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ABSTRACT

Progress in oligonucleotide chemistry has produced
a shift in the nature of siRNA used, from formu-
lated, minimally modified siRNAs, to unformulated,
heavily modified siRNA conjugates. The introduc-
tion of extensive chemical modifications is essential
for conjugate-mediated delivery. Modifications have
a significant impact on siRNA efficacy through in-
terference with recognition and processing by RNAi
enzymatic machinery, severely restricting the se-
quence space available for siRNA design. Many al-
gorithms available publicly can successfully predict
the activity of non-modified siRNAs, but the effi-
ciency of the algorithms for designing heavily modi-
fied siRNAs has never been systematically evaluated
experimentally. Here we screened 356 cholesterol-
conjugated siRNAs with extensive modifications and
developed a linear regression-based algorithm that
effectively predicts siRNA activity using two inde-
pendent datasets. We further demonstrate that pre-
dictive determinants for modified and non-modified
siRNAs differ substantially. The algorithm developed
from the non-modified siRNAs dataset has no predic-
tive power for modified siRNAs and vice versa. In the
context of heavily modified siRNAs, the introduction
of chemical asymmetry fully eliminates the require-
ment for thermodynamic bias, the major determinant
for non-modified siRNA efficacy. Finally, we demon-
strate that in addition to the sequence of the target
site, the accessibility of the neighboring 3′ region
significantly contributes to siRNA efficacy.

INTRODUCTION

RNA interference (RNAi) is a natural mechanism for the
modulation of gene expression by small interfering RNAs
(siRNAs). A broad range of human diseases, including
cancer, metabolic disorders, and neurodegeneration can be
treated via the silencing of specific genes using siRNAs.
Early attempts to harness RNAi for therapeutic develop-
ment focused on lipid- or nanoparticle-formulated, mini-
mally modified siRNAs (reviewed in (1,2)). Recently, non-
formulated, conjugate-mediated delivery emerged as an al-
ternative, clinically dominant delivery paradigm. By chang-
ing the nature of the ligand, this approach has the potential
to enable targeted delivery to a variety of tissues (reviewed
in (3,4)).

The functional activity of siRNAs is determined by their
sequence, and a large number of powerful algorithms pre-
dicting unmodified siRNA efficacy have been developed (5–
12). A variety of mathematical approaches were used for
modeling siRNA efficacy. The majority of these algorithms
describe datasets with a Pearson correlation coefficient of
∼0.6, and variation between the predictive power of the dif-
ferent models is relatively small (7). At the same time, many
of these algorithms require time-consuming and multipara-
metric computations.

The introduction of chemical modifications into siR-
NAs often leads to higher efficacy of gene silencing due
to enhanced siRNA cellular uptake and nuclease stability
(13–15). Various degrees of 2′-sugar modifications by 2′-
O-methyl, 2′-F and phosphorothioate substitution proved
to have enhanced potency (16–19) and reduced off-target
effects (19–21). Extensive siRNA chemical stabilization
(22,23) is essential for conjugate-mediated ex vivo and in vivo
efficacy and duration of silencing (24).

Extensive siRNA chemical modification can significantly
affect silencing activity by interfering with RNAi enzymatic
machinery interactions (25–27). This effect results in a de-
crease of the available sequence space for siRNA design and
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diminishes the utility of available predictive algorithms. Dar
et al. (28) used machine learning to model the efficacy of
modified siRNAs using a conglomerate dataset of all pub-
lished chemically modified sequences (29). The chemically
modified siRNAs included in this dataset were very hetero-
geneous, ranging from siRNAs bearing isolated modifica-
tions to a variety of heavily modified patterns. Furthermore,
the siRNA functionality was evaluated using an array of
different experimental methodologies. The diversity of this
dataset limits its utility and predictive value for uniformly,
heavily modified siRNAs.

Here, we synthesized a panel of 356 heavily modified,
cholesterol-conjugated siRNAs capable of unassisted (gym-
notic) cellular uptake (4)––self-deliverable siRNAs (sdR-
NAs). We evaluated sdRNA efficacy using consistent and
well-controlled readouts. Using linear regression models,
we identified positional base preferences and developed
an algorithm that successfully described sdRNA efficacy
within the training dataset. We validated the performance
of the algorithm using two independent datasets of a total
of ∼140 sdRNA sequences.

We further demonstrated that algorithms based on non-
modified siRNAs have no predictive power for modified
compounds and vice versa, indicating that the factors lim-
iting siRNA efficacy are substantially affected by chemical
modifications.

