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Parkinson’s disease (PD) is second most prevalent neurodegenerative disorder following
Alzheimer’s disease. Parkinson’s disease is hypothesized to be caused by a multifaceted
interplay between genetic and environmental factors. Herein, and for the first time,
we describe the integration of metabolomics and epigenetics (genome-wide DNA
methylation; epimetabolomics) to profile the frontal lobe from people who died from PD
and compared them with age-, and sex-matched controls. We identified 48 metabolites
to be at significantly different concentrations (FDR q < 0.05), 4,313 differentially
methylated sites [5’-C-phosphate-G-3’ (CpGs)] (FDR q < 0.05) and increased DNA
methylation age in the primary motor cortex of people who died from PD. We identified
Primary bile acid biosynthesis as the major biochemical pathway to be perturbed
in the frontal lobe of PD sufferers, and the metabolite taurine (p-value = 5.91E-06)
as being positively correlated with CpG cg14286187 (SLC25A27; CYP39A1) (FDR
q = 0.002), highlighting previously unreported biochemical changes associated with PD
pathogenesis. In this novel multi-omics study, we identify regulatory mechanisms which
we believe warrant future translational investigation and central biomarkers of PD which
require further validation in more accessible biomatrices.

Keywords: metabolomics, epigenetics, integrative omics, epimetabolomics, Parkinson’s disease,
etiopathophysiology

INTRODUCTION

Parkinson’s disease (PD) is the most common degenerative movement disorder of the central
nervous system, characterized by bradycardia, muscular rigidity, rest tremor, postural and gait
impairment (Gibb and Lees, 1988; Poewe et al., 2017) frequently accompanied by non-motor
symptoms such as cognitive impairment, sleep disorders, anxiety, depression and autonomic
dysfunction (Martinez-Martin et al., 2011). The key pathological finding of PD is the loss of
dopaminergic neurons in the substantia nigra pars compacta (Fearnley and Lees, 1991) and the
presence of Lewy body pathology due to the abnormal aggregation of α-synuclein (Daniel and Lees,
1993; Dickson et al., 2009). Since SNCA mutations were identified in familial PD (Polymeropoulos
et al., 1997), across various Braak stages, a growing list of genes associated with the pathogenesis of
PD have been identified (Corti et al., 2011; Keo et al., 2020).
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Parkinson’s disease is also characterized by a range of motor
symptoms and speech deficits (Moustafa et al., 2016). The
precentral gyrus region is the site of primary motor cortex
(Brodmann area 4) and responsible for performing voluntary
actions including orofacial movements (Zhi et al., 2019). It plays
a significant role in creating neuronal impulses that control
movements. As PD severity progresses, the primary motor cortex
region continues to deteriorate (Burciu and Vaillancourt, 2018).

Epigenetic modulation by environmental factors is regarded
as an important mechanism in the pathogenesis of PD (Pavlou
and Outeiro, 2017). A complicated interplay of genetic and
environmental factors plays a key role in the etiopathogenesis of
the disease (Kalia and Lang, 2015; Ascherio and Schwarzschild,
2016). The epigenome, specifically DNA methylation, has
been reported to be influenced by multiple factors such as
genome, metabolome, environmental factors, and lifestyle, which
modulate the phenotype (Tzika et al., 2018; Czamara et al.,
2019). Among them, metabolomic changes are considered
to be a direct reflection of the pathological changes in PD
(Shao and Le, 2019).

Most tissues, including the brain, undergo expeditious
alterations in DNA methylation in early life followed by a steady
decline in later life (Prasad and Jho, 2019). This mechanism
controls long-term memory formation, aging and the onset of
neurodegenerative diseases (Miranda-Morales et al., 2017; Prasad
and Jho, 2019). Few studies have demonstrated the molecular link
between metabolomics and DNA methylation related to disease
pathogenesis (Lu and Thompson, 2012; Kaelin and McKnight,
2013; Tzika et al., 2018), to include neurodegenerative diseases
(Wang et al., 2018), and as such the molecular mechanism
underlying the impact of metabolites on the epigenome is poorly
understood (Gibney and Nolan, 2010; Tzika et al., 2018).

