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Mechanical loading of desmosomes depends on
the magnitude and orientation of external stress
Andrew J. Price 1, Anna-Lena Cost 2, Hanna Ungewiß3, Jens Waschke3,

Alexander R. Dunn1,4 & Carsten Grashoff 2,5

Desmosomes are intercellular adhesion complexes that connect the intermediate filament

cytoskeletons of neighboring cells, and are essential for the mechanical integrity of mam-

malian tissues. Mutations in desmosomal proteins cause severe human pathologies including

epithelial blistering and heart muscle dysfunction. However, direct evidence for their load-

bearing nature is lacking. Here we develop Förster resonance energy transfer (FRET)-based

tension sensors to measure the forces experienced by desmoplakin, an obligate desmosomal

protein that links the desmosomal plaque to intermediate filaments. Our experiments reveal

that desmoplakin does not experience significant tension under most conditions, but instead

becomes mechanically loaded when cells are exposed to external mechanical stresses.

Stress-induced loading of desmoplakin is transient and sensitive to the magnitude and

orientation of the applied tissue deformation, consistent with a stress absorbing function for

desmosomes that is distinct from previously analyzed cell adhesion complexes.
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Desmosomes (DSMs) are cadherin-mediated junctional
complexes that mechanically couple the intermediate fila-
ment (IF) network of neighboring cells via protein com-

plexes containing plakoglobin, plakophilins, and the IF-binding
protein desmoplakin (DP), a large adapter molecule that provides an
indispensable physical linkage between the inner desmosomal core
and the IF network (Fig. 1a)1–3. Available evidence demonstrates an
essential role for DSMs in maintaining the physical integrity of
epithelia and heart muscle tissue during embryonic development
and adult tissue homeostasis. In genetic mouse models, for instance,
loss of DP causes early lethality prior to gastrulation, while skin-
specific depletion leads to severe skin blistering upon mechanical
stress and perinatal lethality4,5. In humans, mutations in desmoso-
mal proteins or autoantibody-induced destabilization of DSMs
cause skin-blistering diseases and are associated with severe cardiac
defects such as arrhythmic cardiomyopathy6–12.

Even though DSMs are clearly essential for the integrity of many
vertebrate tissues, the molecular details of force propagation across
the DSM–IF junction are poorly understood. In fact, there is
limited direct evidence for when and even whether the molecular
components of DSMs bear mechanical loads in cells13. To address
this knowledge gap, we applied our previously described FRET-
based tension sensor module (TSM)14–18 to visualize and quantify
piconewton (pN)-scale forces across DP (Fig. 1a). In addition, we

leveraged the punctate geometry of DSMs to determine how ten-
sion on DP related to the magnitude and orientation of strain-
induced tissue deformations. These experiments revealed that DP,
and by extension DSMs, experienced negligible loads due to cell-
generated forces, for example, during collective cell migration.
Instead, our data demonstrated that DSMs came under load when
cells were subjected to large, externally generated mechanical
stresses that could threaten tissue integrity. In addition, we found
that DSMs perform an unexpected role in supporting load in
keratinocytes adhering to substrates of low stiffnesses. These
observations provide a coherent framework for understanding how
DSMs contribute to the construction of epithelia that are both
dynamic and physically robust, two seemingly contradictory
properties that are nonetheless essential for mammalian life.

We note that this work represents a collaboration that began as
two independent studies of the two major DP splice isoforms,
termed DPI and DPII. The coordination of our efforts led to a
more robust and comprehensive understanding of DP function
than would have been possible in either model system alone.