MATERIALS AND METHODS

sdRNA compound panel selection and synthesis

A panel of 356 sdRNAs targeting 17 genes was synthesized
by TriLink (San Diego, CA, USA). Each sdRNA was de-
signed as a duplex of a 15-nt sense strand and a 20-nt an-
tisense strand with a 15-base pair complementary region.
Antisense (guide) strand pyrimidines were 2′-fluoro mod-
ified. Sense strand pyrimidines were 2′-O-methyl modified.
Positions 14–20 of the antisense strand and 14 and 15 of the
sense strand were phosphorothioated. Positions 1, 2, 14 and
15 of the sense strand were always 2′-O-methyl modified.
Position 1 of the antisense strand was chemically phospho-
rylated and fixed as 2′-O-methyl-U independently of the tar-
geting sequence. Cholesterol was conjugated to the 3′ end
of the sense strand through a TEG linker (Prime Synthesis,
Aston, PA, USA). All sdRNAs have GC content lower than
55%. Based on an earlier analysis of a limited number of
functional sdRNA, the selected sequences for the training
dataset have over-representation of Us and As at certain po-
sitions. The controlled datasets used for normalization and
significance analysis always incorporate similar positional
bias.

sdRNA treatment (validation datasets)

Cells were grown to 60–80% confluence and harvested by
trypsinization.

sdRNA duplexes diluted in serum-free medium were
mixed directly with cell suspensions prepared in growth me-
dia with 2× concentrated serum. Cells were incubated for
72 h, washed once with DPBS, and harvested in RNA ly-
sis buffer (Ambion, 12173-011A) for further RNA purifi-
cation and qPCR analysis. All passive transfections were

performed in a 96-well plate format in triplicates, omit-
ting the edge rows. Cells for transfection were generally cul-
tured for up to 15 passages and kept in the log phase. A
human adenocarcinoma HeLa cell line was used for hu-
man gene expression analysis. The effect of sdRNA on
the endogenous level of mouse and rat genes was analyzed
in mouse hepatoma Hepa1-6 and rat pheochromocytoma
PC12 cells, respectively. HeLa and Hepa1-6 cells were trans-
fected in EMEM media (ATCC, 30-2003), supplemented
with 3% FBS (Gibco, 16140071) at 5000 cells/well. sdRNA
treatment of PC-12 cells was performed alongside neuronal
phenotype induction at 30 000 cells/well in RPMI media
(Gibco, 11875-093), supplemented with 1% FBS and 100
ng/ml Nerve Growth Factor (NGF-7S; Sigma, N0513). PC-
12 cells were grown and transfected on Collagen I-treated
cell culture vessels (BD Corning, 12777-074 and 08-774-5).

Reporter construction and efficacy data collection for the
training dataset

Reporter plasmids were constructed for each gene by in-
serting gene fragments or 50-base target site fusions into a
psiCheck-2 vector (Promega, C8021) containing indepen-
dent expression cassettes for two luciferase genes––Renilla
luciferase (RLuc) for monitoring mRNA change and Fire-
fly (fLuc) for signal normalization. No repeated sequences
were allowed, so overlapping sdRNA sites were trimmed
and merged together, mimicking the native sequence en-
vironment. For each gene, we generated a single reporter
plasmid containing all target sequences for that gene. The
inserts’ length varied from 400 bp to 2 kb. The list of 50-
nucleotide target regions that include the 20-nt target site
and two 15-nt flanking sequences is given in Supplementary
Materials (Supplementary Table S1). Each complete gene
fragment was flanked at the 3′ end with a validated posi-
tive control sequence from MAP4K4 mRNA and inserted
downstream of Renilla and upstream of a synthetic poly(A)
site into a SgfI/NotI restriction site. The obtained reporter
constructs were verified by sequencing.

For reporter transfection, HeLa cells were plated in
antibiotic-free media at 2.5 × 106 cells per 10 cm tissue cul-
ture dish. Each reporter was mixed with Fugene HD trans-
fection reagent (Promega, E2311) at 2.5 �l:1 �g DNA ra-
tio, incubated for 10 minutes, and added to the cells. Af-
ter an 18-h incubation, cells were washed three times with
PBS, collected by trypsinization, and mixed with diluted
sdRNA compounds to obtain a final concentration of 1 �M
sdRNA per 5000 cells/well of a 96-well plate. Cells were
incubated for 48 h and then harvested in 60 �l Glo lysis
buffer (Promega, E266A) added directly to each well. Re-
nilla and Firefly luciferase assays were performed on two
separate 20 �l lysate replicas from the same samples. Re-
nilla assay buffer (Matthews buffer (30) with freshly added
h-Coelenterazine) was mixed with the cell lysate at 3:1 ratio,
and light emission was collected after a 3-min incubation.
Firefly assay buffer (25 mM glycylglycine, 15 mM MgSO4,
4 mM EGTA, 1 mM DTT, 2 mM ATP, 15 mM K2PO4,
pH 7.8 and 1 mM D-luciferin) was added to the duplicate
lysate aliquots at the same ratio and incubated for 10 min
prior to luminescence measurement. D-Luciferin was ob-
tained from Promega (E1605), and h-Coelenterazine was
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obtained from NanoLight (301). Luminescence was mea-
sured on a SpectraMax i3 (Molecular Devices) with 90%
gain and 0.1 sec integration time and was normalized and
expressed as a percentage of untreated control. The opti-
mized screening assays were performed with high accuracy
and reproducibility with the following parameters: the av-
erage screening CV% = 6.3%, S/B = 4.3, and Z′ factor =
0.69. Z′ factor was calculated (Equation 1), where �+ and
�– represent the standard deviation of the positive and neg-
ative control. �+ and �– represent the average of the positive
and negative controls, respectively.

