Re-
sources (MPMR) [203] and currently comprises GC-MS and LC-
MS data on 24 species from different sources and experiments
including different tissues and developmental stages. It has an
easy and clear interface, with a summary of all the experiments
once an individual species is selected including metadata and
annotatedmetabolites. It additionally allows the download of all
the results in csv format in the form of peak tables, and it has
some basic tools for comparative analysis where volcano plots
can be generated comparing different experiments. By contrast,
in the more general database Bio-MassBank [204], a repository
of LC-MS and GC-MS data from biological samples, in contrast
with the originalMassBank in this database,most of the data are
tagged as “Unknown” or are just putativemetabolites. Searching
functions are similar to the original database, but they include
a samples section where it is possible to access all the experi-
ments available. MassBase [205] is a large repository providing
raw and processed mass chromatograms on 46 398 samples of
over 40 species, including several plants, analyzed by LC-MS, GC-
MS, and CE-MS. MetabolomicsWorkbench [206] is a repository of
a variety of metabolomics experiments containing over 60 000
entries, including raw and processed MS data, a section with
detailed protocols for the experiments, and web tools for analy-
sis and interpretation that can be used with any uploaded data.
Similarly, Metabolights [207] is a cross-species repository con-
taining data from 190 mass spectrometry–based metabolomics
studies that is currently recommended as repository of exper-
imental data by many journals. All experimental data can be
downloaded from a file transfer protocol server, and data sub-
mission is powered by the use of ISA software, which assists
in the reporting and management of metadata. MetabolomeX-
change [208] is a data aggregation system that allows users to
efficiently explore experimental metabolomics data from differ-
ent databases including MetaboLights and Metabolomics Work-
bench, providing a rich site summary feeding service to allow
users to get updates over the datasets available. Similarly, Global
Natural Products Social Molecular Networking (GNPS) [209], a
plant natural product knowledge base for community-wide or-
ganization and sharing of raw, processed, or identified tan-
dem mass spectrometry data, is currently comprised of 221 083
MS/MS spectra from 18 163 unique compounds. The platform al-
lows users to upload data and provides a series of tools for anal-
ysis and interpretation based on the data from the database.

As previously mentioned, many resources that are par-
ticularly useful for data interpretation organize the data in
pathways based on literature data, and often also provide
tools for data visualization and interpretation. Many of these
databases contain either generic pathways or combine different

organisms. One example is KEGG [210], which includes 504 path-
way maps with 17 891 compounds and 10 419 reactions for
4607 different organisms, representing data in an interactive
interface that links the entries to a great amount of exter-
nal resources, and being 1 of the most popular sources of in-
formation on metabolic pathways. One of the greatest issues
of KEGG leading many users to misinterpreting their data is
that it displays all genes in generic pathway maps, of which
some are characterized only by similarity, resulting in path-
ways that are not present in the analyzed organism being repre-
sented. By contrast, WikiPathways [211] is a wiki-style website
with 2471 community-curated pathways of 28 different organ-
isms. Its interactive interface is similar to KEGG, providing links
with external resources for metabolites and enzymes. Similarly,
Khaos Metabolic Pathways (kpath) [212] is a database that inte-
grates information related to metabolic pathways with 74 180
pathways, 13 153 reactions, and 37 029 metabolites providing
tools for pathway visualization, editing, and relationship search.
BioCyc [213] is a collection of 9387 pathway/genome databases,
and MetaCyc [213] is the largest curated database of experimen-
tally elucidated metabolic pathways, containing 2491 pathways
from 2816 different organisms. KBase [214], meanwhile, is a data
platform with data on plants and microbes that allows users to
upload their own data and integrates data and tools for systems
biology including 1470 metabolic pathways with 33 773 reac-
tions and 27 838 compounds, genome data on 60 different plant
species, and tools for assembly, annotation, metabolic model-
ing, comparative analysis, phylogenetic analysis, and expres-
sion analysis. There is also a significant amount of plant-specific
data organized in databases like KaPPA-View4 [151], containing
153 pathways with 1427 compounds and 1434 reaction from 10
species, allowing users to upload their own data. It is able to
represent gene-to-gene and metabolite-to-metabolite relation-
ships as curves on metabolic pathway maps to help in data in-
terpretation. PlantCyc [215] provides access to manually curated
or reviewed information about metabolic pathways in over 800
pathways of 350 plant species. Usefully, the platform provides
“evidence codes” to clearly indicate the type of support asso-
ciated with each database item. MetaCrop [216] is a pathway
database containing information about 7 major crop plants and
2model plants that allows integration of experimental data into
metabolic pathways, as well as the automatic export of infor-
mation for the creation of detailed metabolic models. Similarly,
Metabolic Network Exchange Database (MetNetDB) [217] con-
tains integrative information on metabolic and regulatory net-
works of Arabidopsis and soybeans with metabolism, signaling,
and transcriptional pathways being fully integrated into a single
network, and manually curated subcellular localization is rep-
resented in the pathway maps. The network information can
be exported to other applications for network analysis, such as
exploRase and Cytoscape/FCM. Like MetNetDB, Gramene [218]
is an integrated data resource for comparative functional ge-
nomics in crops andmodel plants that hosts pathway databases
for rice, maize, Brachypodium, and sorghum, as well as provid-
ing mirrors for MetaCyc and PlantCyc data. It is worth mention-
ing a few resources that are focused on the reactions within the
pathways offering detailed curated metabolic reactions, namely
BioMeta [219], whose contents are based on the KEGG Ligand
database with a large number of chemical structures corrected
with respect to constitution and reactions’ stereochemistry be-
ing correctly balanced. BRENDA-KEGG-MetaCyc reactions (BKM-
react) [220] is a non-redundant biochemical reaction database
containing 18 172 unique biochemical reactions retrieved from
BRENDA, KEGG, and MetaCyc databases that were matched and
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integrated by aligning substrates and products. Similar to this,
MetRxn [221] also integrates information from BRENDA, KEGG,
and MetaCyc, combining also Reactome.org and 44 metabolic
models in a standardized description of metabolites and reac-
tions where all metabolites have matched synonyms, resolved
protonation states, and are linked to unique structures, and all
reactions are balanced.