Results
Generation of isoform-specific desmoplakin tension sensors.
DP consists of an N-terminal domain that binds to desmosomal
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Fig. 1 Desmoplakin (DP) tension sensors localize to desmosomes (DSMs). a DSM adhesion is mediated by the desmosomal cadherins desmocollin (Dsc)
and desmoglein (Dsg), which engage the adapter proteins plakophilin (Pkp) and plakoglobin (Pg); DP forms the connection to intermediate filaments (IFs).
The tension sensor module (TSM) was inserted into DP after the rod domain. b DP tension sensors (DPI-TS, DPII-TS) were generated along with controls
lacking the IF-binding C-terminal region (DPI-ctrl, DPII-ctrl). The TSM comprises the F40 linker peptide (GPGGA)8 flanked by mTFP1/mEYFP in DPI, and
YPet/mCherry in DPII. Tension reduces FRET in DP-TS but not in DP-ctrl constructs. c Live-cell imaging reveals normal subcellular localization of DPI-TS
(expressed in MDCK cells) and DPII-TS (expressed in MEK-wt one day after DSM induction by Ca2+). Scale bar: 20 μm; in zoom: 4 μm. d DPII constructs
localize to intercellular junctions in MEK-KO one day after DSM induction, similar to endogenous DP in MEK-wt. Immunostainings show that DPII
constructs co-localize with Dsg1/2, and that full-length constructs but not DPII-ctrl mediate the recruitment of a coherent keratin 5 (K5) network. Images
are summed projections of nine optical slices covering 3.1 μm. Scale bars: 10 μm; in zoom: 4 μm. e Ultrastructural analysis of MEKs one day after DSM
induction reveals that the expression of DPII-wt and DPII-TS but not DPII-ctrl rescue both the DSM formation (arrows) and IF attachment (arrow heads)
defects of MEK-KO. Electron microscopy images are contrast adjusted. Scale bars: 2 μm; zoom: 0.5 μm
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cadherins, a C-terminal region that connects to IFs, and a central
coiled-coil rod domain that mediates dimerization (Fig. 1a). The
two major DP splice isoforms, DPI and DPII, are expressed in a
tissue-specific manner and characterized by rod domains of dif-
ferent length19. We inserted the F40-based TSM, which responds
to mechanical forces of about 1–6 pN14,17, into an unstructured
region after the rod domain, prior to Pro1946 for DPI (called
DPI-TS) and prior to Thr1354 for DPII (DPII-TS; Fig. 1b). This
integration site was selected to facilitate the quantification of
forces that are transduced from cell–cell junctions to the IF
network, and minimizes potential interference with both DP
dimerization and binding to either keratin filaments or junctional
proteins. Control constructs incapable of bearing mechanical
load, termed DPI-ctrl and DPII-ctrl, were engineered by remov-
ing the C-terminal keratin-binding domain (Fig. 1b). These
truncated DP controls still localize to intercellular junctions3,20,21

but are unable to interact with keratin filaments and therefore
control for potential confounding effects that could arise from
local changes in the subcellular environment and modify FRET.
As a control for protein functionality, we used constructs in
which the DP molecule was fluorescently tagged at the C-
terminus (DPI-wt and DPII-wt; Supplementary Fig. 1).

We expressed DPI-constructs in Madin Darby canine kidney
(MDCK) cells, and DPII constructs in murine epidermal
keratinocytes (MEKs) and analyzed cells by live-cell imaging
and immunostaining. In both cases, a punctate recruitment of
full-length DP constructs to cell–cell junctions was observed,
matching the localization of the native protein (Fig. 1c and
Supplementary Fig. 1a). To test whether DPI-TS and DPII-TS
were properly recruited in the absence of endogenous DP, we
transiently expressed DP sensors and controls in MEKs lacking
DP (MEK-KO; Fig. 1d and Supplementary Fig. 1b, c), and
observed that DPI-TS and DPII-TS localized to cell–cell contacts
efficiently. Junctional puncta co-localized with the desmosomal
cadherins desmoglein-1 and -2 (Dsg1/2), with plakophilin-1
(Pkp1), and plakoglobin (Pg), suggesting that the observed
structures recapitulate bona fide DSMs (Fig. 1d and Supplemen-
tary Fig. 1d, e). The truncated constructs DPI-ctrl and DPII-ctrl
also showed the expected subcellular localization to desmosomal
puncta, consistent with a previously proposed role for DP in
organizing desmosomal architecture independent of the C-
terminal keratin-binding domain5. As expected22, we observed
the recruitment of DP-constructs to MEK-KO intercellular
junctions only after addition of sufficient Ca2+ to the cell-
culture media. Ultrastructural analysis by electron microscopy
revealed that wild-type MEKs (MEK-wt) formed the expected
disc-shaped structures characterized by two distinct electron-
dense layers at each side of a cell–cell contact that were connected
to filamentous structures, presumably IFs23. Such complexes were
not observed in MEK-KO and rarely detected in MEK-KO
expressing DPII-ctrl, but efficiently induced by transient expres-
sion of DPII-wt and DPII-TS (Fig. 1e). These data suggested that
TSM integration into DP preserved protein functionality and
thereby the ability to rescue DSM formation.