Z′ = 1 − 3 (σ− + σ+)
|μ+ − μ−| (1)

qPCR assay

Total RNA was purified from transfected cells using a Pure-
LinkTM Pro96 kit (Ambion, 12173-011A) according to the
manufacturer’s instructions. 30 ng total RNA was mixed
with Quanta qScript XLT ToughMix (VWR, 89236672)
and with fluorescent FAM-labeled specific assay and VIC-
labeled probe for the reference (housekeeping) gene. RNA
was then subjected to reverse transcription and qPCR in
a one-step multiplex reaction using the StepOnePlus Real-
Time PCR instrument (Applied Biosystems, Foster City,
CA, USA), with the cycling parameters recommended for
the XLT ToughMix. The following Taqman gene expression
assays were used: human STAT3-FAM (Hs00374280 m1),
mouse Smo-FAM (Mm01162710 m1), rat Tsc1-FAM
(Rn00573107 m1), Klf4-FAM (Rn00821506 g1), and
Klf9-FAM (Rn00589498 m1). Assays for reference genes
were human PPIB-VIC (Hs00168719 m1), mouse Gapdh-
VIC (Applied Biosystems, 4352339E), and rat beta-Actin
(Rn00667869 m1). A standard curve was generated for
each gene on every assayed plate by including 5-fold dilu-
tions of RNA from untreated samples. The curves showed
amplification efficiency 100 ± 10% with R2 > 0.99. Gene
expression data was normalized to the appropriate internal
reference, adjusted according to the standard curve, and
logged as a percentage of untreated control.

Generating the weight matrix

The weight matrix is a per-position base frequency ma-
trix representing the linear regression algorithm that was
used to score sequences for sdRNA functionality predic-
tion. The matrix recapitulates base preferences in the 50-
base region (20-base siRNA-targeting site, surrounded by
15-base flanking regions). The weight matrix was generated
using functionality data from the training set of 50-base
sequences and their corresponding sdRNAs. Cutoffs were
selected to bin functional and non-functional 50-base se-
quences. Several functional cutoffs were considered, with
sequences inducing more than 83% silencing (less than 17%
gene expression remaining), 76% silencing (<24% gene ex-
pression remaining), and 65% silencing (<35% gene expres-
sion remaining). Non-functional sequences were defined
as compounds inducing <56% silencing (>44% of gene
expression remaining). Per-position base frequencies were
computed for each cutoff as well as for the total training
dataset.

To determine which of the 50 positions were important to
predicting sdRNA functionality, corresponding test statis-
tics were computed. Two sets of random sequences corre-
sponding to the functional (F) and non-functional (NF)
cutoffs were generated using a pseudo-random number gen-
erator (NumPy Version 1.14.2). Both datasets were gener-
ated with the same per-position composition as that of the
entire dataset, with total sequences generated equal to the
number of sequences in the total dataset (N = 356) multi-
plied by the cutoff sizes for functional (q, ranges between 41
and 138) or non-functional (z = 157), respectively. The stan-
dard deviations (�) of the computed frequencies for each
base at each position were computed for each randomly
generated dataset. Test statistics were generated compar-
ing the computed standard deviations to the correspond-
ing per-position base frequency medians (Md) of the func-
tional or non-functional training datasets (Equation 2). A
one-sample t-test was conducted for each base at each posi-
tion to compute a P-value from the test statistic, testing the
hypothesis that selecting for (or against) a particular base
at a particular position in a sequence increases the likeli-
hood that the sequence is active (one-sample t-test (R Ver-
sion 3.4.1) with Bonferroni correction).

A per-position, nucleotide-base matrix was then gener-
ated. For bases and positions with corresponding P-values
that were found to be significant (P < 0.001 after Bonfer-
roni correction), the weight values for their corresponding
positions in the weight matrix were calculated by subtract-
ing the per position base frequency of non-functional se-
quences from that of functional sequences. Positions above
the cutoff (P > 0.001) were set to zero.

For the control, average RefSeq database (31) frequencies
adjusted for initial bias in the training set were used instead
of per position base frequencies from the training dataset.
All other computations were performed as above to gener-
ate the control weight matrix.

test statistic =
MdNF

z − MdF
q√(

σ2
NF
z2

)
z +

(
σ2

F
q2

)
q

(2)

Algorithm development

Linear regression-based scoring was used to derive the pre-
diction algorithm. Final scores for each sequence were com-
puted as a sum of the scores for every position. For the con-
trol, an algorithm was derived using a control positional
preference matrix developed as described above. To avoid
including artefacts from the cloning of multiple distant tar-
get sites, the positional preference matrix including 48 bases
(excluding positions 1 and 50) was used for primary algo-
rithm development for the qPCR validation dataset. In Fig-
ure 4, prediction algorithms for sdRNA and siRNA were
generated using a positional base-preference matrix for the
targeting (20 nucleotide) region only.

