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Abstract Alternative splicing of pre-mRNA transcripts is an important regulatory mechanism that increases the diversity
of gene products in eukaryotes. Various studies have linked specific transcript isoforms to altered drug response in cancer;
however, few algorithms have incorporated splicing information into drug response prediction. In this study, we evaluated
whether basal-level splicing information could be used to predict drug sensitivity by constructing doxorubicin-sensitivity
classification models with splicing and expression data. We detailed splicing differences between sensitive and resistant
cell lines by implementing quasi-binomial generalized linear modeling (QBGLM) and found altered inclusion of 277
skipped exons. We additionally conducted RNA-binding protein (RBP) binding motif enrichment and differential ex-
pression analysis to characterize cis- and frans-acting elements that potentially influence doxorubicin response-mediating
splicing alterations. Our results showed that a classification model built with skipped exon data exhibited strong predictive
power. We discovered an association between differentially spliced events and epithelial-mesenchymal transition (EMT)
and observed motif enrichment, as well as differential expression of RBFOX and ELAVL RBP family members. Our work
demonstrates the potential of incorporating splicing data into drug response algorithms and the utility of a QBGLM
approach for fast, scalable identification of relevant splicing differences between large groups of samples.
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Introduction splicing is also known to contribute to cancer development

and progression, and has been linked to every major sig-

The splicing of pre-mRNA transcripts is an important regu-
latory control mechanism that significantly increases the
diversity of protein isoforms in a cell [1]. Alternative spli-
cing plays a major role in the differentiation and main-
tenance of cellular identity, and as much as 95% of multie-
xon genes may be alternatively spliced [2,3]. Alternative
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nature of cancer transformation [4]. Furthermore, splicing
variants can help cells evade cancer therapies, and in-
vestigators have already started to explore splicing-focused
therapeutic options [5—10]. Additionally, certain gene iso-
forms have been found to alter cancer drug response
through altered kinase signaling [11,12]. Therefore, it is
likely that alternatively-spliced isoforms play large roles in
drug response, and that additional research in this area could
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have a major impact on the development of targeted thera-
peutics and drug response modeling.

Precision medicine, or tailoring treatment strategies to
the patient, is dependent on clinical and molecular profiling
[13]. Currently, precision medicine primarily relies on
limited genetic screening of well-characterized high-impact
genes, such as HER2 and KRAS [14]. However, complex
predictive models built with machine learning techniques
are expected to revolutionize precision medicine in the
years to come [15,16]. Nevertheless, the use of complex
predictive algorithms has yet to be widely accepted in
clinical settings [15]. While early models lacked sufficient
study sizes or could not be validated, a major concern of
current models is the failure to account for the complexity
of tumor transcriptomes [17]. Many predictive models have
been trained solely on gene expression data or a combina-
tion of expression data and limited sequence variant in-
formation, such as single nucleotide polymorphisms
(SNPs), copy number variants (CNVs), and small nucleo-
tide insertions or deletions (indels) [18]. Previous studies,
however, have concluded that algorithms capable of in-
tegrating knowledge from various experimental techniques
need to be developed in order for predictive modeling to
progress [18-20]. As such, a variety of experimental data,
including mRNA-splicing data, must be considered in order
to build more realistic and comprehensive models.

Although long-read isoform sequencing technologies
exist, they are often prohibitively expensive for large-scale
studies. Consequently, short-read data are commonly used to
infer isoform-specific information; the drawback being that
the true identities of mMRNA isoforms remain unknown. This
uncertainty must be accounted for in quantitative techniques
[21]. There are two main approaches to quantify isoform
outcomes in short-read RNA-sequencing data: isoform- and
exon-centric quantification [22]. Isoform-centric techniques
measure the expression of whole isoforms by integrating
read data across multiple exons, whereas exon-centric
techniques measure the relative expression of individual
exons. While both isoform- and exon-centric techniques are
susceptible to short-read sequencing limitations, gene com-
plexity and the heavy reliance on mathematical modeling to
address combinatorial possibilities across exons often make
isoform-centric approaches less attractive [23].

To date, few studies have incorporated splicing in-
formation into predictive modeling techniques. One such
study produced the SURVIV pipeline, a system for dis-
covering mRNA isoforms associated with patient survival
[24]. These authors used exon-centric quantification and a
binomial generalized linear model (GLM) with length
normalization function on invasive ductal carcinoma data.
They found that splicing information not only predicted
patient survival but it also consistently outperformed ex-
pression-based models. Additionally, the authors found that