Together with the development of many prediction tools
previously mentioned, we watched in the last years the de-
velopment of some interesting in silico databases that are ex-
tremely useful for de novo metabolite identification, such as
Metabolic In Silico Network Expansion Databases (MINE) [222],
a database developed by the integration of an algorithm called
the Biochemical Network Integrated Computational Explorer
(BNICE), and expert-curated reaction rules to predict chemical
structures’ product of enzyme promiscuity, Metabolite Collision
Cross-Section Predictor (MetCCS) [223], a database and algo-
rithm for prediction of collision cross-section values formetabo-
lites in ion mobility mass spectrometry, a technique increas-
ingly used to assist metabolite elucidation based on the drift
speed of the ion that is proportional to its cross-section, and the
plant-specific In Silico MS/MS Database (ISDB) [224], an in silico
database of natural products generated using CFM-ID [135] with
input from the commercial Dictionary of Natural Products.

Other Programs of Interest

The complexity of metabolomics data experiments, particularly
in terms of sample number and metadata, pushed the develop-
ment of many tools for experiment andmetadata management,
and while many of these functions are integrated in some of
the databases previously discussed, there are a few specialized
tools such as QTREDS [225] and MASTR-MS [226] that are Labo-
ratory Information Management System (LIMS)–based software
for assisting in organizing experimental design, metadata man-
agement, and sample data acquisition. MetaDB [227] is a web
application for metabolomics metadata management with in-
terface to the MetaMS data processing tool, and Metabolonote
[228] is a metadata database/management system.

The enormous amount of data available for metabolomics
raises many questions regarding how to easily access and unify
all this data, taking into account the vast chemical space ex-
plored in these experiments. Many tools have been developed
with the purpose of facilitating access to chemical data spread
in the literature, from the development of identifiers to reduce
duplication of information such as Spectral Hash [229], designed
for theMoNA database, to tools likeMetmask [230] formanaging
different identifiers, Chemical Translation Service (CTS) [231] for
translation of chemical identifiers, PhenoMeter [232] for query-
ing databases based on metabolic phenotype, and Metab2MeSH
[233] for amore efficient literature search that automatically an-
notates compounds with the concepts defined in MeSH, provid-
ing a fast link between the compound and the literature.

Different vendors usually export their data in proprietary
formats, which complicates data transfer across different plat-
forms. Most proprietary software packages are able to con-
vert files to .cdf format, but some tools, the most popular be-
ing msConverter from Proteowizard [234], can handle conver-
sion from/to different formats including mzXML. mzTab is an-
other format proposed by the Proteomics Standards Initiative
targeting researchers outside of proteomics. It is supposed to
contain the minimal information required to evaluate the re-
sults of a proteomics experiment, making it more accessible to

non-experts. jmzTab [235] is a Java application that provides
reading andwriting capabilities and conversion of files tomzTab.
The PeakML [236] file format is an initiative developed by the cre-
ators of mzMatch to enable the exchange of data between anal-
ysis software by representing peak and meta-information from
each step in an analysis pipeline; as a proof of concept, the R-
package “mzmatch.R” was developed to extend XCMS function-
alities for storing and reading data in PeakML format.

