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Abstract

Background: Recognition of binding sites in proteins is a direct computational approach to the
characterization of proteins in terms of biological and biochemical function. Residue preferences
have been widely used in many studies but the results are often not satisfactory. Although different
amino acid compositions among the interaction sites of different complexes have been observed,
such differences have not been integrated into the prediction process. Furthermore, the evolution
information has not been exploited to achieve a more powerful propensity.

Result: In this study, the residue interface propensities of four kinds of complexes (homo-
permanent complexes, homo-transient complexes, hetero-permanent complexes and hetero-
transient complexes) are investigated. These propensities, combined with sequence profiles and
accessible surface areas, are inputted to the support vector machine for the prediction of protein
binding sites. Such propensities are further improved by taking evolutional information into
consideration, which results in a class of novel propensities at the profile level, i.e. the binary
profiles interface propensities. Experiment is performed on the 1139 non-redundant protein
chains. Although different residue interface propensities among different complexes are observed,
the improvement of the classifier with residue interface propensities can be negligible in
comparison with that without propensities. The binary profile interface propensities can
significantly improve the performance of binding sites prediction by about ten percent in term of
both precision and recall.

Conclusion: Although there are minor differences among the four kinds of complexes, the residue
interface propensities cannot provide efficient discrimination for the complicated interfaces of
proteins. The binary profile interface propensities can significantly improve the performance of
binding sites prediction of protein, which indicates that the propensities at the profile level are
more accurate than those at the residue level.

Background compact spatial region [1]. Recognition of functional sites
Protein function is very often encoded in a small number  in proteins is a direct computational approach to the char-
of residues located in the functional active site, which are  acterization of proteins in terms of biological and bio-
dispersed around the primary sequence, but packed in a  chemical function. Localization of functional sites will
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allow us to understand how the protein recognizes other
molecules, to gain clues about its likely function at the
level of the cell and the organism, and to identify impor-
tant binding sites that may serve as useful targets for phar-
maceutical design [2].

Recently, a series of computational efforts to identify
interaction sites or interfaces in proteins have been under-
taken. A number of studies on the characteristics of pro-
tein interfaces have provided clues for binding site
prediction. Several methods have been proposed to pre-
dict these sites based on the sequence or structure charac-
teristics of known protein-protein interaction sites.

In terms of physical chemistry, protein interfaces are gen-
erally observed to be more hydrophobic than the remain-
der of the protein surface [3,4]. Moreover, the interfaces of
permanent complexes tend to be more hydrophobic
when compared to those of transient complexes [5]. Some
interfaces have a significant number of polar residues [6],
usually where interactions are less permanent [7].
Charged side-chains are often excluded from protein-pro-
tein interfaces with the exception of arginine [8], which is
one of the most abundant interface residues regardless of
interaction types [9]. The evolutionary conservation of
residues is another property that may be utilized to predict
protein-protein interfaces [10]. The evolutionary trace
(ET) method tries to identify functional sites by using the
sequence variations and functional divergences found in
nature [11,12]. Accurate ET analysis requires functionally
relevant sequence and high-quality alignments as input
[13]. A structure-independent criterion has been pre-
sented to measure the quality of evolutionary trace [14].
Because sequence conservation reflects not only evolu-
tionary selection at binding sites to maintain protein func-
tion, but also the selection throughout the protein to
maintain the stability of the folded state [15], many
researchers try to distinguish functional and structural
constraints on protein evolution [16,17]. A comprehen-
sive evaluation of different conservation scores has been
performed by Valdar [18]. Other sequence information
has also been exploited such as the phylogenetic profile
[19,20], the sequence motifs [21], sequence profile
[22,23], evolution rate [24,25], etc.

The features extracted from the three-dimensional struc-
tures of protein complexes are critical for a full under-
standing of the mechanism of interactions because they
provide specific interaction details at the atomic level. The
accessible surface area (ASA) is one of the most widely
used features [26]. Molecular docking seems to be the
most principled computational approach for identifying
the interaction sites [27], but it requires the precise design
of energy function [28], either physical energy [29] or
empirical scoring functions [27,30]. 3D-motifs have also
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been successfully used to identify binding sites of the
same type in proteins with different folds [31-34]. Patch
analysis using a six-parameter scoring function can distin-
guish the interface from other surfaces [3].