combining clinical, expression, and splicing profiles pro-
duced the best performance. In another study, isoform-
centric biomarker expression and drug response in cancer
cell lines were investigated using a linear model to select an
isoform for each response-mediating gene that showed the
strongest correlation with drug sensitivity [25]. A small
number of these biomarkers were validated in breast cancer
cell lines and significantly associated with four anti-cancer
therapeutics. Together, these two studies established a con-
nection between mRNA splicing and drug response, demon-
strating the potential utility of splicing data in tumor biology.
However, a drug response classification model has not yet
been established, and the relationship between individual
exons and cancer drug response is still largely unexplored.
Therefore, to limit the noise introduced from short-read
data and avoid the use of complicated probabilistic models,
we proposed an exon-centric approach to investigate the
relationship between alternative splicing data and cancer
drug response. Our study was defined by three primary
goals: 1) establish if splicing data predict drug response to a
specific anti-cancer drug; 2) evaluate the pretreatment dif-
ferences in splicing between cell lines that are sensitive or
resistant to the drug; and 3) identify cis-acting elements that
help explain the observed splicing differences. To address
these challenges, we merged RNA-seq data from the Cancer
Cell Line Encyclopedia (CCLE) with drug response data
from the Cancer Therapeutic Response Portal (CTRP)
[26,27]. We first applied a machine learning-based approach
to determine whether basal splicing profiles predicted doxo-
rubicin sensitivity. Then, we systematically evaluated the
pretreatment differences in splicing patterns using quasi-
binomial generalized linear modeling (QBGLM), which al-
lowed us to account for the uncertainty in splicing quanti-
fication and minimize the computational resources required
to perform splicing analysis. Additionally, taking an exon-
centric approach for quantification allowed the use of se-
quence information around the differentially spliced exons
to identify enrichment of cis-acting motifs and their corre-
sponding RNA-binding proteins (RBPs), thereby providing
insight into the regulation of differentially spliced exons.

Results

Dataset, drug, and model selection

We integrated RNA-seq data for 975 cell lines from CCLE
with drug response data for 860 cell lines from CTRP
[26,27]. After intersecting cell lines in CCLE and CTRP, we
observed the number of cell lines with both data types
differed by drug. Per-drug area under the concentration-
response curve (AUC) values from the CTRP were plotted
(Figure S1). A higher AUC value, a surrogate for cell
growth under increasing concentrations of a designated
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drug, corresponds to superior drug resistance. We chose
doxorubicin to investigate further because it is a widely
active chemotherapeutic used to treat a variety of malig-
nancies, and it affects cells through multiple mechanisms,
including DNA damage by intercalation and inhibition of
topoisomerase II [28,29]. Additionally, we reasoned that
doxorubicin would be a right drug for proof-of-principal
testing because the alternatively spliced exons we identified
would likely be relevant to a variety of cancer types. In
contrast, spliced exons associated with targeted therapeutics
might be relevant only to cancers containing specific
genomic alterations. Furthermore, doxorubicin has been
used in many drug modeling studies, and therefore, our
results would be expected to have greater context and build
upon an existing body of knowledge.

Following drug selection, we labeled cell lines according
to their AUC values: cell lines at or below the 33rd per-
centile of the AUC distribution were considered doxoru-
bicin sensitive and cell lines at or above the 66th percentile
as resistant (Figure 1). This provided a total of 755 cell
lines with intersected RNA-seq and doxorubicin response
data; 253 were classified as sensitive and 258 as resistant.

Splicing and expression data individually predict drug
sensitivity class

We postulated that alternative splicing profiles from un-
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Figure 1 CTRP cell line response to doxorubicin

Distribution of the AUC values for doxorubicin in the CTRP cell lines.
Lower and upper tertiles were labeled as sensitive (orange) or resistant
(blue), respectively. AUC, area under the concentration-response curve;
CTRP, Cancer Therapeutic Response Portal.

treatedcancer cell lines would hold predictive power for
doxorubicin drug response. Hence, we built a machine
learning model with elastic net logistic regression and exon-
centric splicing data. Skipped exon event annotation, per-
cent-spliced-in (PSI) calculation, and uncertainty estimation
were done with the Mixture of Isoforms (MISO) software
package [21]. For the splicing-based model, we required
skipped exon events (model features) to be present in a
minimum of 35% of cell lines and to exhibit PSI values with
confidence intervals (Cls) between 0.01 and 0.2. We ob-
served that PSI values with CIs outside of this range tended
to be either calculated on low read counts or exhibited un-
realistically precise distributions; these PSI values were
filtered because small non-consequential changes in PSI
would have been incorrectly considered highly significant.
Skipped exon events were then limited to only those with
the highest (top 5%) PSI standard deviation, thereby tar-
geting events with higher variance and selecting for greater
model impact. From a total of 40,178 pre-filtered skipped
exon events, 805 remained. Cell line data were then ran-
domly split into 7:3 (training set, n = 354; testing set, n =
157); each set consisted of approximately 50% sensitive and
resistant cell lines. The predictive model was fit using
elastic net logistic regression. The final splicing model
contained a total of 42 non-zero weight events (Table S1).
Model performance was assessed on the testing data, and
performance metrics are provided in Table 1.