No tension across DPI under homeostatic conditions. Previous
results indicated a crucial role of cadherin–keratin interactions in
orienting the collective migration of Xenopus mesendoderm
cells24,25. We examined whether intercellular forces generated
during collective cell migration of cultured cells might induce
mechanical loads across the DSM–IF junction. To do so, we
quantified DPI-TS and DPI-ctrl FRET efficiencies using fluores-
cence lifetime imaging microscopy (FLIM) in confluent MDCK
monolayers (Fig. 2a), and in MDCK cells migrating to fill a gap in
a confluent monolayer (Fig. 2b). We observed that DPI-TS FRET

efficiencies were statistically indistinguishable from those mea-
sured for DPI-ctrl in both cases (Fig. 2a, b) indicating little or no
tension across DPI in both confluent monolayers and at the edge
of expanding monolayers. We next seeded MDCK cells expres-
sing either DPI-TS or DPI-ctrl at different densities onto
collagen-coated glass coverslips and analyzed FRET at DSMs. To
ensure that we were not limited by the FLIM-FRET approach,
which relies on extended image acquisition times, we performed
ratiometric FRET measurements that do not yield an absolute
FRET efficiency value but benefit from shorter acquisition times.
Cell numbers were set to obtain colonies in which virtually all
cells were on an open edge boundary (sparse), cells formed larger
colonies with free edges (sub-confluent), or cells formed mono-
layers (confluent). Despite large differences in cell spread area, we
measured no significant change in average FRET index relative to
the truncated control in sparse, sub-confluent, and confluent
monolayers (Supplementary Fig. 2a). We further examined with
FLIM the role of actomyosin contractility in DPI tension using
the actin-destabilizing drug cytochalasin-D (Fig. 2b) and the
ROCK inhibitor Y-27632 (Supplementary Fig. 2b). Again, we did
not observe significant changes in FRET efficiency relative to
control samples, despite clear effects of the drug treatments on
the actomyosin network (Supplementary Fig. 2b, c). Finally, we
treated DPI-TS and DPI-ctrl expressing cells with okadaic acid to
induce a rapid collapse of keratin networks26, but did not observe
any significant change in FRET efficiencies relative to control
conditions (Supplementary Fig. 2d). All these findings led us to
conclude that DPI experiences little or no tension in MDCK
monolayers due to internal, cytoskeleton-generated forces.

No tension across DPII under homeostatic conditions. Evi-
dence from cell-culture experiments indicated a key role for the
DPII isoform in keratinocyte DSM homeostasis27. To study DPII
mechanics, we transiently expressed DPII constructs in MEK-wt
and used live-cell FLIM to measure FRET efficiencies at
different time points after induction of DSM formation by
addition of Ca2+. In parallel, we performed a range of control
experiments to validate lifetime determination, ensure data
reproducibility, and confirm that effects of photobleaching were
identical between DPII-TS and DPII-ctrl (Supplementary Fig. 3a‒
c). We also generated a range of control constructs to identify
suitable FRET donor-only controls for DPII experiments (Sup-
plementary Fig. 3d‒f), and we confirmed that the contribution of
intermolecular FRET was identical in DPII-TS and DPII-ctrl
measurements (Supplementary Fig. 3g). Comparable to the DPI
results described above, we observed FRET efficiencies for DPII-
TS that were very similar to those for the DPII-ctrl construct
(Fig. 2d). FRET efficiencies in DPII-TS cells were slightly elevated
at early time points (3–5 h after Ca2+ addition) when compared
to the control construct (Fig. 2d), which may reflect subtle dif-
ferences in DSM architecture that influence fluorophore orien-
tation, or alternatively transient compression of the F40
peptide28,29. No significant differences compared to control
constructs were observed one and three days after DSM assembly,
indicating a negligible level of tension across DPII in established
DSMs (Fig. 2c, d). To determine whether unlabelled, endogenous
DP affects the tension measurement, we expressed DPII con-
structs in MEK-KO cells. Yet again, FRET efficiencies for DPII-
TS were similar to those for DPII-ctrl, suggesting that DPII does
not experience significant loads under these conditions
(Fig. 2c, d).