Computing AU positional preferences

AU preferences in functional versus non-functional se-
quences were calculated as a sum of A and U preference in



10908 Nucleic Acids Research, 2018, Vol. 46, No. 20

the same position and/or four-nucleotide sliding window.
This value was used as a simple proxy for thermodynamic
stability (32).

To calculate the significance of the observed preference in
AU distribution, the random AU distribution background
was calculated. Sets of random sequences each equal in size
(N = 356) and per position base frequency to that of the
training set were generated. This process was repeated to
generate N random sequence sets, resulting in N*N total
random sequences generated. For each set of N random
sequences, sequences were randomly selected to generate
two subsets corresponding (and equal in size) to the func-
tional (91 sequences) and non-functional (157 sequences)
datasets. The per position and/or four-nucleotide sliding
window AU preferences for each set were computed by com-
paring the two subsets in the same way non-functional and
functional sequences were compared above. The random
AU background was computed by compiling the AU pref-
erences from each set and computing the 80% confidence
intervals at each position.

RESULTS

Evaluating the efficacy of a panel of 356 chemically modified,
self-delivering siRNAs

sdRNAs are substantially chemically modified, cholesterol-
conjugated, asymmetric siRNAs, capable of unassisted cel-
lular uptake (33–35). sdRNAs are comprised of a 20-base
antisense strand duplexed with a shorter 15-base sense
strand (Figure 1A). The six 3′ nucleotides of the antisense
strand and two 3′ nucleotides of the sense strand are phos-
phorothioated. All pyrimidines are modified with 2′-fluoro
and 2′-O-methyl in the antisense and sense strands, respec-
tively. In addition, some purines in both strands are 2′-O-
methyl modified to eliminate the presence of unmodified ri-
bose stretches. The 5′ end of the antisense strand is chemi-
cally monophosphorylated and is fixed as 2′-O-methyl uri-
dine (U). In addition, positions 1 and 2 of the sense strand
are always 2′-O-methyl modified (20), which, in combina-
tion with the shorter sense strand length, creates chemical
asymmetry and prevents the sense strand from loading into
the RISC complex. When conjugated to cholesterol, these
compounds efficiently enter all cell types without requiring
a delivery vehicle by a subset of the endocytosis mechanism
associated with EEA1 (35). The general chemical configu-
ration of the sdRNA is shown in Figure 1A.

The training dataset used for algorithm development
consists of 356 sdRNA target regions across 17 different
genes (∼20 sdRNAs per gene). For functional evaluation,
for each target gene the sdRNA target regions of 50 bases
(including 20-base siRNA targeting sites and 15-base flank-
ing regions) were fused and cloned into the 3′ UTR of
the psiCHECK-2 vector (see Methods). All 17 reporters
contained an embedded universal positive control sequence
for cross-assay data comparison and validation. The cor-
responding target sequence and efficacy of all tested com-
pounds are shown in Supplementary Table S1.

The sdRNA dataset was designed with additional re-
strictions on the sequence space, including low GC con-
tent (<55%, Supplementary Figure S1A), restriction of se-
quences containing stretches of four or more cytosines and

guanines and five or more uridines and adenines, etc. In
addition, sequences with potential cross-reactivity to other
genes (perfect homology to positions 2–17 of the antisense
strand) and containing miRNA seeds (miRBase (36)) were
excluded.

Figure 1B shows the efficacy distribution for the 356
sdRNA dataset. Compound efficacies were normalized to
corresponding non-targeting controls. Although the de-
sign was originally biased toward low GC content, a well-
established factor favoring siRNA efficacy (37), the fraction
of highly active sequences appeared to be significantly lower
than that in the context of non-modified siRNAs (5,37).
Only 3% of tested sequences induced more than 90% si-
lencing. In the published randomly-selected non-modified
siRNA dataset from Huesken et al. (5), as many as 16%
of tested compounds demonstrated similar activity (Sup-
plementary Figure S1C). Although direct quantitative com-
parison of these datasets is not possible due to the dif-
ferences in experimental conditions, this result is consis-
tent with known observations that extensive chemical mod-
ification is not well-tolerated by many siRNA sequences
(27,38,23), emphasizing the need for the development of a
proper prediction procedure.

For algorithm development, the sdRNA dataset was sub-
divided into non-functional (157 sdRNAs, >44% target
gene expression remaining) and functional subsets. Three
functional cutoffs were used with increasing stringency:
<35% (138 sdRNAs), <24% (91 sdRNAs) and <17% (41
sdRNAs) target gene expression remaining (Figure 1B).
The selection of multiple functionality cutoffs allows for the
identification of an optimal balance between increasing the
training dataset size and minimizing the false positive rate.