To assess whether splicing information would provide
additional predictive power compared to an expression-
based approach, we constructed an expression-only model.
We first used featureCounts to quantify reads mapped to
gene expression features [30]. To reduce the number of
sparse genes, we filtered gene features with less than 10
reads in > 35% of RNA-seq data. Using the same training
set as the splicing-based model, we conducted differential
expression analysis with edgeR to reduce the number of
features [31]. We retained genes with Benjamini-Hochberg
false discovery rate (FDR) < 0.05 and log, fold change >
1.74 (top 5%) [32]. Read counts were then transformed to
log,, counts per million. Out of 57,905 pre-filtered gene
expression features, only 1103 remained. After running the
elastic net, we obtained an expression-only model com-
prised of 67 non-zero weight features (Table S2). The per-
formance of the expression-based approach was also strong
(Table 1). In comparison with the splicing-based model, the
sensitivity was lower (0.68 vs. 0.75), but the specificity

Table 1 Performance metrics

Model Sensitivity Specificity Accuracy Precision AUROC F1 score P value
Splicing 0.75 0.88 0.82 0.85 0.85 0.80 5.3E-15
Expression 0.68 0.96 0.83 0.95 0.90 0.79 2.8E-16
Expression + splicing 0.71 0.95 0.83 0.93 0.92 0.81 6.2E-17

Note: The best value for each column is put in bold. AUROC, area under the receiver operating characteristic curve.
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(0.96 vs. 0.88) and area under the receiver operating charac-
teristic curve (AUROC; 0.90 vs. 0.85) were both higher.
These metrics indicated that while splicing predicted more
doxorubicin-sensitive cell lines correctly, it also predicted
more false positives; on the other hand, expression-only
modeling was more specific.

An integrated modeling approach outperforms standa-
lone models

Based on our findings that splicing- and expression-based
models showed strengths in sensitivity and specificity, re-
spectively, we asked whether integrating the information
from both models would lead to increased model perfor-
mance. An integrated model was fit by merging the 805
events obtained after applying the splicing filter with the
1103 gene expression features remaining after applying the
differential expression filter. From this combined feature
set, elastic net selected 95 splicing and 216 gene expression
features (Table S3). Receiver operating characteristic curve
(ROC) plots for all three models are shown in Figure 2. The
integrated model showed the highest accuracy and AUROC
(Table 1). From this outcome, we concluded that splicing
information enhanced the expression-based model and that
splicing and expression data contributed improvements to
sensitivity and specificity, respectively, to build a more
balanced model. Bootstrapping the model building process
revealed that although the combined model consistently
showed a slight increase in specificity, the overall perfor-
mance of the combined and expression-based models was
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Figure 2 Comparison of model prediction of cell line response to
doxorubicin

ROC plots for predicting cell line response to doxorubicin on the testing
data set. Expression-only, splicing-only, and combined expression and
splicing models are shown. ROC, receiver operating characteristic curve.

largely the same (Figure S2).

Finally, we asked whether splicing data contribute un-
ique information to the final model or if the skipped exons
selected by elastic net are also reflected by the gene ex-
pression features. We found that skipped exon features in
the splicing-only model were not located in genes in the
expression-only model. Similarly, no overlapping expres-
sion and skipped exon features were observed in the com-
bined model. These findings indicate that the information
contributed by splicing data to our models was unique.

QBGLM identifies differentially spliced events

Next, we evaluated the alterations in splicing between
sensitive and resistant groups that contribute to drug re-
sponse differences. For this part of our study, we performed
differential splicing analysis. During modeling, feature se-
lection was not considered because machine learning al-
gorithms tend to choose a limited number of features with
the strongest predictive value, somewhat arbitrarily, rather
than capture the full set of biologically relevant features.
Genome-wide annotation for skipped exons resulted in a
total of 38,108 events that were then filtered to retain only
those with reads supporting inclusion and exclusion for a
minimum of 35% of cell lines in the sensitive and resistant
groups. This filter significantly decreased the event space
and left 18,409 events for analysis. QBGLM was then
performed in R [33]. In the quasi-binomial distribution, the
dispersion parameter provides for the fitting of increased
variance; this property is especially useful for biological
data, where the variability between samples is expected.
Additionally, fitting variance by QBGLM helped account
for the uncertainty introduced when using short-read data
in splicing analysis and situations where a low number of
reads inaccurately represent the probability of inclusion in
some samples. Our procedure was also unique for splicing
data normalization in that no consideration was made for
exon or read length. As such, QBGLM modeled un-
certainty without assuming an equal probability of reads
aligning to every position in the event. Wald P values,
corresponding to the weight on the class of the cell line,
were FDR-adjusted using the Benjamini-Hochberg proce-
dure and filtered for significance less than 0.01 [32]. Events
were again filtered after QBGLM by requiring a difference
in mean inclusion-to-total read counts of 0.1 between
sensitive and resistant groups. This filter reduced false-
positive identifications by selecting events that were more
likely to exert meaningful biological consequences. In to-
tal, 277 significant alternatively spliced events were iden-
tified: 180 with higher (Table S4) and 97 with lower (Table
S5) exon frequency in resistant cells. A volcano plot of the
results and examples of raw data for two significant events
are presented in Figure 3.
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A. Volcano plot of events analyzed by QBGLM. The horizontal dotted line marks the FDR cutoff of 0.01 for significance. Vertical dashed lines separately
denote —0.1 and 0.1 difference (A) in mean inclusion-to-total read counts. B. Boxplot for inclusion ratios showing the overall change between sensitive and
resistant groups for two genes with significant spliced events. The box denotes the first-to-third quartile, and the inner-line represents the mean. Whiskers
extend to 1.5x the interquartile range, and outliers are marked as points. FDR, false positive discovery; QBGLM, quasi-binomial generalized linear modeling.