Because none of the above-mentioned properties is able
to make an unambiguous identification of interface
regions or patches, a combination of some of them (via
either a linear combination [35] or machine learning
[36]) is found to be effective for improving the accuracy of
binding-site prediction [37]. The PINUP method predicts
interface residues using an empirical score function made
of a linear combination of the energy score, interface pro-
pensity and residue conservation score [38].

Rossi et al. first construct a scoring function, and then per-
form a Monte Carlo optimization, to find a good scoring
patch on the protein surface [39].

Machine Learning Methods are well suited to the classifi-
cation of interface and non-interface surface residues
[40,41]. Neural networks [42] and support vector
machine [43,44] have been applied in this field. These
studies take sequential or structural information as input
[6]. Other researchers adopt two-stage model [23] to fur-
ther improve the performance. Recently, the conditional
random field (CRF) model has been introduced, which
formalizes the prediction of protein interaction sites as a
sequence-labeling task [45].

In this study, we revisit the difference of amino acid com-
positions between the interface area and other surface
area. Although some researchers have found that there are
different amino acid compositions among the interaction
sites of different complexes (homo-permanent com-
plexes, homo-transient complexes, hetero-permanent
complexes, and hetero-transient complexes) [46], such
difference has not been integrated into the prediction
process. Here, the residue interface propensities of differ-
ent complexes are collected. These propensities, com-
bined with sequence profiles and accessible surface areas,
are inputted to the support vector machine for the predic-
tion of protein binding sites. Such propensities are further
improved by taking evolutional information into consid-
eration. The frequency profiles are directly calculated from
the multiple sequence alignments outputted by PSI-
BLAST [47] and converted into binary profiles [48] with a
probability threshold. As a result, the protein sequences
are represented as sequences of binary profiles rather than
sequences of amino acids. Similar to the residue interface
propensities, a class of novel propensities at the profile
level is introduced. Binary profiles can be viewed as novel
building blocks of proteins. It has been successfully
applied in many computational biology tasks, such as
domain boundary prediction [48], knowledge-based
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mean force potentials [49], protein remote homology
detection [50] etc. Experimental results show that the
binary profile propensities significantly improve the per-
formance of binding sites prediction of proteins.

Results and discussion

Residue interface propensities

Residue interface propensities are good indicators for
binding sites and have been widely used in many studies
[6]. The residue interface propensities of the four kinds of
complexes are shown in Fig. 1. Positive propensity means
that the residue is abundant in the interface while negative
propensity means that the residue is abundant in the sur-
face area.

The four kinds of complexes have similar residue interface
propensities. They all show that hydrophobic residues (F,
I, L, M, V) and some polar aromatic residues (W, Y, H) are
favored in interface area. The charged residue R also shows
preferences for the interface area. Other polar amino acid
T, E and small amino acid P, A are disfavored in the inter-
face. The same phenomena have been observed by others
[35] although some researchers evaluated the ASA contri-
bution for amino acid [3,38] while we count them. Bio-
physically similar residues, such as L and I, or D and E,
usually showed similar trends, indicating the reliability of
the data.

There are minor differences among the four kinds of com-
plexes. Although many amino acids show the same trend
for interface area or surface area, the propensities are dif-
ferent for the four kinds of complexes. Further more, some
amino acids reveal different propensities in different com-
plexes. Amino acid Q, S and T show preferences for the
hetero complexes rather than homo complexes.

Amino acid C and L are favored in permanent complexes
rather than transient complexes. Ofran and Rost [46]
found that the composition of all interface types differed
substantially from that of SWISS-PROT. Here we conclude
that the residue interface propensities show general trends
and have minor differences among different kinds of com-
plexes.