To validate these data sets, we generated DPII-TS and DPII-ctrl
constructs based on the recently developed FL-TSM17. This
sensor module uses a structurally different mechanosensitive
peptide but also responds to low forces of about 3–5 pN. The
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analysis of the FL-TSM-based DPII constructs confirmed the lack
of DP tension in MEKs at 3–5 h and one day after DSM assembly
(Fig. 2e). Together, the data strongly suggest that homeostatic
processes in cell culture such as collective cell migration in
MDCK cells, changes in cell density, and DSM formation in
keratinocytes do not involve mechanical loading of DP.

DSMs are mechanically loaded in response to external stress.
Given the importance of DP in vivo and its probable role in
maintaining tissue integrity5–10, we next considered whether DP
might experience loads in cells adhering to substrates that

recapitulate physiologically relevant rigidities. As epidermal
stiffness depends on the skin area and varies between epidermal
layers30,31, we seeded DPII-TS or DPII-ctrl expressing MEKs
onto different hydrogels characterized by Young’s moduli of 2, 4,
12 and 25 kPa, respectively (Fig. 3a, b), and performed live-cell
FLIM experiments as described above. Consistent with the
experiments on glass coverslips, no differences between DPII-TS
and control constructs were detected on hydrogels of 4–25 kPa.
However, DPII-TS FRET was significantly reduced on very soft
2 kPa substrates (Fig. 3b). To confirm the specificity of this
observation, we measured cells not only at the center of the dish,
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Fig. 2 Desmoplakin tension is negligible under homeostatic conditions. a Donor intensity signals were masked and thresholded to generate a segmentation
map of individual DSM puncta. For each punctum, a fluorescence lifetime was determined and the corresponding FRET efficiency calculated. FRET efficiencies
for DPI-TS (yellow) and DPI-ctrl (blue) were indistinguishable in confluent MDCK monolayers. The median FRET efficiency per image is shown as a boxplot
and reflects the underlying distributions of individual puncta values that were used to calculate the mean change in FRET efficiency as ΔE= Ectrl− ETS. b No
FRET efficiency differences were observed at the edge of migrating MDCK cell sheets in cell–cell junctions categorized as having one or both cells on the
colony edge. Similarly, treatment of confluent MDCK monolayers with the actin-destabilizing drug cytochalasin-D (see Supplementary Fig. 2c for immuno-
staining) did not induce a significant change in FRET efficiency. c DPII constructs were expressed in MEK-wt monolayers and imaged at distinct time points
after DSM induction (3–5 h, 1 day, and 3 days). MEK-KO were imaged one day after DSM induction. d In all conditions, the mean changes between DPII-TS
(yellow) and DPII-ctrl (blue) were consistent with little or no tension, with tension corresponding to ΔEDPII > 0. e No FRET efficiency differences were
observed between DPII-TS-FL (yellow) and DPII-ctrl-FL (blue). Scale bars: 20 μm. Boxplots show median, 25th and 75th percentile with whiskers reaching to
the last data point within 1.5× interquartile range. ΔE is plotted as mean difference with 95% CI; lmer-test: ***p < 0.001, n.s. (not significant) p≥0.05.
Numbers of puncta (P), images (n), and independent experiments (N) are indicated in the figure. Source data are provided as a Source Data file
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where the substrate stiffness is 2 kPa, but also at the outer
rim, where the soft hydrogel is missing and stiffness is high.
Indeed, FRET levels were decreased only in DPII-TS cells that
adhered at the center of the dish, while FRET values of control
cells were insensitive to location (Fig. 3c). Together, these
experiments demonstrated that DPII is not loaded in cells
adhering to extracellular substrates that reflect a range of phy-
siologically relevant rigidities but instead experiences tension in
very soft environments.

We next tested whether externally applied forces might induce
tension on DP. To apply mechanical stress directly to cell–cell
junctions, we seeded MDCK cells or MEKs expressing the
various DP-constructs onto coverslips, allowed sufficient time for
the formation of DSMs, and then used a glass micropipette to
pull on a localized area of the cell monolayer (Supplementary
Fig. 4a, b and Supplementary Movie 1). We acquired ratiometric
FRET measurements for cells in the undisturbed confluent layer
before contact (Pre), at the pull maximum (Pull), and after
relaxation by tip withdrawal (Post). To ensure reproducibility,
we performed these experiments in nine (DPI) and six (DPII)
different experimental preparations analyzing >12,000 desmoso-
mal puncta (≥88 images) and >1700 desmosomal puncta