All equipment for mass spectrometry comes with its own
software for data visualization and some basic analysis, but
those are usually not designed to deal with the complexities of
metabolomics datasets. There are some interesting open source
alternatives such as BatMass [237] and Mass++ [238] for data vi-
sualization, and for generating images from raw data like Speck-
Tackle [239], which provides several pre-defined chart types that
are easy to integrate into web-facing resources, and RMassBank
[240], capable of automatically generating MassBank records
from raw MS and MS/MS data.

Mass spectrometry imaging is a relatively young technique
that has being growing fast in importance, providing high-
resolution special distribution of small molecules in molecular
histology [241]. Few tools have been developed so far, namely Ex-
ploring Imaging Mass Spectrometry Data (EXIMS) [242] for data
processing and analysis and Open Mass Spectrometry Imaging
(OpenMSI) [243], a web-based visualization, analysis, and man-
agement tool.

Lipidomics data require a very specialized pipeline, and
therefore many tools were developed exclusively for this kind
of analysis; however, we will only briefly summarize these here.
Analysis of Lipid Experiments (ALEX) [244], Multiple Reaction
Monitoring–Based Differential Analysis (MRM-DIFF) [245], LICRE
[246], LipidXplorer [247], Lipid Mass Spectrum Analysis (LIMSA)
[248], Visualization and Phospholipid Identification (VaLID) [249],
Lipid and Oxylipin Biomarker Screening Through Adduct Hierar-
chy Sequences (LOBSTAHS) [250], Lipid-Pro [251], lipid data ana-
lyzer (LDA) [252], and LipidQA [253] are all tools for processing,
annotating, and analyzing lipidomics data. Lipids databases in-
clude LIPID MAPS [254], LIPIDBANK [255], LipidBlast [256], and
in silico generated lipids databases LipidHome [257], SwissLipids
[258] ,and ARALIP [259].

Future Perspectives

Many of the resources presented here were fruit of the efforts of
setting the theoretical background for each step in the data pro-
cessing and analysis workflow. However, more recent efforts are
moving toward the development of integrated tools, which are
often developed by the integration of already well-established
tools into a single pipeline in an attempt to accelerate the pro-
cess and in a few cases providing an easier interface. XCMS
online, for example, is a web platform providing most of the
function from XCMS with additional capabilities for interactive
exploratory data visualization and analysis in a much easier
interface than the original software [260]. HayStack [261] is a
web platform that uses XCMS to process data and automati-
cally generates total ion current chromatograms and base peak
chromatograms as well as offering an easy way of plotting ex-
tracted ion chromatograms (EIC) and some basic statistical tools
such as PCA scores plot, volcano plots, and dendrograms for
group comparisons. StatisticalMetabolomics Analysis–AnRTool
(SMART) [262] is an R package that combines different tools such
as XCMS and CAMERA with a series of common statistical ap-
proaches to provide an integrated pipeline for data processing,
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visualization, and analysis. MZmine 2 [263] is another very pop-
ular tool, with over 1000 citations. It was originally developed
for LC-MS data processing, but it became 1 of the most popular
platforms for development of integrated tools in Java, providing
a user-friendly, flexible, and extendable software constantly up-
dated and with a set of modules covering most steps of LC-MS
processing and data analysis workflow, including several option
of visualization tools.MetSign [264] is aMATLAB package provid-
ing tools for spectra deconvolution, metabolite putative assign-
ment by matching m/z, and peak isotopic distribution against
its own database, peak list alignment, a series of normalization
algorithms, statistical significance tests, unsupervised cluster-
ing, and time course analysis, all in a modular and interactive
design presented with a wizard to facilitate the analysis work-
flow. MultiAlign [265] is a software developed in the .NET plat-
form using C++ and C# that was originally for proteomics but
that can also be used for metabolomics comparative analysis.
Its functionalities include feature detection, alignment, several
plotting options, normalization, and basic statistical compar-
isons, Metabolome Express [266] works as a web server to pro-
cess, interpret, and share GC/MS metabolomics datasets, whilst
Metabolite Automatic Identification Toolkit (MAIT) [267] is an
R package aimed at providing an end-to-end programmable
metabolomics pipeline with an emphasis on metabolite anno-
tation and statistics. It uses XCMS for peak detection, an ap-
proach based on CAMERA combined with a user-defined table
of biotransformations, followed by database search for metabo-
lite annotation and a series of statistical tests to identify statisti-
cally significant features containing the highest amount of class-
related information. By contrast, Metabolomic Analysis and Vi-
sualization Engine (MAVEN) [268] is a software for data process-
ing, analysis, and visualization with some interesting features
for pathway-based visualization of isotope-labeling data that
can be helpful for the interpretation of this kind of experiment.
MeltDB [269] is a Java web-based platform that integrates differ-
ent algorithms for data processing and compound identification
by spectra matching statistical analysis, data visualization, and
integration with transcriptomics and proteomics datasets via
the ProMeTra software. It provides a tool for saving peaks of ref-
erence compounds directly in the MeltDB database and allows
storage and sharing of projects within the web server. Metabo-
Analyst [270] is another Java web platform with data processing
and a comprehensive set of data analysis tools. It includes most
common approaches for statistical analysis as well as modules
for functional enrichment analysis, metabolic pathway analy-
sis, time series and two-factor data analysis, biomarker analy-
sis, sample size and power analysis, integrated pathway anal-
ysis, and image and report generation. The program mzMatch
[236] is a popular Java toolkit for processing, filtering, and anno-
tation, with a particular focus on integration of processed data
across different platforms and providing a customizable modu-
lar pipeline to facilitate the development and integration of dif-
ferent tools. It includes many other tools previously described
here like mzmatchISO andmetAssign, and it is based entirely in
the PeakML file format. The Marker Visualization Suite (MarVis-
Suite) [271] is a software for the interactive ranking, filtering,
combination, clustering, visualization, and functional analy-
sis of transcriptomics and metabolomics datasets. The cluster-
ing algorithm is based on 1-dimensional self-organizing maps,
and the software additionally provides functions for metabo-
lite annotation and pathway reconstruction. MetMSLine [272] is
an R package that works with processed data providing a se-
ries of statistical analysis steps focusing on biomarker discov-
ery combined with metabolite annotation based on exact mass