Binary profile interface propensities

The binary profile frequencies in interface are different
from those in surface area. These differences can be used
to produce the discriminative binary profile propensities.
In theory, the total number of binary profiles is extremely
large (229), but in fact, only a small fraction of binary pro-
files appears, which is dependent on the choice of proba-
bility threshold P, and the dataset. Based on the results of
cross-validation (Next section), the four kinds of com-
plexes have different number of binary profiles, ranging
from one hundred to several thousands. The binary pro-
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files and their propensities of the four kinds of complexes
are listed in the Additional files (see additional file 1, 2, 3,
4). Note that the binary profiles with low occurrence
times (<3) are ignored, since these profiles are not statisti-
cally significant and may introduce much noise.

An increased propensity of hydrophobic residues and
their combinations in interface has been observed, such as
the binary profile FHWY, ILMV. Although some amino
acids are preferred in surface, the combination of these
amino acids with other amino acids may be preferred in
interface such as AEP, ST. Another special phenomenon is
that some binary profiles only occur in interface while
other binary profiles only occur in surface area. The
former results in a maximum propensity (being set as 4)
and the latter results in a minimum propensity (being set
as - 4). Each kind of complexes has many such binary pro-
files.

The differences of binary profile interface propensities
among different complexes are significant in comparison
with those of residue interface propensities. Many binary
profiles show positive propensities in one complex but
negative propensities in another complex. Table 1 sum-
marizes the number of such binary profiles between any
pair of complexes.

Comparative results with and without propensities

The first SVM takes profile and ASA of spatially neighbor-
ing residues as input, which are common input features
used by previous studies [15,44,51]. Then we add the
amino acid or binary profile interface propensities as an
extra feature to evaluate whether these propensities can
improve the performance or not. All the results are
obtained by five-fold cross-validation.

The second SVM takes residue interface propensities as an
extra feature. Table 2 gives the results with and without
residue interface propensities. The similar performance
indicates that the standard amino acid cannot provide
efficient discrimination for the complicated interfaces of
proteins. The results on homo-transient complex are
extremely low because there are only 5 chains in this com-
plex. The performance of the first SVM is comparable with
those of Chung et al. [15]. They reported precision of
0.498 and recall of 0.568 with the same features on their
274 hetero-complexes.

The third SVM takes binary profile interface propensities
as an extra feature instead of residue interface propensi-
ties. The probability threshold P, of converting a fre-
quency profile into a binary profile needs to be optimized.
During the validation process, three sets are used to train
SVM, one validation set is used to optimize the parameter
and the testing set is used to give the final results. That is,
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Residue interface propensities of the four kinds of complexes. Column bar 1, 2, 3 and 4 denote hetero-permanent,
hetero-transient, homo-permanent and homo-transient complex respectively.

we select the values of P, that give the best results on the
validation set and then such parameter is used to test the
proteins on the testing set to give the final results. The
influences of P, on the performance are illustrated in Fig.
2. F1 is used as the guild line since it is a tradeoff between
precision and recall. The optimal values of P, are different
for different complexes.

The results of cross-validation are then obtained with the
optimal value of P, and shown in Table 3. The improve-
ment of the third SVM is significant in comparison with

the other two SVMs. The F1 is improved by about ten per-
cent. According to the experimental results, we can infer
that the propensities at the profile level may be more accu-
rate than that at the amino acid level.

Comparative results with propensities from other
complexes

Analysis of interface propensities shows that the residue
interface propensities have minor differences among dif-
ferent complexes while the profile interface propensities
differ significantly among different complexes. To validate

Table I: The differences of binary profile interface propensities among the four kinds of complexes

Hetero permanent?

Hetero transient

Homo permanent Homo transient

Hetero permanent - 341
Hetero transient 261 -
Homo permanent 267 908
Homo transient 17 27

378 29
893 28
- 36
38 -

aGiven in the element (I, J) of the matrix are the number of binary profiles which show positive propensities in complex type | and negative

propensities in complex type J.
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Table 2: Comparative results with and without residue interface propensities on the four kinds of complexes.