In this study, we hypothesized that the complex regulation
of DNA methylation and metabolome leads to deficits that
cause irregular motor function among PD subjects and
the metabolomic disparities may reflect the effect of these
complex interactions. Herein, we aim to integrate quantitative
metabolomics and DNA methylation of brain tissue from
primary motor cortex (Brodmann area 4) from PD sufferers to
better understand the biochemistry associated with the onset
of the disease. We believe that understanding this complex
relationship may reveal potential therapeutic targets for the
treatment of the disease, while testing biomarker panels for the
early diagnosis of PD, when potential treatments are believed to
be most efficient.

RESULTS

Metabolic Dysregulation in Parkinson’s
Disease Brain
Using 1H Nucleic magnetic resonance (NMR) spectroscopy and
mass spectrometry (MS), we metabolically profiled post-mortem
(PM) brain from people who died from PD and compared them
with age-, and sex-matched controls (N = 38 controls, 40 PD
cases). The demographic information for said samples is available
as Table 1 and our analysis shows that there was a slight difference

TABLE 1 | Demographic characteristics of Parkinson’s disease cases vs.
cognitively healthy control subjects.

Cases Controls p-value

Number of subjects 40 38 n/a

Age in years-Mean (SD) 78 (5.4) 78 (6) 0.46

Gender

Males 20 20 0.09

Females 20 18

Post-Mortem Interval (PMI) in hours-Mean (SD) 14.6 (4.8) 17.36 (4.3) 0.03

in the post-mortem interval (PMI) between control and PD brain
(P = 0.03). Of the 78 samples analyzed, none were identified
as outliers based on sample distance from the center of either
of the first three principal components. Principal component
analysis (PCA) highlighted principal components (PC) 1 and 5
as being the most informative, explaining the maximum amount
of variation between the two sample groups (binomial regression,
p = 0.0003 and p = 0.005, respectively; Figures 1A–C).

We performed targeted metabolomic profiling and
investigated each metabolite using robust regression of
diagnosis effect adjusted for age, sex and PMI and identified
48 statistically significantly differentially expressed metabolites
in PD PM brain as compared to controls (FDR adjusted
q < 0.05). While there was no significant trend toward up- or
down-regulation (p = 0.54, Fisher’s exact test), 27 metabolites
were down-regulated, and 21 metabolites were up-regulated
Supplementary Table 1. Carnitine, creatinine and taurine were
identified among the significantly up-regulated metabolites.
Conversely, docosahexaenoic acid (DHA), L-homoarginine
and gamma-aminobutyric acid (GABA) were identified among
the significantly down-regulated metabolites (Figure 1D and
Supplementary Table 1).

Finally, we performed pathway enrichment analysis using the
metabolite concentration data and identified three significantly
perturbed biochemical pathways. These include Primary bile acid
synthesis [normalized enrichment score (NES) = 1.4, p = 0.011],
Biosynthesis of unsaturated fatty acids (NES = −1.4, p = 0.031)
and Aminoacyl-tRNA biosynthesis (NES = −1.5, p = 0.037)
(Figure 1E and Supplementary Table 2).

Widespread Epigenetic Dysregulation in
Parkinson’s Disease Brain
Detection of outliers-Two samples had an excess number
of missing probe values. On further investigation, one was
also more than three standard deviations away from the
mean of the first three principal components and, therefore,
both were deemed as outliers and removed from further
analysis (Supplementary Figures 1a–f). Next, we estimated
the proportion of NeuN negative and positive cells in the
samples. To identify differentially methylated CpG sites, we
fitted a robust linear regression model that accounted for
possible batch effects, sample age, sex, and estimated proportion
of NeuN positive cells Supplementary Figures 2a–c. We
identified statistically significant differential methylation changes
(FDR adjusted q-value < 0.05) in 4,313 CpGs, among which
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FIGURE 1 | (A) Principal component variance: the highlighted two components (PC1 and PC5) were associated with the diagnosis of PD. (B) Association of
principal components with the diagnosis: binomial regression with five principal components, age, sex, and PMI as covariates. (C) Scatter plot displaying PC1 vs.
PC5. (D) Volcano plot for individual metabolites: Up-regulated metabolites are coded using orange and down-regulated are coded using blue color. (E) Enriched
pathways of metabolites: Taurine is significantly perturbed on “Primary bile acid biosynthesis,” DHA and Arachidonic acid are significantly perturbed on “Biosynthesis
of unsaturated fatty acids”. The other metabolites provided on plot are perturbed to be significant on Aminoacyl t-RNA biosynthesis. Normalized Enrichment Score
(NES) and the significance (p-values) are depicted.