A linear regression-based algorithm for chemically modified
asymmetric siRNAs

Non-modified siRNA efficacy is defined by the siRNA se-
quence itself. Many different mathematical models have
been used to describe the relationship between siRNA se-
quence and efficacy, with nucleotide positional frequency
being the essential parameter in all (see Introduction). Here
we used per-position base preferences and linear regression
to generate an siRNA prediction algorithm. This approach
provided similar predictive power to other methodologies
(5–7) and enabled clear visualization of the key parameters
contributing to the selection process.

Figure 2A shows a positional base preference matrix
computed using three functional cutoffs of different strin-
gencies. Weights for each base and position were computed
by comparing the per-position base frequencies of the func-
tional and non-functional sdRNA subsets (see Materials
and Methods). The significance of the weight parameter
with respect to siRNA functionality for each base was cal-
culated using a one-sample t-test (see Materials and Meth-
ods), and non-significant values were substituted with zero.
Positive weights indicate preferential occurrence of a base
at a particular position in functional sdRNAs, while neg-
ative numbers indicate preferential occurrence of a base at
a particular position in non-functional sdRNAs. Non-zero
weights are indicated in the matrix table and color-coded to
reflect their magnitude. The positional preferences appear
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Figure 1. Efficacy distribution of the panel of chemically modified, asymmetric, self-delivering siRNAs (sdRNAs). (A) sdRNAs are asymmetric siRNAs,
consisting of a 20-nucleotide antisense strand and a 15-nucleotide sense strand, in which all pyrimidines are 2′-fluoro (antisense) and 2′-O-methyl (sense)
modified. The 3′ terminal backbone is phosphorothioated (six linkages in antisense and two in sense). The 3′ end of the sense strand is conjugated to
cholesterol. (B) The efficacy of 356 sdRNAs targeting 17 genes was evaluated using dual luciferase reporter in HeLa cells at 1 �M (passive uptake) at 48
h (n = 3, mean ± SD).

to be mostly consistent for all three efficacy cutoffs used.
The most prominent features of the matrix (with the high-
est or lowest weights) were observed at positions 7–15, a
region that also encompasses the cleavage site (between po-
sitions 10 and 11 of the 20 base siRNA targeting region
(39)). For analysis, we included additional sequences im-
mediately adjacent to the targeting region aiming to detect
their potential contribution or use as an embedded internal
control. Although it is generally believed that the siRNA
sequence itself is a primary determinant of siRNA efficacy,

we observed several highly statistically significant base pref-
erences outside the RISC-interacting region.

A linear regression model was generated using an algo-
rithm that incorporates the per-position base preferences
from the training dataset (see Methods). Algorithm per-
formance on a dataset was assessed by comparing positive
predictive power (PPP) to sensitivity (Figure 2B). PPP is
calculated as a percent of correctly predicted (functional)
sequences vs total predicted sequences for each computed
score. Sensitivity is calculated as a percent of functional se-
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Figure 2. Development of an algorithm for the prediction of sdRNA efficacy. (A) The positional base preference matrix was generated using three func-
tionality cutoffs (17%, 24% and 35% functional versus >44% non-functional compounds) for the 50-base regions comprising the siRNA-targeting site.
Matrix weight values are color-coded by value as indicated by color bar below matrices. Analyzed mRNA positions corresponding to siRNA-targeting
region (shaded) are indicated at the top. The location of cleavage site between positions 10 and 11 is indicated with a black arrow. (B) Using linear regres-
sion analysis (R 3.4.1), the scoring algorithm was generated for shown positional preference matrices (P < 0.001, see Materials and Methods). Algorithm
performance is visualized as positive predictive power (PPP) versus sensitivity curves. PPP is calculated as the percent of correctly predicted (functional)
sequences versus total predicted sequences for each algorithm value. Sensitivity is calculated as the percent of functional sequences selected vs total func-
tional sequences present in the dataset for each algorithm value. sdRNA compounds with >44% gene expression remaining were defined as non-functional.
The 17%/NF-preference matrix-based algorithm demonstrates the best performance with 96% PPP at 25% sensitivity. Black line shows performance of the
control algorithm (see Methods). (C) The efficacy of individual sdRNA compounds selected by the 17%/NF scoring algorithm at 25% sensitivity (n = 3,
mean ± SD). sdRNA IDs are indicated along the x-axis.

quences selected versus total functional sequences present
in the dataset for each computed score. For comparison, the
results are also displayed as Receiver Operating Character-
istic (ROC) curves and presented in Supplementary Figure
S2.