Precision Recall Fl Accuracy CcC
Hetero permanent Non-pro? 0518 0.582 0.547 0.687 0.267
AA-prob 0.514 0.590 0.548 0.684 0.265
Hetero transient Non-pro 0414 0.563 0.475 0.643 0.204
AA-pro 0.415 0.561 0.476 0.643 0.204
Homo permanent  Non-pro 0.463 0.607 0.526 0.687 0.288
AA-pro 0.474 0.617 0.536 0.693 0.303
Homo transient Non-pro 0.206 0.463 0.279 0.691 0.136
AA-pro 0.260 0.465 0.327 0.743 0.195

aThe features of SVM are Position-Specific Score Matrix (PSSM) and Accessible Surface Areas (ASA)

bResidue interface propensity is inputted to SVM as an extra feature

it, the propensities from other complexes are used as an
extra feature. The results are shown in Table 4 (residue-
level) and Table 5 (profile-level).

The performances of Table 4 are close to those of Table 2,
which indicates that the differences of residue interface
propensities among different complexes can be negligible.
The performances of Table 5 decrease significantly in
comparison with those of Table 3, so the profile interface

propensities are sensitive to the types of complexes. In
other words, the propensities at the profile-level can give
more exact description of interfaces than the propensities
at the residue level.

Examples

Some examples are provided at Fig. 3. One protein is
selected from each type of complexes. The true interface
and the interface predicted by the second SVM and the
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Table 3: Cross-validation results with binary profile interface propensities

P2 Nb Precision Recall Fl Accuracy CcC
Hetero permanent 0.07 1558 0.599 0.700 0.644 0.735 0.396
Hetero transient 0.05 4662 0.501 0.756 0.602 0.697 0.379
Homo permanent 0.05 8639 0.546 0.734 0.626 0.745 0.435
Homo transient 0.08 129 0.277 0.551 0.363 0.747 0.250

aThe optimal probability threshold P, of converting a frequency profile into a binary profile

bThe number of binary profiles

third SVM are depicted. Most interface residues and non-
interface residues can be predicted correctly. It is clearly
that the classifier that integrates binary profile interface
propensities is more accurate than the classifier that uses
residue interface propensities.

Comparison with conservation scores

The conservation score is another widely used feature in
prediction of function sites, which indicates the impor-
tance of a residue for maintaining the structure and func-
tion of a protein [18]. Here, we compare the binary profile
interface propensities with conservation scores since both
of them are derived from the multiple sequence align-
ment of homologues. Three conservation scores are inves-
tigated including the symbol entropy score [52], Karlin
score [53] and Valdar score [54]. They are defined as fol-
lows:

entmpy z pilnp; x (1)

Ckarlin = ZZM(SV Sj)X——— N(N 1) (2)
i j>i

Ua ldar — /lzzw w; M(Sl,S ) (3)

i j>i
Please refer to [18] for detail calculation and comparison
of these scores.

These conservation scores are used as an additional fea-
ture respectively and the cross-validation results are
shown in Table 6. Overall the F1 is improved by about 2
percent in comparison with those without conservation
scores (the first SVM).

All these conservation scores show positive correlation
with binary profile interface propensities, although the
Pearson correlation coefficients are small (0.017, 0.053,
0.064 for Vepuopyr Viarin and Vigq,, respectively). The
results show that the improvement by conservation scores
is much lower than that by binary profile interface pro-

pensities.

Independent testing

A direct comparison with other studies is difficult due to
the differences in choice of dataset and definitions of sur-
face or interface residue. Our method is tested on the pro-
tein-protein docking benchmark 2.0, which is a well
established dataset including 84 hetero transient com-
plex. The proteins in hetero transient complexes are fil-
tered by removing the protein chains contained in
benchmark 2.0 dataset and their homologues. The SVMs
are re-trained on the filtered datasets and used to test the
complexes in benchmark 2.0 dataset. The results on differ-
ent subset (rigid-body, medium difficult and difficult set)
and the average results are shown in Table 7. The classifi-
ers with binary profile interface propensities outperform
those with residue interface propensities by 5 percent in
term of F1.

The results are better than those of related works. Liang et
al [38]. developed an empirical scoring function for bind-

Table 4: Comparative results with residue interface propensities from other complexes.