3,062 were found to be hypomethylated and the remaining
1,251 hypermethylated (Supplementary Table 3). Some of the
differentially methylated sites were in known PD GWAS genes
(Figure 2A; Chang et al., 2017).

There was a strong preference toward hypo-methylation in
PD PM brain (OR = 1/0.488, p = 2.05 × 10e-109, Fisher’s exact
test; Figure 2B). We found that among the significant probes,

2001 had an associated SNP. We also confirmed the trend toward
hypo-methylation among the non-SNP probes (OR = 1/0.4,
p = 9.79e-92, Fisher’s exact test).

We employed a DNA methylation clock (Horvath, 2013) to
estimate the biological age of cases and controls. We found
higher DNA methylation ages associated with the PD group
(OR = 1.13, p = 0.036, binomial regression adjusted for age, sex,
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FIGURE 2 | (A) Differentially methylated sites with known PD GWAS genes. (B) Significantly differentially methylated (hyper and hypo) probes. (C) Estimation of DNA
methylation age. (D) Distribution of significantly differentially methylated cytosines in various genomic areas. (E) Estimation of gene set enrichment of KEGG
pathways.

PMI, neuronal proportion). Similarly, we report 2.07 years of
aging acceleration among PD cases when compared to controls
(p = 0.037, t-test; Figure 2C).

Subsequently, we evaluated the distribution of significant
differentially methylated CpG sites (DMCs) in various genomic
areas. We observed that CpG islands are enriched with
hyper-modified DMCs but depleted of hypo-modified DMCs
(OR = 1.22, p = 0.003 and OR = 0.58, p = 3.33e-24, respectively,
Fisher’s exact test); (Figure 2D and Supplementary Table 4).
Interestingly, island shores are depleted of both hyper- and hypo

modified DMCs. Going further from the islands, shelves and
shores are enriched with hypo-modified DMCs (OR = 1.25,
p = 0.0006 and OR = 0.57, p = 1.01e-24, respectively,
Fisher’s exact test). When we analyzed the enrichment of
DMCs in relation to gene regions we found no significant
enrichment of hyper-modified DMCs, but significant depletion
of hypo modified DMCs.

Mapping CpGs on genomic regions and genes showed
hypermethylated CpGs are enriched in TsSA (Active TSS,
OR = 1.83, p = 2.88e-21; Fisher’s exact test) and PromBiv (Bivalent

Frontiers in Neuroscience | www.frontiersin.org 4 March 2022 | Volume 16 | Article 804261

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-804261 March 26, 2022 Time: 14:12 # 5

Vishweswaraiah et al. Omics Profile of PD Brain

Promoter, OR = 1.54, p = 1.68e-05; Fisher’s exact test) followed
by enrichment of hypomethylated CpGs in the Tx (Strong
transcription) region [OR = 1.65, p = 1.16e-03, Fisher’s exact test
(Supplementary Table 5)].

We investigated which KEGG pathways were affected by
differential methylation. We assigned zero, one or more gene
names to each CpG using the EPIC array annotation file from
Illumina. For each gene, we determined the signed log p-value
of the most affected CpGs assigned to that gene which we
used to rank the genes and subsequently gene set enrichment
analysis to estimate the enrichment of KEGG pathways. We
found cell cycle, drug metabolism and ascorbate and aldarate
metabolic pathways to be enriched with hyper-modified genes
and 47 pathways were enriched with hypo-modified genes
(Figure 2E). Among them, the bile acid secretion pathway, the
longevity regulating pathway, glutamatergic synapse, glutathione
metabolism, GABAergic synapse, the oxytocin signaling pathway,

and the dopaminergic synapse pathways were some of the
interesting pathways identified.

Establishing Epigenome-Metabolome
Interactions
We established linear relationships between DMCs and
differentially expressed metabolites. We further explored
the top three metabolic pathways, primary bile acid
biosynthesis (Figure 3), biosynthesis of unsaturated fatty
acids (Supplementary Figure 3), and aminoacyl-tRNA
biosynthesis (Supplementary Figure 4), by mapping the
differentially methylated CpGs (genes) to the biochemical
pathways. On the top metabolic pathway (Primary bile acid
biosynthesis) the significantly perturbed metabolites include
taurine (HMDB0000251) and glycine (HMDB0000123). The
cg14286187 (methylated on transcription start site 1,500 of

FIGURE 3 | Correlation between significantly differentially methylated cytosines (genes) with metabolites of Primary Bile acid biosynthesis: The red strip around the
“circos plot” shows the positive correlation and the blue strip shows the negative correlation. The metabolite correlated with CpGs and the genes encompassed
under CpGs are shown.
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SLC25A27; 1st exon and 5’UTR of CYP39A1 transcripts) is
correlated positively with taurine and cg23330137 (SCP2D1;
C20orf78) is negatively correlated with taurine. However, glycine
is not significant among the differentially expressed metabolites
from Brodmann area 4.