Over-representation analysis reveals enrichment for
epithelial-mesenchymal transition

Gene ontology (GO) term enrichment was performed on gene
symbols from significant alternatively spliced events to assess
their relevance. Over-representation analysis with clusterPro-
filer revealed significant enrichment (FDR < 0.05) for several
biological processes including cell junction organization,
regulation of cytoskeleton organization, and positive regula-
tion of GTPase activity (Figure 4) [34,35]. Alterations in these
processes have been previously implicated in uncontrolled
cellular proliferation, epithelial-mesenchymal transition
(EMT), and drug resistance [36—40]. Noteworthy, genes af-
fected by splicing alterations included SCRIB, ADAMIS,
MACFI1, NUMB, VEGFA, and FOXM1. While the majority of
splicing consequences were in-frame alternatively included or
excluded exons with unknown significance, an exon identified
in NUMB (exon 11, chr14:73,745,989—73,746,132) contained
an alternative translational start site, and another in SCRIB
(exon 16, chr8:144,889,722—144,889,784) included a portion
of a PKC phosphorylation site. NUMB is a key protein in cell
fate determination, and increased expression has been found to
inhibit the propagation of chronic myelogenous leukemia cells
[41,42]. Additionally, NUMB mRNA processing is regulated
by a variety of splicing factors, including RBM6, and alter-
native NUMB isoforms are consistently found in cancer
[43,44]. SCRIB exon 16 has been reported to be associated
with misregulation of EMT in specific cell types [45].

RBP binding motif enrichment and regulatory splicing
factors

To elucidate a regulatory mechanism for the splicing dif-
ferences between sensitive and resistant groups, we sear-
ched for RBP binding motifs corresponding to potential
splicing factors. Motif analysis was conducted on seven
sequence regions for each skipped exon. These regions
consisted of the entire skipped exon sequence, the 300-bp
sequences from the 5’ and 3’ ends of both flanking introns,
the 150-bp sequence from the 3’ end of the upstream exon,
and the 150-bp sequence from the 5’ ends of the down-
stream exon (Figure SA). Sequences from these regions
were extracted from the hgl9 reference genome and scan-
ned for motifs using FIMO [46]. All annotated skipped
exons across the genome were scanned, and null distribu-
tions of counts for each motif were made from bootstrapped
events to determine enrichment for identified motifs. RBP
binding motifs for seven RBPs (SNRPA, PPRC1, RBM6,
PCBP3, RBFOXI, EIF2S1, and ELAVL1) were identified.
Locations and enrichment Pvalues of the identified RBP
binding motifs are shown in Figure 5A and Table 2. Fisher’s
exact test was used to determine association with higher or
lower exon frequency. Splicing outcome, Fisher’s P values,
and descriptions of the identified RBPs are shown in Table 2.

Finally, we asked whether any of these enriched RBPs
are differentially expressed between sensitive and resistant
cell lines. Differential expression analysis was conducted
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Figure 4 Enrichment of biological processes identified in differentially spliced events
Biological processes identified with over-representation analysis were sorted by gene count ratio from top to bottom, with the highest ratio of found genes
for a specific process on top. Point diameters are scaled by the total number of genes in that process, and warmer colors indicate significance.

using edgeR on featureCount data from the two groups
(Table S6) [31,53]. Significantly differential expression
patterns were only observed for RBFOX and ELAVL family
proteins (Figure 5B). This finding was particularly inter-
esting as RBFOX and ELAVL family members have pre-
viously been linked to EMT and other cancer-related
processes (Table 2) [45,54,55]. Notably, Blencowe et al.
[56] previously found that PPRC1 increased splicing of
NUMB exon 5 in CGR8 mouse embryonic stem cells
compared to differentiated N2A neuroblastoma cells [56]. In
our work, NUMB exon 10 was differentially spliced. How-
ever, we did not see differential expression of PPRCI as it
was filtered before edgeR analysis due to low read count. In
contrast, RBFOX, ELAVL, and PPRC1 were not selected as
predictive features in the expression-based predictive mod-
el. Based on these findings, we conclude that additional
biological information gained from splicing analysis could
not be found using expression-based analysis alone.