The <24% cutoff-based matrix was selected for further
evaluation because it shows ∼85% accuracy with 40% sensi-
tivity. The Pearson correlation between the algorithm score

value derived using the selected matrix and target gene ex-
pression was 0.55 on the training dataset. As a control,
we generated regression models based on an equal num-
ber of randomly selected sequences distributed in similar
sized groups. The control showed no predictive power (see
Materials and Methods). Thus, the linear regression of per-
position base preferences adequately identifies active and
inactive sdRNA sequences. Figure 2C shows the efficacy of
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sdRNAs predicted to be functional based on the linear re-
gression model.

Validation of modified siRNA algorithm through perfor-
mance on independent datasets

To validate the developed algorithm, we used two indepen-
dent datasets generated using the same chemical scaffold
as described in Figure 1A. The first dataset comprises 50
sequences targeting five genes (10 sdRNAs per gene), for
which efficacy was measured using qPCR in several cell lines
(see Materials and Methods). The second dataset was pre-
viously published and includes 94 sdRNAs targeting Hunt-
ingtin, for which sdRNA efficacy was measured using a
QuantiGene Assay (34). Our algorithm effectively predicted
sdRNA activity with approximately 60% predictive power
at 25% sensitivity (Figure 3A and B). Construction of the
validation dataset was fully independent from that of the
training dataset. sdRNA efficacy was measured using di-
rect measurement of endogenous mRNA with two technical
platforms for six different genes. The predictive power was
lower than shown with the training set (60% versus 80%),
which is expected and in line with the predictive power and
performance of published siRNA algorithms (5–7). This
outcome confirms that a linear regression-based algorithm
allows the effective scoring of sdRNAs with more than half
of predicted compounds being functional.

Non-modified siRNA-based algorithm has no predictive
power for heavily modified siRNAs

One of the major determinants of unmodified siRNA effi-
cacy is the thermodynamic bias defining the nature of the
strand entering the RISC (32,38). The asymmetric nature
of sdRNA, in combination with chemical modifications, ef-
fectively precludes the sense strand from RISC entry and,
theoretically, should eliminate the effect of this parameter.
Thus, position-based algorithms developed for the predic-
tion of non-modified siRNA efficacy might not be suitable
for prediction with heavily modified sdRNAs. To test this
hypothesis, we generated a positional scoring matrix using
the same methodology for a dataset of 2384 siRNAs from
Huesken et al. (5) (Supplementary Figure S1B and C) and
compared it to the sdRNA positional matrix. For this com-
parison, the analysis was restricted to the 20-base targeting
region alone, as no flanking regions were included in the re-
porter construct in the Huesken et al. dataset. Figure 4A
shows that base-preference matrices for non-modified and
modified siRNAs differ substantially. As expected, the most
prominent positional base preferences observed in the non-
modified siRNA dataset are related to the introduction of a
thermodynamic bias, with a strong preference toward A and
U at the positions corresponding to the 5′ end of the anti-
sense strand. These features were completely lacking in the
sdRNA matrix (Figure 4B). At the same time, certain nu-
cleotide preferences observed around the cleavage site (po-
sitions 7, 8 and 11) were similar between the datasets, pos-
sibly reflecting the general nucleotide preferences imposed
by the RISC complex and potentially related to dissociation
of the product upon cleavage (38,40). No other significant
resemblances were observed.

Considering these differences, it is not surprising that
the linear regression-based algorithm derived from non-
modified siRNAs adequately described itself but failed to
predict the efficacy of the modified siRNAs dataset and vice
versa (Figure 4C). Consequently, unmodified siRNA selec-
tion algorithms had no predictive power for the selection of
heavily chemically modified siRNA compounds.

Regions neighboring the siRNA-targeting site contribute to
efficacy

The positional base preference matrix (Figure 2A) con-
tained several strong determinants located outside of the
20-base targeting region. Previously, the mRNA secondary
structure around the siRNA targeting site has been pro-
posed as important for siRNA activity (41–43). The propen-
sity of RNA to form secondary structures is mostly defined
by local GC content. Figure 5A shows calculated AU pref-
erences for the sdRNA dataset, including regions flanking
the siRNA-targeting region. The level of background noise
is visualized by grey areas, corresponding to the 80% confi-
dence interval derived from AU background simulation (see
Methods). Individually, there are several positions display-
ing strong AU preference in the RISC-targeting region at
positions 6, 7, 8 and 14. In addition, several positions out-
side the RISC-binding site, specifically on the 3′ end, display
a preference for AU bases. Figure 5B shows an analysis of
the local thermodynamic flexibility of the siRNA-targeting
region along with the flanking regions. It is clear that high
AU content 3′ to the targeting site is one of the most signif-
icant contributors to sdRNA functional activity, since AU
preference in this region is more pronounced than in the
siRNA-targeting region itself. The thermodynamic flexibil-
ity (measured as AU preference (32)) 5′ of the targeting site
reaches statistical significance above the background but is
less distinct.