Diagnostic Models
We randomly separated the samples training and validation sets.
We trained our Random Forest (RF), LASSO and Ensemble
models on a training set and assessed the model using a test set.
For the methylome, the Ensemble model achieved an AUC = 0.94
with a sensitivity of 57% and specificity of 88%. The LASSO
model had an AUC = 0.91 (57% sensitivity and 100% specificity)
and the RF model had an AUC = 0.83 (57% sensitivity and 88%
specificity) (Supplementary Figure 5a). For the metabolome, the
Ensemble model had an AUC = 0.85 with sensitivity = 86 and
62% specificity. Our LASSO model had an AUC = 0.87 (100%
sensitivity and 62% specificity) and our RF had an AUC = 0.89
(71% sensitivity and 75% specificity) (Supplementary Figure 5b).

DISCUSSION

In the present study, we integrated quantitative metabolomic
and genome-wide DNA methylation data from post-mortem
(PM) PD brain tissue acquired from the primary motor cortex
(Brodmann area 4) and compared them with age-, and sex-
matched controls. Among 14,966 samples available on NIH Brain
Bank, we studied 78 samples. None of these 78 samples were
reported with any neuropsychiatric disorders and a “Genetic
diagnosis” was not reported as well. However, using our
DNA methylation profile, we checked for SNPs of 290 CpGs
encompassing the Parkinson’s disease candidate genes SNCA,
PARK2, PARK7, PINK1, and LRRK2. It is well-known that the
SNPs nearby or on CpG sites can influence DNA methylation
(Vohra et al., 2020). The 289 out of 290 CpGs were not significant
in our study and one CpG (cg20054739) encompassing gene
PARK2 was found to be significant but the SNPs around this
CpG has a very low minor allele frequency and would not
influence the methylation and probably the metabolome too.
Human PM brain tissue is considered to be one of the gold
standard biomatrices for understanding the etiopathogenesis
of PD and other neurodegenerative diseases (Hartmann, 2004;
Tran et al., 2020). However, as previously noted, we did
identify a slight difference in the PMI between control and
PD brain (P = 0.03) and this may have an effect on the
DNA methylation pattern (Sjöholm et al., 2018). Fortunately, we
have controlled for said effect when conducting our statistical
analysis, further information available in the Supplementary
Information. While considering the epigenome alone, the results
suggest that differential methylation of the PD epigenome may
act indirectly on gene expression, for example, through the
differential methylation of enhancers (Flam et al., 2019). Overall,
the enrichment of gene results recapitulates previously reported
epigenome wide studies of PD brain (Masliah et al., 2013; Young
et al., 2019; Kia et al., 2021) and indicate widespread epigenetic
dysregulation in the prefrontal cortex of PD patients.

Epigenetic Age
The brain demonstrates a shift in DNA methylation as it ages
(Levine et al., 2018; Prasad and Jho, 2019). We observed increased
epigenetic age among the PD cases compared to controls though
the biological age between the groups was not statistically
significantly different. Our results corroborate and confirms the
results of an earlier study by Horvath and Ritz (2015) who
also report increased epigenetic age in the blood of PD subjects
(Horvath and Ritz, 2015).

Our central aim in the study was to understand the
interplay and regulatory mechanism between altered metabolism
and the differentially methylated genes. Our hypothesis is
that by exploring the relationship between metabolites and
epigenetic variants we will enhance our understanding of
the cellular processes underlying the pathogenesis of PD
(Chan et al., 2010; Katada et al., 2012). Pathway analysis
using the recorded/detected metabolite concentrations revealed
biologically relevant metabolic pathways associated with PD
to include, Primary bile acid biosynthesis, Biosynthesis of
unsaturated fatty acids and Aminoacyl-tRNA biosynthesis which
were found to be perturbed in the brain of PD sufferers. Having
assigned the metabolomic data to their respective metabolic
pathways, the epigenetic data were subsequently correlated
to said pathways.