Complex? Propensitiest Precision Recall Fl Accuracy CcC
Hetero permanent Hetero transient 0.512 0.570 0.539 0.679 0.256

Homo permanent  0.503 0.578 0.538 0.682 0.250
Hetero transient Hetero permanent 0.419 0.568 0.482 0.646 0.212

Homo permanent 0.418 0.568 0.482 0.644 0.210
Homo permanent  Hetero permanent 0.445 0.596 0510 0.674 0.273
Homo transient Hetero permanent 0.192 0.550 0.285 0.636 0.132
aThe complexes that the experiments are performed on.
bThe complexes that the propensities are derived from.
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Table 5: Comparative results with binary profile interface propensities from other complexes.

Complex2 Propensities® Precision Recall Fl Accuracy CcC

Hetero permanent Hetero transient 0.532 0.574 0.551 0.698 0.282
Hetero transient Homo permanent  0.413 0.562 0.475 0.642 0.203
Homo permanent  Hetero Permanent 0.463 0.607 0.525 0.686 0.287
Homo transient Hetero permanent 0.181 0514 0.262 0.637 0.111

aThe complexes that the experiments are performed on.

bThe complexes that the propensities are derived from.
ing site prediction, which is a weighted combination of
energy scores, conservation scores and residue interface
propensities. They achieved the precision of 0.294 and the
recall of 0.305. The overall F1 is only 0.30. Their method
is trained on a small dataset (only 57 proteins). Further-
more their method is a simple combination of three fea-
tures while our method is based on discriminative model.

Conclusion

In this study, the residue interface propensities of four
kinds of complexes (hetero-permanent complex, hetero-
transient complex, homo-permanent complexes and
homo-transient complex) are collected and applied in the
process of predicting binding sites of proteins. Such pro-
pensities are improved by taking evolutionary informa-
tion into consideration, which results in the binary profile
interface propensities. Although there are minor differ-
ences among the four kinds of complexes, the residue
interface propensities cannot provide efficient discrimina-
tion for the complicated interfaces of proteins. The binary
profile interface propensities can significantly improve
the performance of binding sites prediction of protein,
which indicates that the propensities at the profile level
are more accurate than those at the residue level.

Methods

Dataset

A comprehensive set of complexes is chosen from the Pro-
tein Data Bank (PDB) [55] and then subjected to a

Table 6: Cross-validation results with conservation scores

number of stringent filtering steps. All proteins with
multi-chains, non-NMR structures and resolution better
than 4 A are selected. Two chains in a protein are consid-
ered as interacting pairs if at least two non-hydrogen
atoms in each chain are separated by no more than 5 A
[42,56].

For PDB structure with more than two chains, each chain
is selected for at most one time. For protein chain that
interacts with multiple partners, only one partner with the
most interfacial residues is selected as its partner. The pro-
tein chains with less than 40 amino acids are removed.
The PQS web-server [57] is used to eliminate crystal pack-
ing complexes rather than biologically functional multim-
ers. The selected chains are further filtered such that no
pair of chain has more than 25% sequence identify.
Finally, a total of 1139 chains are obtained.

Classification of complexes

The protein-protein interactions can be divided into dif-
ferent types according to different criterions [58]. In this
study, the complexes are classified by the homology of
interacting chains (homo versus hetero) and the lifetime
of the complexes (transient versus permanent).

Using simple sequence comparisons, the complexes can
be classified as homo-complexes or hetero-complexes.
Two interacting protein chains were defined as homo-
complex if over 90% of them are aligned and the sequence

Precision Recall Fl Accuracy CcC

Hetero permanent  V..qp, 0.529 0.571 0.549 0.692 0.280
Karlin 0.531 0.584 0.556 0.698 0.282

Valdar 0.534 0.592 0.561 0.702 0.283

Hetero transient V. iqp, 0.414 0.563 0.477 0.644 0.203
Vicarlin 0414 0.572 0.480 0.644 0.204

Valdar 0.415 0.585 0.486 0.645 0.205

Homo permanent V..o, 0.464 0.607 0.526 0.687 0.288
Vicarlin 0.472 0.613 0.533 0.692 0.291

Valdar 0.478 0.622 0.541 0.698 0.295

Homo transient Ventropy 0.212 0.468 0.292 0.698 0.121
Karlin 0.226 0.478 0.307 0.710 0.127