Position 14 of the antisense strand does not tolerate 2′-O-
methyl modification

All pyrimidines in the antisense strand of the sdRNA com-
pounds used in this study were 2′-fluoro modified. In addi-
tion, 156 antisense strands contained at least one additional
2′-O-methyl modification, which was introduced to dis-
rupt continuous stretches of five or more non-modified nu-
cleotides. This construction gave us an opportunity to eval-
uate the tolerance of 2′-O-methyl modifications in the anti-
sense strand. In all positions but position 14, 2′-O-methyl
modification was well tolerated, and sequences including
2′-O-methyl modifications were equally distributed between
functional and non-functional sdRNA subsets (Figure 6A,
Supplementary Figure S3A and B). Out of 19 siRNAs that
contained 2′-O-methyl modification in position 14, none
were functional. This result indicates that 2′-O-methyl mod-
ification is not well tolerated at position 14 in the context
of heavily modified siRNAs. Introduction of a 2′-O-methyl
modification at position 14 of the functional sdRNA target-
ing MAP4K4 resulted in a significant loss of efficacy (Fig-
ure 6B, Supplementary Figure S3C and D, Supplementary
Table S2).
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Figure 3. sdRNA algorithm accurately predicts efficacy using two independent datasets. The sdRNA (24%/NF) algorithm was applied to predict the
efficacy of (A) 50 sdRNAs targeting five genes (qPCR, sdRNAs inducing ∼ <25% target gene expression are defined as functional). sdRNA algorithm
predicts efficacy with ∼60% accuracy at ∼30% sensitivity. (B) 94 sdRNAs targeting the huntingtin gene (QuantiGene (34), sdRNAs inducing ∼ <25% target
gene expression are defined as functional). sdRNA algorithm predicts efficacy with ∼80% accuracy at ∼25% sensitivity. Black line shows performance of
the control algorithm (see Methods).

DISCUSSION

In this study, we performed the first systematic compari-
son of siRNA prediction algorithms derived from uniform
datasets of modified and non-modified siRNA sequences.
We developed an algorithm for predicting the efficacy of
heavily modified siRNAs that describes a training dataset
with 85% predictive power at 40% sensitivity. When tested
on two independent datasets, the developed algorithm pre-
dicted compound efficacy with 60–80% accuracy at 25%
sensitivity. While the training set was generated using a re-
porter assay, in the two validation sets, sdRNA efficacy was
evaluated using qPCR and QuantiGene assays, which have
inherently higher noise levels. Thus, the derived algorithm
is capable of predicting sdRNA efficacy independent of the
methodology used for the measurement of siRNA activity.

There are many ways to derive algorithms predicting
siRNA efficacy, most of which produce outputs with simi-
lar predictive power (∼60% on validation datasets) (7). Here
we developed a linear regression-based algorithm that pre-
dicted the efficacy of sdRNAs with an accuracy compa-
rable to other models reported previously (7). The linear
regression model used positional base preferences as de-
scriptors and allowed for simple visualization of the ma-
jor features contributing to functional efficacy. This abil-
ity enabled a straightforward connection to the underlying
molecular mechanism. In addition, this methodology is eas-
ily adaptable for the description of any dataset, can be in-
dependently reproduced, and does not require access to ad-
vanced mathematical models or exceptional computational
power. Application of this algorithm effectively removes the
requirement for stochastic screening for the identification of
potent compounds, effectively making the algorithm a fea-
sible procedure with limited time constraint that is not ex-
perimentally challenging.

Here, we also demonstrated that the functional determi-
nants defining the efficacy of modified and non-modified
siRNA are substantially different. Consequently, selection

algorithms generated from non-modified siRNAs have low
predictive power for modified siRNA compounds and vice
versa. In our study, we used a specific class of asymmet-
ric, heavily modified, self-delivering siRNA with a unique
modification scaffold. In this scaffold, the functional asym-
metry, one of the major determinants of naked siRNA ef-
ficacy, is introduced chemically, rendering the thermody-
namic bias (the primary determinant for the majority of
non-modified siRNA algorithms) non-essential. Since this
chemical asymmetry is a feature of many other heavily
chemically modified scaffolds (16,44), it is possible that our
algorithm may have prediction power on them as well, con-
sidering that certain nucleotide preferences are observed
near the cleavage site. However, it seems more likely that
the positional preference matrix for predicting the efficacy
of each class of chemically modified siRNAs will require ad-
justment for each chemical and/or structural scaffold. Us-
ing our approach, a new positional preference matrix can be
quickly generated for a specific set of data and included in
the original algorithm flow, making it widely adoptable and
easily applicable for the prediction of functional siRNA of
any class.