Primary Bile Acid Biosynthesis
Our group previously reported perturbed bile acid metabolism
in a prodromal mouse model of PD (Graham et al., 2018b).
Further, we identified a panel of bile acids in the blood of
said model capable of discriminating between prodromal PD
and control mice with ∼90% accuracy (Graham et al., 2018a).
Another recent study by our group demonstrated disruption to
the gut’s microbiome and in particular bile acid metabolism in
PD sufferers (Li et al., 2021). In this study, we identified bile acid
metabolism using both metabolomics and epigenetics approaches
as the top perturbed metabolic pathway in the brain of PD
sufferers. In brief, cholesterol metabolism produces bile acids as
an end product using the Cytochrome P450 family of enzymes
(McMillin and DeMorrow, 2016). The essential bile acids in
human brain are, chenodeoxycholic acid and cholic acid (Mano
et al., 2004; Kiriyama and Nochi, 2019). The chenodeoxycholic
acid is converted to α- and β-muricholic acid and further
conjugates with taurine or glycine and freely passes through
the blood-brain barrier (BBB) with the help of transporters
(Kiriyama and Nochi, 2019). Herein, we were not able to directly
measure the concentrations of chenodeoxycholic acid and cholic
acid due to their relatively low concentrations in PM brain,
however we were able to accurately quantify the expression of
taurine (q = 0.00026) and glycine (NS). We found taurine to
be positively correlated with the methylation locus cg14286187
which is hypermethylated. cg14286187 is located on promoter
region of both CYP39A1 and SLC25A27, possibly suppressing
their expression.

We recorded taurine at higher concentrations in the PM
brain of PD sufferers compared to controls, however it was
previously reported to be decreased in the blood plasma of PD
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patients (Zhang et al., 2016), with neuroprotective properties
(Che et al., 2018). Interestingly, the gene correlated with taurine,
CYP39A1 is directly involved in the neural cholesterol clearance
pathway of bile acids as identified in PM brain tissues of
Alzheimer’s disease cohorts (Baloni et al., 2020). The intronic
variants of CYP39A1 have been reported to be associated with
levodopa-induced dyskinesia (Ryu et al., 2020). The abnormal
lower expression of CYP39A1 gene results in buildup of 24S-
hydroxycholesterol inducing amyloid-β peptide accumulation in
neurodegenerative disease (Matsuoka et al., 2020). Increasing
the expression of the CYP39A1 protein has the potential to
suppress 24S-hydroxycholesterol aggregation in the brain and act
as a therapeutic target for neurodegenerative diseases involving
abnormal amyloid-β accumulation such as Alzheimer’s disease
(Matsuoka et al., 2020).

SLC25A27 (UCP4) was also positively correlated with
increased taurine concentration, and it belongs to Solute Carrier
(SLC) family of genes. The SLC family of genes generally
contribute to cellular influx and efflux of neurotransmitters,
metabolites, nutrients, drugs and toxins. However, SLC25A27 is
one of the mitochondrial carriers that protects against oxidative
stress and may play a role in calcium regulation, neuronal cell
survival with a probable association with organizing the brain’s
neuroanatomy (Dahlin et al., 2009; Xu et al., 2018). Studies also
observed that the loss of function of one of the PD candidate
genes PARK7 (DJ-1) decreases the expression of SLC25A27 (Xu
et al., 2018), highlighting the significance of SLC25A27 and the
SLC family of genes as a potential therapeutic targets for the
treatment of PD.

Taurine was also found to be negatively correlated with
hypomethylated loci at cg23330137 and cg20381404. cg23330137
influences the genes SCP2D1 on TSS1500, and C20orf78 on the
gene body. The locus cg20381404 influences AMACR on 5’UTR
and 1st Exons. SCP2D1 and C20orf78 have not been reported
previously to be involved with neurodegenerative disease.
However, AMACR genomic variants are associated with relapsing
encephalopathy (Smith et al., 2010) and cerebellar ataxia (Dick
et al., 2011). Further studies are required to understand their
specific role and how they relate to PD pathogenesis.