(≥54 images), respectively. Data analysis algorithms were
adjusted to exclude data from potentially overstretched and
mechanically damaged cells, and we only considered junctional
puncta that recoiled by at least 1 μm after relaxation. Strikingly,
these experiments indicated that both DPI and DPII came under
mechanical load upon stress application (Fig. 3d, e). Consistent
with the FLIM measurements of MDCK monolayers described
above (Fig. 2a), DPI-TS FRET index values were not different
from those for DPI-ctrl before pulling. During pulling, an
enrichment of low-FRET puncta was observed for DPI-TS
relative to DPI-ctrl (Fig. 3d). Upon removal of the glass
micropipette, junctions partially recoiled, and FRET values
underwent a partial return to pre-pull values. Similarly, in
MEK monolayers, the difference between DPII-TS and DPII-ctrl
FRET index values was not significant before pulling, increased
during force application, and relaxed after micropipette tip
withdrawal (Fig. 3e). The specificity of this effect for DP-TS vs.
DP-ctrl constructs strongly suggested that both DP isoforms
become mechanically loaded in response to external stress.
However, the moderate differences in average FRET for these
puncta indicated that even under external stress only a subset of
DP molecules experiences mechanical loads.
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NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-07523-0 ARTICLE

NATURE COMMUNICATIONS |          (2018) 9:5284 | DOI: 10.1038/s41467-018-07523-0 |www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


Magnitude and orientation of stress determine DSM loading.
To evaluate this effect in more detail, we examined how changes
in DP tension correlated with the magnitude and orientation of
applied deformation within the cell monolayer. To this end, we
determined the recoil distance dr for DPI and DPII puncta and
tested how the observed FRET difference between DP-ctrl and
DP-TS (defined as ΔIDP ¼ IctrlDP � ITSDP) correlated with this mea-
sure of deformation (Supplementary Fig. 4c). As expected, there
was no significant correlation for ΔIDP measured before pulling
and the subsequent recoil distance, but ΔIDP during pulling
increased markedly with larger recoil distances for both DP iso-
forms. Post-pull data from MDCK-DPI experiments revealed that
cells, especially those exposed to larger strains, maintained some
residual DPI tension levels (Fig. 4a). In MEK-DPII experiments
post-stress values of ΔIDP were statistically indistinguishable from
pre-pull values, suggesting that DPII bore forces transiently in

MEKs and returned to the low-tension state upon removal of
external forces (Fig. 4b). To determine whether the observed
differences in DPI and DPII experiments could be explained by
differences in cell type, we expressed the DPI-constructs in MEKs
and repeated the FRET pulling experiments. Intriguingly, the
increase in ΔIDP during pulling was less pronounced compared to
that observed in DPII experiments (Fig. 4c). Even the insertion of
the S2849G mutation into DPI, which is expected to enhance DP
coupling with IFs32, did not increase DPI tension (Fig. 4d). These
observations lend support for a previously suggested DP-isoform-
specific function in keratinocytes27.