matching against a target list of metabolites, and MassCascade
[273] is a Java library that takes advantage of the KINIME work-
flow environment, facilitating integration with other tools and
making the tool user-friendly. The core library contains a collec-
tion of data processing algorithms, a visualization framework,
and metabolite annotation functions, while the plug-in for KN-
IME allows easy integration with other statistical workflows.
MASSyPup [274] does not actually integrate different proce-
dures, but it does provide an easy platform for accessing many
different tools in the form of a Linux distribution that can be run
directly from different media without installation.

It is clear from this review the infinity of choices for per-
forming a variety of functions and the fast pace by which they
change and get outdated; hence it is an arduous task to keep
updated on all of them. Some research groups, engaged in the
development of metabolomics tools, have their own reposito-
ries like KOMICS [275], MetaOpen [276], and Platform for RIKEN
Metabolomics (PRIMe) [277], while OMICtools [278], NAR online
Molecular Biology Database Collection, and the Bioinformatics
Links Directory provide unified repositories that cover only a
small portion of all the resources available. Tools developed for R
have the advantage of countingwith somewell-established plat-
forms such as Biocunductor [279] or Comprehensive R Archive
Network (CRAN). Nevertheless, with the rapid development of
new tools, it is of great interest for the metabolomics commu-
nity to develop classification systems and repositories to catalog
and provide a platform for submission, curation, and feedback,
facilitating users’ access to the most appropriate and updated
resources for each aim. Another clear observation that can be
made from the proceeding sections is that the number of tools
for analysis by far exceeds that of the number of data reposito-
ries whilst metabolomics is clearly difficult to fully standardize.
This is still a great shame. There are many clear reporting stan-
dards that should aid in this respect [280]; furthermore, both
the existing databases and carefully compared meta-analyses
[22, 281], demonstrate that such approaches are indeed highly
powerful in the enhancement of biological understanding. As
such, we feel that it is an urgent priority to focus efforts on
the improvement of this feature of computationalmetabolomics
since it will aid not only in the expansion of our coverage of the
metabolite complement of the plant cell but also in the equally
important task of interpreting the biological function of the in-
dividual metabolites themselves.

Additional file

Additional file 1.xls: summary of resources for mass
spectrometry–based metabolomics.
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MSI: Open Mass Spectrometry Imaging; PCA: principal com-
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65. Kuhl C, Tautenhahn R, Böttcher C et al. CAMERA: an inte-
grated strategy for compound spectra extraction and an-
notation of liquid chromatography/mass spectrometry data
sets. Anal Chem 2012;84(1):283–9.
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