Valdar 0.228 0.482 0310 0.721 0.132
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Figure 3

Sample predictions. One protein is selected from each complexes and shown in sub-figure (A), (B), (C) and (D). The PDB
IDs and chain identifiers are 1bplB, lijeB, IlgpB and 1j0xO respectively. The interface residues are depicted with purple colour.
For each sub-figure, the true interfaces are shown in the center picture. The left picture gives the results predicted by the sec-
ond SVM, which takes residue interface propensities as an extra feature. The right picture gives the results predicted by the
third SVM, which takes binary profile propensities as an extra feature.
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Table 7: Results on the protein-protein docking benchmark 2.0 dataset.

Subset No. of Protein ~ Method? Precision Recall Fl Accuracy CcC
Rigid body 63 AA 0.393 0.447 0418 0.848 0.301
BP 0.446 0.495 0.469 0.857 0.328
Medium difficult 13 AA 0.356 0.405 0.379 0.810 0.258
BP 0.412 0.464 0.436 0.821 0.271
Difficult 8 AA 0.362 0.384 0.372 0813 0.299
BP 0.409 0.427 0.428 0.819 0.317
All 84 AA 0.370 0412 0.390 0.824 0.286
BP 0.422 0.462 0.441 0.832 0.305

aAA, the classifiers with residue interface propensities as extra features; BP, the classifiers with binary profile interface propensities as extra

features.

identity over the aligned region is more than 95% [42]. All
other complexes are classified as hetero-complexes.

A permanent complex is usually very stable and thus only
exists in its complexed form. In contrast, a transient com-
plex can exist in separated state. The method of differenti-
ating the transient complexes and permanent complexes
is same as the one used by Ofran and Rost [46]. The guild
lines for classifying the hetero-complexes and homo-com-
plexes into permanent and transient states are different.
They are briefly described here. If the chains from the het-
ero-complexes are stored in the same SWISS-PROT files
[59], the complexes are classified as hetero-permanent
complexes; otherwise they are classified as hetero-tran-
sient complexes. All homo-complexes that are annotated
as monomers in DIP [60] database are classified as homo-
transient complexes; otherwise they are classified as
homo-permanent complexes.

The above dataset is then grouped into four kinds of com-
plexes (hetero-permanent, hetero-transient, homo-per-
manent, homo-transient). The statistical information of
different complexes is tabulated in Table 8. An amino acid
is defined as a surface amino acid if the ASA of at least one
of its atom is larger than 2 A2 [39]. A surface residue is con-
sidered as interface residues if its accessible surface area is
decreased by more than 1 A2upon complexation [38]. The
ASA is calculated with the DSSP program [61]. According
to this definition, 27.3% of the surface residues are inter-
face residues. Such ratio is very close to that (28%) in
Chung's dataset [15].

Table 8: Summary of the four complexes

Calculation of propensities

The amino acid frequencies between interface and other
surface area are different. Such difference can be used to
produce the residue interface propensity, which is defined
as the log ratio between the amino acid frequency in inter-
face area and that in surface area:

Pa: In(Pa, I/Pu, S) (4)
where P, is the propensity of amino acid a, P, ;is the fre-
quency of amino acid a in interface area and P, yis the fre-
quency of amino acid a in surface area. The frequencies
can be calculated from the training set by maximum like-
lihood estimation:

Ca1
p, ;=2 5
a,l CI ( )
Cas
Py =—= 6
a,S CS ( )

where C, ;is the count of amino acid 4 in interface area, C;
is the total number of amino acid in interface area, C, sis
the count of amino acid a in surface area, Cg is the total
number of amino acid in surface area. The residue inter-
face propensity describes the likelihood of amino acid to
be found in interface area as compared to those in surface
area. A propensity of 0 indicates that the amino acid has
the same frequency in interface and surface area. A posi-
tive propensity means that the amino acid is over-repre-
sentative in interface area.