Discussion

The major conclusions of the work herein are that skipped
exon splicing data independently predict drug response and,
when integrated with gene expression data, can increase the
power of predictive drug response algorithms. These con-
clusions are supported by the following experimental evi-
dence. First, we demonstrated the strong performance of the
splicing-only elastic net GLM and determined that the most
balanced model was obtained by combining splicing and
expression data. Second, we showed that splicing-only and
expression-only models had no genes in common, which

indicates that each data type contributed unique informa-
tion. Additionally, we demonstrated that an exon-centric
approach positively impacts downstream analysis by iden-
tifying cis-acting RBP regulatory motifs, allowing re-
searchers to find associations between regulatory elements
of differentially spliced exons with essential biological
processes. When employing RBP binding motif enrich-
ment, we identified several candidate splicing factors, in-
cluding RBFOX and ELAVL family members, which were
differentially expressed between drug response groups.
Moreover, we identified signatures of EMT, which affect
cellular plasticity and stemness in tumor subpopulations and
are thought to contribute to mechanisms behind cancer drug
resistance [57-61]. Collectively, our results indicate that
incorporating splicing information into predictive models
improves performance and provides new biological in-
sights.

Following our analysis, we assessed the cell line origin of
the classified dataset to investigate if differences in the
proportions of cell lineages could help explain the enriched
biological processes we observed (Figure S3). The dis-
tribution of cell lineages, specifically the proportion of
hematopoietic and lymphoid cells, differed greatly across
sensitive and resistant groups: hematopoietic and lymphoid
cells made up 44% of sensitive cell lines compared to only
1% of resistant cell lines. Hematopoietic cell types exhibit
enhanced cytotoxicity to doxorubicin treatment, a con-
sequence of treating highly proliferative cells with a to-
poisomerase inhibitor [62]. These cells, being more stem-
like in nature compared to solid tumor tissue, are also ex-
pected to display signatures of EMT as stemness and EMT
are related [63]. Our over-representation analysis of dif-
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Figure 5 RBP binding motifs identified in differentially spliced
events

A. Significantly enriched RBP binding motifs by skipped exon event
region with respect to resistant cell lines. The schematic shows two
constitutive exons (black boxes), one skipped exon (orange box), and two
introns (connecting lines), as observed in skipped exon splicing. Regions
of interest are shown as horizontal lines numbered 1 to 7. These regions
consisted of: 1) up to 150 bp of the upstream exon; 2) 5’ 300 bp from the
5" end of the upstream intron; 3) 300 bp from the 3’ end of the upstream
intron; 4) the entire length of the skippedexon; 5) 300 bp from the 5’ end
of the downstream intron; 6) 300 bp from the 3’ end of the downstream
intron; and 7) up to 150 bp of the downstream exon. +APSI and —APSI
indicate a higher and lower exon frequency in resistant cells, respectively.
RBP binding motifs were identified using FIMO, analyzed for enrichment
against motifs found in randomly drawn events, and deemed significant
for association with included or excluded exons by Fisher’s exact test. B.
Mean expression levels of genes in sensitive and resistant groups using
log), read counts. Three differentially expressed RBPs belonging to the
RBFOX or ELAVL families are numbered and shown in red. RBP, RNA
binding protein; PSI, percent-spliced-in.

ferentially spliced events identified a number of biological
processes, including EMT, proliferation, and drug re-
sistance. Among other biological processes, we identified
an exon in SCRIB previously described by Shapiro et al.
[45] to be alternatively spliced and associated with an EMT
signature. It is possible that the machine learning models
picked up signatures related to proliferative and stem-like
differences in the underlying cell types. However, we ap-
plied our modeling approach to the other 500 drugs in
CTRP and observed strong performance for the vast ma-
jority (Figure S4; Table S7); many of these other drugs did
not exhibit a large difference in cell type proportion (Figure
S5). Further, the accuracy of our splicing-only model (82%)
and accuracy of our combined model (83%) exceeded the
proportion of hematopoietic and lymphoid cells in the
testing set. This indicated that cell lines from other lineages
are also discriminated by our classifiers according to their

splicing profiles.

To determine the potential influence that cell type dis-
tribution might have had on the QBGLM results, we per-
formed QBGLM in a tissue-specific manner on
hematopoietic and lymphoid tissue and lung tissue. We then
overlapped the differentially spliced events from all tissues
as well as hematopoietic and lymphoid tissue and lung tis-
sue, and found that hematopoietic and lymphoid tissue and
lung tissue had many events in common (Figure S6). The
vast majority of events found to overlap between the specific
tissues and all tissues were present in both hematopoietic
and lymphoid tissue and lung tissue. Additionally, we did
not observe an imbalance in the number of events from the
overlaps between all tissues and specific tissues. These
findings support the conclusion that QBGLM also identified
events from other tissue types besides hematopoietic and
lymphoid and that many events found in hematopoietic and
lymphoid cells are recapitulated by other cell types. Lastly,
we did not consider predictive features from modeling
during follow-up analysis because machine learning tech-
niques arbitrarily select the most predictive features without
regard for biological significance. Instead, we used only
those events identified by QBGLM to explore relevant
genes, pathways, and RBP binding motifs. Analyzing events
from QBGLM allowed us to capture a more comprehensive
list of differentially spliced events that are more likely to be
relevant to the other cell types in the dataset.