In this study, regulation of differentially methylated genes
involved in bile acid metabolism and how they correlate
with taurine were identified by mapping the significantly
hypo/hypermethylated genes to the altered biochemical pathway.
Our findings support the hypothesis that interactions between
the metabolome and the epigenome have significant impact on
the pathogenesis of PD. However, our study is not without
limitations, as the accurate role of these interactions are unclear,
and further functional studies are necessary to better understand
their specific biological mechanisms and how they relate to
PD pathogenesis.

Diagnostic Models
Area Under the Receiver Operating Characteristic (AU-ROC)
analysis was subsequently performed to determine how well
the brain tissue-based methylation and metabolomic markers
could discriminate between PD cases and neurologically normal
controls. Both sets of data performed well with the Ensemble

model created using the methylome data performing best with an
AUC = 0.94 and using metabolomics data, the RF model with an
AUC = 0.89 outperformed the other models we created using said
data. Interestingly, the models created using the methylome data
surpassed the diagnostic accuracy of previously reported models
(Picca et al., 2019; Wang et al., 2019) while our metabolomics
model performed similarly to previous models developed by our
group using CSF (Yilmaz et al., 2020).

Conclusion
Our previous studies demonstrated perturbations in a prodromal
mouse model of PD to include both brain (Graham et al.,
2018b) and blood (Graham et al., 2018a), while our most
recent study reported disturbances in the gut microbiome of
PD sufferers (Li et al., 2021). The gut-brain axis has been
receiving a lot of attention in recent years, specifically how
it relates to neurodegenerative disease (Peterson, 2020; Agus
et al., 2021; Varma et al., 2021); herein and for the first
time, combining metabolomics and epigenetics approaches, we
highlight bile acid metabolism as being the major biochemical
pathway to be perturbed in the brain of those people who
died from PD as compared with controls. The interplay
between these specific methylation changes and their correlating
metabolites may have a direct impact on the pathogenesis of PD.
However, future translational studies are required to elucidate
the specific metabolite-gene interactions and how they relate
to the etiopathogenesis of PD. In particular those metabolites
and methylation changes related to bile acid metabolism in PD
sufferers needs to be further evaluated. Importantly, we highlight
several metabolites and CpG sites capable of discriminating
between PD and controls with a high degree of accuracy. Our aim
is to determine how useful these central biomarkers are in more
accessible biomatrices such as blood for diagnosis/prediction of
those at greatest risk of developing PD.

MATERIALS AND METHODS

Study Subjects
The present study was approved by the Beaumont Institutional
Review board (IRB# 2018-358). A total of 78 brain tissue
samples were acquired from the NIH NeuroBioBank among
which 40 brain tissue samples were from PD cases and 38
were from cognitively healthy subjects. The post-mortem brain
specimens were classified based on diagnosis and pathological
findings as laid out in the NIH Brain Bank’s (NBB) webpage.1

In brief, subjects contained within the NBB inventory have
undergone extensive neuropathological evaluation and have
been characterized using all available donor records (e.g.,
medical records, autopsy reports, family interviews). In general,
diagnoses contained within the NBB inventory are classified
based on the International Classification of Diseases (ICD-10)
coding schema. Parkinson’s disease affected cases were selected
considering the clinical brain diagnosis stating, “Parkinson’s
disease (Confirmed Diagnosis).” A subject with the absence

1https://neurobiobank.nih.gov/subjects/
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of a clinical brain, neuropathology, or genetic diagnosis were
considered as “unaffected control”. The frozen brain tissues were
obtained from the primary motor cortex (Brodmann area 4)
(Table 1 and Supplementary Table 6) and No information on
an individual patient’s polypharmacy was available from the
NIH Neurobiobank.

Metabolomics 1H Nucleic Magnetic
Resonance Analysis
Samples were stored at −80◦C prior to preparation.
Subsequently, samples were lyophilized and milled to a
fine powder under liquid nitrogen to limit the amount of
heat produced. Using previously optimized methods for 1H
NMR analysis (Graham et al., 2013, 2014, 2016), 50 mg
samples of lyophilized and milled tissue were extracted in 50%
methanol/water (1 mg per 10 ul; 0.1 g/mL) in a sterile 2 mL
Eppendorf tube. The samples were mixed for 20 min and
sonicated for 20 min and centrifuged at 13,000 × g at 4◦C for
30 min to remove any macro molecules which may affect the
NMR signal. Supernatants were collected, dried under vacuum
using a Savant DNA Speedvac (Thermo Scientific, Waltham, MA,
United States) and reconstituted in 285 µL of 50 mM potassium
phosphate buffer (pH 7.0), 30 µL of Sodium 2,2-dimethyl-2-
silapentane-5-sulfonate (DSS) and 35 µL of D2O. Two hundred
microliters of the reconstituted sample was transferred to a
3 mm Bruker NMR tube for analysis. All samples were housed
at 4◦C in a thermostatically controlled SampleJet autosampler
(Bruker-Biospin, Billerica, MA, United States) and heated to
room temperature over 3 min prior to analysis by NMR.