Chains Res. Surface res. Interface res.2
Hetero-permanent 123 25157 21737 7136 (32.8%)
Hetero-transient 386 86168 72288 19177 (26.5%)
Homo-permanent 625 174629 142620 38556 (27%)
Homo-transient 5 1555 1267 187 (14.8%))
Total 1139 287509 237912 65056 (27.3%)

aGiven in the bracket are the fraction of interface residues in the total number of surface residues.
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Table 9: An example of calculating the propensities of binary profiles
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A: 0.09
M: 0.02

C:0.02
N: 0.09

D: 0.07
P: 0.05

E: 0.04
Q: 0.04

F:0.03
R:0.03

G: 0.1
S: 0.04

H: 0.07
T: 0.05

1: 0.04
V:0.01

K: 0.02
W: 0.05

L: 0.09
Y: 0.05

In term of binary profile, the protein sequence is repre-
sented as sequence of binary profiles rather than sequence
of amino acids. Each amino acid is replaced by the corre-
sponding binary profiles that are derived from the multi-
ple sequence alignments as described in the following
section. The calculation formula of binary profile interface
propensities are same as that of the residue interface pro-
pensities except that the subscripts are replaced by binary
profiles rather than amino acid:

Py =In(P, /Py, 5) (7)
where P, is the propensity of binary profile b, P, ;is the fre-
quency of binary profile b in interface area and P, gis the
frequency of binary profile b in surface area. The frequen-
cies can also be calculated by maximum likelihood esti-
mation in the same manner of amino acid. The binary
profile interface propensity contains evolution informa-
tion and provides more accurate prediction of binding
sites than amino acid interface propensity according to
the experimental results.

Here an example of calculating the propensities of binary
profiles is provided. Suppose there is a frequency profile
(see Table 9):

When the probability threshold P, is taken as 0.08, we get
the following binary profile (see Table 10):

By collecting the non-zero term in binary profile, the com-
bination of amino acid AGLN is obtained. Suppose the
frequency of AGLN is 0.00042 in interface area and
0.00021 in surface area, which are calculated by maxi-
mum likelihood estimate using equation (5) and (6).
Thus, the propensity of AGLN is 0.693147 (In (0.00042/
0.00021)) by equation (7).

Generating of binary profiles

A binary profile can be expressed by a vector with dimen-
sions of 20, in which each element represents one kind of
amino acid and can only take value of 0 or 1. When the
element takes value of 1, it means that the corresponding
amino acid can occur during evolution. Otherwise, it
means that the corresponding amino acid cannot occur. A
binary profile can also be expressed by a substring of
amino acid combination, which is obtained by collecting

each element of the vector with non-zero value. Each
combination of the twenty amino acids corresponds to a
binary profile and vice versa. Below we describe the proc-
ess of generating the binary profiles.

The PSI-BLAST [47] is used to generate the profiles of
amino acid sequences with parameters j = 3 and e = 0.001.
The search is performed against the non-redundant data-
base (NR) database from NCBI. The frequency profiles are
directly obtained from the multiple sequence alignments
outputted by PSI-BLAST. The target frequency reflects the
probability of an amino acid occurrence in a given posi-
tion of the sequences. The method of target frequency cal-
culation is similar to that implemented in PSI-BLAST.

Because the frequency profile is a matrix of frequencies for
all amino acids, it cannot be directly used and need to be
converted into a binary profile by a probability threshold
P,,. When the frequency of an amino acid is larger than P,
it is converted into an integral value of 1, which means
that the specified amino acid can occur in a given position
of the protein sequence during evolution. Otherwise it is
converted into 0. A substring of amino acid combination
is then obtained by collecting the binary profile with non-
zero value for each position of the protein sequences.
These substrings have approximately represented the
amino acids that possibly occur at a given sequence posi-
tion during evolution. Fig. 4 has shown the process of gen-
erating binary profiles.

Prediction

Support Vector Machine (SVM) is a class of supervised
learning algorithms first introduced by Vapnik [62].
Given a set of labelled training vectors (positive and neg-
ative input examples), SVM can learn a linear decision
boundary to discriminate between the two classes. The
result is a linear classification rule that can be used to clas-
sify new test examples. SVM has exhibited excellent per-
formance in practicc and has strong theoretical
foundation of statistical learning theory. Here the LIBSVM
package [63] is used as the SVM implementation with
radial basis function as kernel. The values of y and regular-
ization parameter C are set to be 0.005 and 1, respectively.