To accurately assess the contribution of differential
splicing to predictive drug modeling, we sought to identify a
comprehensive and well-characterized dataset with drug
response measurements and paired RNA-seq data. Al-
though the widespread availability of high-throughput da-
tasets offered a number of options for computational
modeling, the majority of large-scale studies were done
before RNA-seq became the predominant expression
quantification method, and most of the pharmacological
profiling experiments were paired with array-based ex-
pression data, making splicing analysis impossible. We
searched for datasets with large numbers of samples to in-
crease the power of our machine learning-based approach
and to avoid overfitting. We also targeted diverse datasets to
investigate predictive features with broad applicability,
corresponding to multiple drugs and cell types. These cri-
teria led us to integrate two large independent datasets ra-
ther than use a single resource with limited transcriptomic
or pharmacological data.

While some investigators have challenged the integration
of drug response datasets, the integration of these resources
by others has shown reasonable consistency [64,65].
Additionally, other investigators have argued that isolated
testing of individual cancer cell lines is an incomplete re-
presentation of tumors and that databases containing large
collections of cells better represent the heterogeneity and
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Table 2 Enriched RBPs identified by motifs in significant events from QBGLM
RBP Position Enrichment Exon . Inclusion Description Refs.
P value inclusion P value

RBFOX1 Skipped exon 8.7E-08 - 0.015 RBFOX1 and its family members (RBFOX2 and RBFOX 3) bind to (U)GCAUG[47,48]
stretches; they are generally found to enhance splicing when bound
downstream and suppress splicing when bound upstream

EIF2S1 Skipped exon 1.6 E-07 - 0.011 EIF2S1 (or EIF2alpha) is one of three key members of the EIF2 complex and is[47]
responsible for delivering Met-tRNA for initiation of translation

RBM6 3’ exon 1.2 E-04 4 0.021 RBMG6 is an RBP first identified by cloning a tumor suppressor locus and has[49]
been linked to lung as well as other cancers

PPRCI1 3" exon 1.6 E-04 - 0.021 PPRC1 (or PGC-1) is a coactivational transcription factor commonly [47,50]
associated with metabolic stress and little is known about its potential role in
splicing; however, an important paralog of this protein (PGC-alpha) has been
connected to altered splicing of VEGF

ELAVLI1 5’ intron 1.9 E-03 + 0.005 ELAVL family members traditionally bind to AU-rich elements in 3" UTR of[51,47]
mRNA

PCBP3 3’ exon 0.015 - 0.002 PCBP3 is a member of the poly(rC)-binding protein family and is paralogous to[47,52]
PCBP1/2/4; members of this family have strong motif homology and share a
wide variety of functions, but PCBP3 lacks the nuclear localization signals that
other members have

SNRPA 3’ exon 0.026 = 0.015 SNRPA is an essential component of the Ul splicing complex and is required[51]

for recognition of the pre-mRNA 5’ end; the Ul complex binds to the 5’
splicing site of an exon-intron boundary

Note: The enrichment P value is the FDR-adjusted P value against randomly bootstrapped events from the genome. Exon inclusion is with respect to resistant cells, where “+”
represents higher exon frequency in resistant cell lines and “—” represents lower exon frequency in resistant cell lines. The inclusion P value was calculated using Fisher’s exact
test. RBP, RNA-binding protein; QBGLM, quasi-binomial generalized linear modeling; RBFOX1, RNA-binding protein Fox-1 homolog 1; EIF2S1, eukaryotic translation
initiation factor 2 subunit alpha; RBM6, RNA binding motif protein 6; PPRC1, peroxisome proliferator-activated receptor gamma coactivator-related protein 1; ELAVL1, ELAV-
like RNA-binding protein 1; PCBP3, poly(rC)-binding protein 3; SNRPA, small nuclear ribonucleoprotein polypeptide A.

tissue-level characteristics of cancer [66]. Because our goal
was to specifically target global splicing patterns, we sought
to use large datasets to reduce the impact of individual
differences across databases. Therefore, we feel that our
approach accurately reflected the transcriptomic and drug
response measures of various cancer types, that the number
and composition of cell lines in it reduced the possible in-
fluence of lineage inconsistency, and that our dataset is a
reliable source of information for investigating global
trends in transcript splicing or expression.

When performing machine learning, we elected to build
a classification model rather than a continuous model as the
CCLE and Genomics of Drug Sensitivity in Cancer (GDSC)
consortia recommended dividing cell lines into sensitive
and resistant groups when analyzing drug response data
across datasets [67]. This recommendation was based on the
observation that using all cell lines in a database tended to
introduce noise due to increased drug response variance
from cell lines that did not have influential genetic differe-
nces [67]. We analyzed performance consistency by boot-
strapping the model building procedure and found that
combined and expression-based models were almost
equivalent (Figure S2). While we did not find splicing-
based model to outperform expression-based model as
previous researchers have [24,25], our approach differed
from these earlier models as it was designed to determine
the importance of alternative splicing in doxorubicin drug
response using a minimalistic procedure rather than gene-
rating the best possible classifier. Nevertheless, while our
work provides evidence that adding splicing information to

expression-based models in a more controlled manner
produces a better classifier, there remains room for im-
provement in the model building process.