The only region where the positional base preferences
were similar between non-modified and modified siRNAs
was in positions 6–8 of the 20 base siRNA targeting site.
Salomon et al. have defined the relative contribution of dif-
ferent mechanistic steps in a RISC complex function (45).
They identified the rate of product release as one of the ma-
jor factors limiting overall RISC efficacy. The uniformly
observed preference for low GC content at positons 6–8
(5′ to cleavage site) might be contributing to more efficient
product release. It is impossible to distinguish if this prefer-
ence contributes to the first step of RISC loading (passenger
strand release), target cleavage, or both. The initial passen-
ger strand release step can occur either through cleavage or
dissociation (40). Extensive modification of the sense strand
might interfere with cleavage, thus making efficient sense
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Figure 4. Algorithms derived from naked siRNA do not have predictive power for modified (sdRNAs) and vice versa. (A) The positional base preference
matrix was generated from non-modified (orange) (5) and chemically modified (green) sdRNA. Sequences were aligned based on the 5′ end of the antisense
strand. Matrix weight values are color-coded by value as indicated by shaded bar below the matrices. Analyzed mRNA positions corresponding to siRNA-
targeting region (shaded) are indicated at the top. Black arrow indicates the location of cleavage site between positions 10 and 11. (B) The ability of
algorithms derived from non-modified and modified sdRNA datasets to predict the efficacy of non-modified and modified siRNAs was calculated using
PPP vs sensitivity plots. (C) The thermodynamic flexibility of the non-modified and chemically modified siRNAs was estimated by averaging GC content
over a sliding window of four bases. Thermodynamic bias is indicated as the difference between the relative thermodynamic flexibility at 5′ and 3′ ends of
the siRNA duplex. Chemically modified siRNAs do not display conventional thermodynamic bias.

strand dissociation a predominant mechanism for RISC
loading.

Additionally, we identified that position 14 of the an-
tisense strand does not tolerate 2′-O-methyl modification.
This result is consistent with the original observation (25)
that bulky modifications were not tolerated in the context
of naked siRNAs. A recent Alnylam paper (44) studying
the impact of the tolerance of different modifications pat-
terns on 15 target sites also identified position 14 as the most
negatively affected by 2′-O-methyl modification. The RISC

complex crystal structure does not provide a clear explana-
tion for this phenomenon. It is possible that the presence of
the 2′-O-methyl interferes with the efficiency of the mRNA
‘kinking,’ which was hypothesized to contribute to the po-
sitioning of the mRNA into the RISC active center (45).
The negative impact of 2′-O-methyl in this position is only
pronounced in the context of heavily modified siRNA se-
quences, and modification of position 14 alone had no im-
pact on siRNA efficacy (20).
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Figure 5. mRNA local thermodynamic flexibility in the 3′ region outside the siRNA-targeting site contributes to sdRNA efficacy. (A) The frequency of
AU at each position (black bars) in the siRNA-targeting region and surrounding 5′ and 3′ regions was computed by subtracting the frequency of AU
in non-functional siRNAs from that in functional (< 24% mRNA expression remaining) siRNAs. The background (grey area) was simulated using AU
frequency in the randomly distributed training dataset of 356 siRNAs. The 80% confidence interval of the simulated background is shown. Analyzed
mRNA positions are indicated at the top along with corresponding siRNA-targeting region (shaded area; positions 1-20). The location of cleavage site
between positions 10 and 11 is indicated with a black arrow. (B) The frequency of AU at each position was averaged over a four-base region (black line).
The average AU frequency was computed over each region (grey dotted line). The background (grey solid line) was averaged over a four-base region.

Figure 6. 2′-O-methyl modification at position 14 of the antisense strand negatively modulates sdRNA efficacy. (A) The frequency of 2′-O-methyl mod-
ification per position of the antisense strand in functional (defined as < 24% gene expression remaining) versus non-functional (defined as >44% gene
expression remaining) sdRNAs. (B) The efficacy of sdRNA targeting MAP4K4 with and without 2′-O-methyl modification in position 14 of the antisense
strand. MAP4K4 expression was analyzed by qPCR in HeLa cells treated with sdRNAs for 72 h (n = 3, mean ± SD; one-way ANOVA P < 0.001).
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Another observation derived from this study is the rela-
tive importance of high AU preference immediately outside
the targeting region for overall sdRNA efficacy. The poten-
tial importance of mRNA accessibility around the siRNA
targeting site has been reported previously (41–43). Accord-
ing to our data, the relative contribution of the neighbor-
ing region flanking at the 3′ end of the RISC binding site
is significantly more pronounced than that of the 5′ re-
gion, a finding consistent with the observed mechanics of
RISC interaction with the mRNA (40). High AU content
3′ to the seed-binding site minimizes the chances of the
seed region being hidden in local secondary structure, which
would limit initial accessibility. The relative importance of
the regions outside the 20-base RISC binding site for over-
all siRNA efficacy manifested stronger than previously re-
ported (41–43). This result might be related to the method
of screening that we used, in which siRNA activity was eval-
uated in the context of the 3′ UTR of a reporter gene. The ef-
fect might be less pronounced for ORFs, where active trans-
lation will disrupt the local RNA structure.

In conclusion, here we demonstrated that the critical pa-
rameters defining the efficacy of modified and non-modified
siRNA differ significantly, and we developed an algorithm
for predicting efficacy of heavily modified siRNAs.
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