Using a randomized running order all 1D 1H NMR data were
recorded at 300 (±0.5) K on a Bruker ASCEND HD 600 MHz
spectrometer (Bruker-Biospin, Billerica, MA, United States)
coupled with a 5 mm TCI cryoprobe. For each sample, 256
transients were collected as 64k data points with a spectral
width of 12 kHz (20 ppm), using a pulse sequence called CPP
WaterSupp (Bruker pulse program: pusenoesypr1d) developed
by Mercier et al. (2011) and an inter-pulse delay of 9.65 s.
The data collection protocol included a 180-s temperature
equilibration period, fast 3D shimming using the z-axis profile
of the 2H NMR solvent signal, receiver gain adjustment, and
acquisition. The free induction decay signal was zero filled to
128k points and exponentially multiplied with a 0.1 Hz line
broadening factor. The zero and first order phase constants
were manually optimized after Fourier transformation and a
polynomial baseline correction of the FID (degree 5) was applied
for precise quantitation. All spectra were processed and analyzed
using Chenomx NMR Suite (ver. 8.1, Chenomx, Edmonton,
AB, Canada).

Direct Injection/Liquid
Chromatography-Mass Spectral Analysis
Brain samples were analyzed using the MXP Quant 500 Kit
(BIOCRATES, Life Science AG, Innsbruck, Austria) on an
Acquity UPLC I-Class (Waters, Milford, MA, United States)
coupled with a Xevo TQ-S (Waters, Milford, MA, United States).
Sample preparation and quantification steps were performed

according to the manufacturer’s instructions. Briefly, 25 mg
lyophilized brain tissue were extracted using 85% ethanol and
15% phosphate-buffered saline solution. 10 µL of the extraction
solvent plus seven calibration standards, three quality controls
were applied to each spot on a 96-well plate and subsequently
dried under nitrogen (Waters, MA, United States). Metabolites
were derivatized by incubating the sample for 60 min in 50 µL
of phenylisothiocyanate (PITC). Samples were then dried under
nitrogen. Next, we extracted the metabolites using 300 µL of
methanol containing 5 mM ammonium acetate. Sample extracts
were centrifuged at 500 × g for 2 min and the supernatant
collected. All samples were diluted for both the LC (Liquid
Chromatography) and FIA (Flow Injection Analysis) steps. Polar
metabolites were separated using a chromatographic method
as detailed by the producer (BIOCRATES Life Sciences AG,
Innsbruck, Austria) prior to the quantification on a triple-
quadrupole mass spectrometer (Xevo TQ-MS, Waters, Milford,
MA, United States). All non-polar metabolites were analyzed
via direct injection onto the same mass spectrometer. MetIQ
software (BIOCRATES Life Sciences AG, Innsbruck, Austria) was
used for assay workflow, sample registration, and calculation of
metabolite concentrations.

Genome-Wide DNA Methylation Assay
Genomic DNA was extracted from the lyophilized and milled
brain tissue using the QIAamp DNA Mini Kit (Qiagen,
Hilden, Germany) and subsequent DNA samples were bisulfite
converted using the EZ DNA Methylation-Direct Kit (Zymo
Research, Orange, CA, United States) per the manufacturer’s
protocol. DNA methylation profiling was performed using the
Illumina Infinium MethylationEPIC BeadChip array constituting
>850,000 cytosine or “CpG” sites per assay, mapped at single
nucleotide resolution covering the various regions of the genome.
The BeadChips were processed according to the manufacturer’s
recommendations and the fluorescently stained BeadChips were
imaged using the Illumina iScan (Illumina, CA, United States).