Table 10: When the probability threshold P, is taken as 0.08, we get the following binary profile:

A:l c:o0 D: 0 E:0 F: 0
M: 0 N: | P: 0 Q0 R: 0

G: | H: 0 I:0 K: 0
S:0 T:0 V:0

L:1
W: 0 Y:0

Page 10 of 13

(page number not for citation purposes)



BMC Bioinformatics 2007, 8:147

http://www.biomedcentral.com/1471-2105/8/147

QTSVSPSKVILPRGGSVLVTCSTSCDQPKLLGIETPLPKKELLLPGNN ++#+

Amino acid seq

T
PSI-BLAST
h 4

Multiple sequence

QTSVSPSKVILPRGGSVLVTCSTSCDQPKLLGIETPLPKKELLLPGNN=ee+e+
QT_DHD_SGILPRAGG_LRTCSTRCTQPKI. G N_EDVSKRPWFLDEN®***
V_HGHE_FQILPEDGN_LRNCS_DCDQHKL_KIDTRLFEGTTLLLPGN====*

El

.07 _| l
threshold 0.17

Frequency

alignment
A 0.03
zli
10.26
—E:0.
1 0,01
5 0.01
H: 0.07
: 0.01
2 0.01
Frequency profile < 2: 005
M: 0.02
LA
Q: 0.
R: 0.
S: .00
1:0.03
V: 0.02
— W: 0.02
'
A
— D:
E:
T
T: 0
K:
L:
Rinary prafile < ] A 5
P:
\V.:
\ Y:

combination

Figure 4

...... | -

The flowchart of generating binary profiles. The multiple sequence alignment is obtained by PSI-BLAST. The frequency
profile is calculated from the multiple sequence alignment and converted to a binary profile with a frequency threshold. The

substring of amino acid combination is then collected.

The input of SVM is a window containing a surface residue
and its 12 spatially nearest surface residues [15]. An inter-
face residue is defined as the positive sample, and a sur-
face residue is defined as the negative sample. The input
features are sequence profiles, accessible surface areas and
propensities of residues in the window. The sequence pro-
files are taken from the Position-Specific Score Matrix
(PSSM) outputted by PSI-BLAST [47]. All the input values
are scaled between -1 and 1 before being inputted to the
SVM.

It is known that SVM cannot perform well on an unbal-
anced dataset. In this dataset, only 27.3% of the surface
residues are interface residues. If all surface residues are
used in the training, the classifier will be biased to predict
aresidue as a surface residue. To address this issue, a set of
surface residues is randomly selected to make the ratio of
positive and negative data 1:1. Fivefold cross-validation is
then used to evaluate the SVM. The whole dataset is ran-

domly divided into five subgroups with an approximately
equal number of chains. Each SVM runs five times with
five different training and test sets. For each run, three of
the subsets are used as the training set, one subset is used
to select the optimal parameters and the remaining one is
used as the test set.

Performance metrics

The following measures are used to evaluate the perform-
ances: precision, recall, accuracy, F1 and correlation coef-
ficient (CC), which are defined as follows:

Precision = _1P (8)
TP + FP
P
Recall = ———— ©)
TP + FN
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= 2% PI’?C'ISIOI'I x Recall (10)

Precision + Recall

TP+ T
Accuracy = N (11)
TP+ TN + FP + EN
C= TPx TN — FP x FN
J(TP+EN) (TP + FP)(IN + FP) (TN + FN)

(12)

where TP is the number of true positives (interface resi-
dues correctly classified as interface residues), FP is the
number of false positives (surface residues incorrectly
classified as interface residues), TN is the number of true
negatives (surface residues correctly classified as surface
residues) and FN is the number of false negatives (inter-
face residues incorrectly classified as surface residues).

Precision, recall and F1 are used to measure the perform-
ance of classifying interface residues, while accuracy is
used to measure the performance of classifying the whole
test dataset. Correlation coefficient (CC) is applied to
measure the correlation between predictions and actual
test data.
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