Finally, we noted that differential splicing analysis with
QBGLM could be achieved in minutes. Even for groups
containing hundreds of samples, the analysis time is neg-
ligible if inclusion and exclusion reads are counted be-
forehand as part of a standard pipeline. While our analysis
works well for large groups of samples, it struggles with
smaller sets; however, we expect the model’s ability to
handle large groups of samples to be a key strength, as the
volume of sequencing data and the number of samples in-
cluded in studies continue to rise.

The experimental evidence from this study strongly
supports the overall hypothesis that alternative splicing data
can be used to predict doxorubicin drug response, and that
splicing data can contribute to valuable insights into drug
response mechanisms. Resistance to doxorubicin has long
been a major challenge and facilitates the resurgence of
disecase as well as increased patient mortality [28,68].
Nevertheless, doxorubicin remains a widely prescribed
antineoplastic agent and is extremely important in breast
cancer treatment [68]. Recently, discoveries in targeted drug
delivery have expanded the variety of cancers that can be
treated with doxorubicin, and there is now a greater focus on
combating doxorubicin resistance [69-71]. Our findings
suggest that splicing information could uncover new ave-
nues for improving the effectiveness of doxorubicin treat-
ment. Additionally, our findings indicate that there is much
more to learn about the influence of splicing on cancer drug
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response. Ultimately, splicing information may have a
major impact on how, or under what circumstances, doxoru-
bicin and other cancer therapeutics are used.

Materials and methods

Datasets

975 RNA-seq files corresponding to pretreatment cancer
cell lines were downloaded from the CCLE and matched to
post QC AUC values for 860 cancer cell lines from the
CTRP v2 using the cell line name [26,27]. While in-
tegrating data from two separate sources is not ideal, this
approach was chosen because it provided the largest
available overlap between RNA-seq and drug profiling
data. Intersecting these data sets for cell lines profiled with
doxorubicin yielded 755 cell lines with drug response and
RNA-seq data. Cell lines were split into three groups using
the tertiles of the AUC distribution. The low AUC group
was labeled “sensitive” (n = 253), the high group was
“resistant” (n = 258), and the middle group was omitted
from the analysis.

MISO splicing analysis

Splicing analysis for predictive modeling was done with
MISO [21]. RNA-seq files belonging to sensitive and re-
sistant groups were analyzed using exon-centric version 2
annotations for hgl9 and the standard pipeline from the
MISO documentation website, http://miso.readthedocs.io/
en/fastmiso/. Data corresponding to 40,178 skipped exon
events was obtained.

Gene expression quantification and differential ex-
pression analysis

Read counts for predictive modeling with expression data
and for differential expression analysis were calculated with
featureCounts [30]. A genomic feature was defined as any
record with a valid gene id and was counted at the meta-
feature level. RNA-seq files were processed for 57,095
genomic features that were annotated in the GRCH37(v87)
GTF file downloaded from ftp.ensembl.org, using a mini-
mum read length overlap of 2 bp. Differential expression
analysis was performed on featureCount data from the
training dataset using edgeR [31]. Only features with more
than 10 reads in more than 35% of training cell lines were
evaluated, leaving 22,201 features before differential ex-
pression and downstream filtering. Log;, counts per million
were used as feature values. The same annotation set of
quantified genomic features as those used for predictive
modeling (57,095) were again used for assessing differen-
tial expression of genes coding for RBPs. In this case, fil-

tering to include features with at least 10 reads in more than
20% of cell lines reduced the number to 28,110 before
differential expression analysis. In edgeR, a negative bi-
nomial generalized log-linear model with quasi-likelihood
F-test (glmQLFit) was used. Differentially expressed fea-
tures with an FDR < 0.05 and a log, fold change > 1.5 were
considered significant, producing a final number of 2943
differentially expressed gene features.

Predictive modeling

Using the glmnet and caret packages in the R language,
elastic net logistic regression was used to fit all predictive
models [72,73]. Following splicing and expression ana-
lyses, feature selection was performed to restrict the para-
meters of the models. Splicing features were defined as
skipped exon events identified by MISO and were required
to have PSI values with ClIs between 0.01 and 0.2 for a
minimum of 35% of cell lines. This requirement reduced the
number of potential splicing features from 40,178 to 15,007.
We also filtered events having a PSI standard deviation less
than 0.14, based on the top 5% of the remaining skipped
exon events, which reduced the number of splicing features
to 805. Any missing values were then imputed randomly
from all samples with data for a particular event. Gene
expression features were filtered by requiring a minimum of
10 reads in more than 35% cell lines. This lowered the
number of potential features from 57,905 to 22,201. Cell
lines were divided into training (70%) and testing (30%)
sets. This produced 354 training cell lines (177 sensitive and
177 resistant) and 157 testing cell lines (76 sensitive and 81
resistant). Individual and combined models were trained on
the same training cell lines. Expression features were fur-
ther restricted after training and testing set separation by
conducting differential expression analysis on the training
set and applying the cutoffs: FDR < 0.05 and log, fold
change > 1.74 (top 5%). Expression- and splicing-only
models were then trained using their respective filtered
feature sets, while the combined model was trained by
merging the two filtered feature sets and allowing the elastic
net to choose freely between the whole.