Metabolomic Data Analysis
Raw metabolomic data were subjected to sum normalization,
autoscaling and subsequently log transformation. Principal
Component Analysis (PCA) was performed to identify outliers.
A sample that deviates by more than three standard deviations
away from the center (i.e., 99.7% of confidence) of any of the
first three principal components was considered an outlier. No
such outlier samples were identified. A logistic regression model
was used to estimate the sample diagnosis based on the first
five principal components, sample age, sex and post-mortem
interval. Differentially expressed metabolites were identified by
fitting a robust linear regression model to each one implemented
in R package limma with sample diagnosis, age, sex, and PMI
as covariates. P-value estimates for diagnosis were obtained
after empirical Bayes treatment of fitted models. Metabolites
with FDR q < 0.05 were deemed significantly differentially
expressed in disease.

To estimate metabolite pathway enrichment, the metabolites
were ranked by their log transformed p-value multiplied by the
sign of fold change. That way the metabolites with significant
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increase in abundance were at the top of the ranked list whereas
those with the most significant decrease in abundance were at the
bottom of the ranked list. Metabolites without HMDB ID were
removed from this ranked list. R package multiGSEA was used
to download metabolomic pathways from KEGG database and
package fgsea (fgsea_1.16.0) was then used to compute metabolite
set enrichment with 10,000 permutations.

Methylome EPIC Array Statistical
Analysis
Bioconductor minfi package was used to read raw ∗.idat files and
mark the failed probes. Two samples had more than 1% of failed
probes and one of them was also a PCA outlier defined as above
for metabolomics data. The two samples were removed from
further analyses. Sex chromosome probes were then removed,
and missing values were imputed using Bioconductor impute
package. Probes that had missing values in more than half of
the samples or zero variance were removed. The samples were
normalized using Noob normalization. Methylation beta values
were extracted for the remaining probes. Sample position effect
on the EPIC array was adjusted using empiricalBayesLM function
from WGCNA package. The effect of sample position was
modeled as polynomial of second degree. Proportion of neuronal
cells in each sample was then estimated using flow sorted PFC
samples (Guintivano et al., 2013) and estimateCellCount function
from minfi package. Sample DNA methylation age was estimated
using ENmix package. Age acceleration was defined as the
residuals of a linear model where DNAmAge was the dependent
variable and sample chronological age, sex, post-mortem interval,
proportion of neuronal cells were the independent variables.

Differentially methylated CpGs were identified through robust
linear regression implemented in R package limma with sample
diagnosis, age, sex, post-mortem interval, proportion of neuronal
nuclei as covariates. P-value estimates for diagnosis were
obtained after empirical Bayes treatment of fitted models.
Cytosines with FDR q < 0.05 were deemed significantly
altered in disease.

Epigenome Enrichment Analysis
Cytosines were mapped to gene names using
UCSC_RefGene_Name column specified in Bioconductor EPIC
array annotation package IlluminaHumanMethylationEPICanno.
ilm10b4.hg19. When a CpG locus was annotated with multiple
genes and multiple times, the one that is most frequently
associated with the locus was chosen. The genes were ranked
in the order of significance of affected cytosines multiplied by
the sign of fold change. For the genes that mapped to multiple
cytosines, the one with the smallest p-value was used. In the
same fashion as for metabolite set enrichment analysis, the
KEGG pathways were downloaded and fgsea function was used
to estimate the pathway enrichment.

Establishing Epigenome-Metabolome
Interactions
For a selected metabolite pathway, the corresponding metabolites
with FDR q < 0.05 were chosen. Similarly, for the pathway we
identified affected proteins and CpG sites associated with those

proteins. The pathway—protein associations were downloaded
from SMPDB2 (Frolkis et al., 2010). Only differentially modified
CpGs were further considered. The concordance of each
metabolite – CpG pair was established by fitting a robust
linear regression model without intercept where standardized
methylation value was a response variable and standardized
metabolite abundance as well diagnosis, age, sex, PMI, proportion
of neuronal nuclei were the independent variables.

Evaluation of Diagnostic Models
The same classifier training, testing and validation strategy was
chosen for both metabolomic and methylome data. First, the
full data was split into 80% of training/testing samples and
20% of validation samples. The training data was subject to
preprocessing that removed probes/metabolites of zero and near-
zero variance. Then, the data was transformed using principal
component analysis. R package caret was used to train glmnet
(LASSO) and rf (Random forest) models with ten automatically
selected model tuning parameters and area under ROC as the
model quality metric. The models were then combined into
an ensemble model using caretEnsemble package. The accuracy
of the models was then evaluated on the validation samples
which were processed and transformed in the same way as
the training data.
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