A 10-fold cross-validation approach with grid search (to
scan for the highest performing alpha and lambda values)
was used to train the models. The models were then as-
sessed with the testing cell line data. Sensitivity, specificity,
accuracy, and precision were calculated. The AUROC, F1
score, and P value (corresponding to accuracy against the
no-information rate) were also produced. Lastly, when
building models to assess the generalizability with the re-
maining 500 drugs in CTRP, all event types including
skipped exon, mutually exclusive exon, retained intron,
alternative 5’ splice site, and alternative 3’ splice site were
used for modeling.
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Differential splicing analysis by QBGLM

Exon-centric splicing is usually characterized by an inclu-
sion ratio or PSI value [74]. This PSI value ranges from 0 to
1, describes the inferred percentage of transcripts containi-
ng the exon, and is heavily dependent on sequence in-
formation spanning exon—exon boundaries. Reads support-
ing inclusion are those reads overlapping the upstream and
skipped exon junction, skipped and downstream exon
junction, or all three exons including both junction bound-
aries. Reads supporting exclusion are those reads over-
lapping the upstream and downstream exon junction
boundaries but not the skipped exon. The PSI value effec-
tively compresses information from a distribution of mapped
reads, where reads may correspond to multiple isoforms,
into a single number. PSI has been treated as a point estimate
with a margin of error rather than a definitive ratio [21].
Techniques for calculating this metric can vary; however, the
more popular methods rely on length-normalized read den-
sity and may include counts for non-junction reads, as well
as iterative procedures for establishing a CI.

Splicing analysis by the QBGLM was done using raw
read counts. A total of 38,108 skipped exon events were
extracted from isoforms annotated in the GRCH37(v87)
GTF file downloaded from ftp.ensembl.org. Uniquely
mapped and properly paired junction reads with a minimum
exon overlap of 1 bp supporting the inclusion or exclusion
of skipped exons were counted for each skipped exon event.
After counting, events were filtered, retaining only those
with at least 1 inclusion and 1 exclusion read in 35% of
classified cell lines. A total of 18,409 events passed the
filter. A QBGLM was fit using the glm package in R [33].
The inclusion read percentage for a given event was mode-
led as the probability of success. The cell line label (sen-
sitive or resistant) was set as the dependent variable.

Events were filtered for significance by requiring a
Benjamini-Hochberg adjusted P value < 0.01 on the group
weight (Beta;). A total of 4309 events passed the filter.
Events were further separated for relevance using the dif-
ference (A) in mean inclusion-to-total read counts (inclu-
sion/inclusion + exclusion) in each group. A minimum of 0.1
difference in mean inclusion-to-total read counts between
sensitive and resistant groups was required to maximize
biological relevance; only 277 events met this threshold.

GO over-representation analysis

Significant skipped exon events identified from QBGLM
were annotated for gene symbols by the genomic positions
of the skipped exons using the biomaRt package [75,76].
Gene symbols for the entire set of significant events were
then analyzed with the clusterProfiler packa-ge [35]. Re-
sults from biological process enrichment based on the GO

database were then exported and assessed for relevance.

Motif enrichment

Significant skipped exon events were analyzed for enrich-
ment of RBP binding motifs in three stages: 1) motif mat-
ches were counted for significant events in a region of
interest; 2) the total count for the set of significant events
was compared to a background of randomly drawn events;
3) significantly enriched motifs found were then filtered and
sorted based on their associated splicing outcome. Seven
regions surrounding each exon of interest (Figure 5A) were
extracted from hg19 (GRCh37). These regions were: 150 bp
maximum or the full length of the 5’ upstream exon, 300 bp
of its 3’ flanking intron, 300 bp in the 5’ upstream intron
flanking the skipped exon, the entire length of the skipped
exon, 300 bp in the 3" downstream flanking intron, 300 bp
in the 5’ intron flanking the 3’ downstream exon, and 150 bp
maximum or the full length of the 3’ downstream exon.
Sequences for each region were scanned using FIMO and
the CISBP-RNAv(0.6 RNA-binding motif database [46,77].
Using a P value threshold for motif matches of 6.7E—4, as
compared to the default 1 E—4, it was necessary to find small
splicing factor motifs in short extracted sequence lengths.
Counts across significant events for a given motif were then
compared to the genomic background in context by boot-
strapping the same number of skipped exon events (without
replacement) from all annotated events in the genome, re-
peating the procedure 10,000 times. P values for significant
event motif counts were then calculated using this random
distribution and adjusted using the Benjamini-Hochberg
method. This is referred to as the enrichment P value in
Table 2. Fisher’s exact test was then used on enriched motifs
to identify those associated with preferential increased or
decreased exon inclusions. P values from Fisher’s exact test
are referred to as the inclusion P value in Table 2. In both
enrichment and preferential inclusion analyses, a minimum
P value of 0.05 was required.
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