Finally, we considered how the orientation of applied stress
affected DP loading. We defined the recoil angles αr such that
desmosomal puncta that relaxed along the direction of the cell–cell
junction were assigned a recoil angle of αr= 0°, whereas puncta
recoiling perpendicular to the cell–cell junction were set to
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Fig. 4 DP loading is sensitive to the magnitude of the applied deformation. a Before pulling (Pre), the FRET index difference (green) between DPI-TS
(yellow) and DPI-ctrl (blue) in MDCK was close to zero, confirming that no tension was transmitted across DPI without external stress. During
pulling (Pull), tension increased with deformation. After pipette tip withdrawal (Post), tension partially relaxed. Evidence of residual tension was observed
at higher recoil distances. Data are from the pulling experiment represented in Fig. 3d. bMechanical tension on DPII depends on the degree of deformation,
and relaxes after external stress is released. Data are from the pulling experiment represented in Fig. 3e. c FRET index change for DPI-TS in MEKs was small
in magnitude, even at high recoil distances. P > 1450 total puncta from n≥ 36 images measured in six independent experiments. d Introduction of the
S2849G mutation in DPI-TS does not alter sensitivity to recoil distance in MEKs. P > 1250 total puncta from n≥ 35 images measured in six independent
experiments. DPI-ctrl data were the same as in c. a–d Puncta with recoil distances dr≤ 10 μm were analyzed. The mean FRET index of DP-TS and DP-ctrl as
well as the mean difference between DP-TS and the mean of all DP-ctrl puncta were calculated using the lmer-test and displayed with the 68% CI. Blue
lines and corresponding shading indicate the mean with 95% CI of all DP-ctrl puncta. Yellow and green lines are guides to the eye. Source data are
provided as a Source Data file
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αr= 90°. We then plotted FRET differences of the pre, pull,
and post state according to the recoil angle αr (Fig. 5a, b).
No significant correlation was observed in MDCK monolayers
expressing DPI-TS (Fig. 5a), possibly because deformations
propagated across 4–5 cells in these monolayers, a range
over which local stress anisotropies might be expected to
decay (Supplementary Movie 1). In DPII-TS MEK experiments,
where deformations propagated over shorter distances,
FRET differences were larger for high recoil angles relative
to low recoil angles (Fig. 5b). Analyzing the interdependence
of these observations confirmed that the angular dependency
of DPII loading in MEKs was strain-sensitive: DPII was exposed to
mechanical forces specifically in those junctions that experienced
perpendicular deformations and large recoil distances (Fig. 5c–e).
These observations suggest that stress propagation through the
IF cytoskeleton can be highly anisotropic at the level of single cells,
a finding consistent with a proposed role for the IF cytoskeleton in
controlling collective cell migration24,25.

Discussion
The data presented here demonstrate that DSMs are functionally
distinct from previously described cellular adhesion complexes
such as the adherens junction that bear mechanical tension under
steady-state conditions33,34. While these actin-associated adhe-
sions experience tension due to motor protein contractility, the
DSM appears to experience little or no load resulting from

contractile forces generated by individual cells if the substrate
stiffness is greater than ~2 kPa. Instead, the DSM–IF junction
comes under tension in response to externally applied mechanical
deformations, suggesting that the DSM is specialized to function
as a stress-absorbing adhesion complex. This interpretation is
consistent with the phenotypes caused by epidermis-specific
deletion of DP in mice5, which undergo normal development but
show severe epidermal blistering after birth. Our observations
thus contribute to a better molecular understanding of severe
epidermal diseases of human patients resulting from mutations in
desmosome-associated proteins which are characterized by mas-
sive epidermal defects in response to mechanical stress6–10,35.

The finding that, for cells on stiff substrates, tension is negli-
gible during homeostatic processes such as cell migration and
changes in cell density is consistent with the pronounced elasti-
city of IF networks at low strain36,37, and the fact that these
networks can stiffen under deformation38–40. Similarly, the
observation that DSMs become mechanically engaged in response
to external stresses suggests a mechanical role for DSMs in
responding to deviations in cell shape that occur on faster time
scales (seconds–minutes) than are typically accommodated dur-
ing cell-generated shape change (minutes–hours). Clarifying the
interdependent nature of deformation magnitude, strain rate, and
molecular stress experienced by DSMs is a promising avenue for
future research, for which sensors such as those described here
may be particularly useful.
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Fig. 5 DPII loading is sensitive to the orientation and magnitude of the applied deformation. a Tension across DPI in MDCK cells did not depend on the
recoil angle. Data are from the pulling experiment represented in Fig. 3d. b In MEK-wt, DPII tension increased for increasing recoil angles. Data are from the
pulling experiment represented in Fig. 3e. c Puncta were classified as parallel (αr≤ 45°) or perpendicular (αr > 45°) to pulling direction. d The effect of
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orientation of the external deformation were additive for DPII-TS in MEK-wt. a–e The mean FRET index of DP-TS and DP-ctrl as well as the mean difference
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Intriguingly, our measurements indicate that DPII experi-
ences tension in keratinocytes adhering to very soft 2 kPa
substrates. We speculate that this observation may reflect long-
range propagation of tension through the IF cytoskeletons of
neighboring cells, analogous to intercellular stress propagation
across the actin cytoskeletons of epithelial cells41. Such an effect
might be expected to occur specifically under circumstances in
which substrate stiffness is similar to that of the IF network,
reported to be <1 kPa42. Intercellular tension transmission
through the IF cytoskeleton would be consistent with the
reported role for IFs in coordinating collective cell migration in
the Xenopus mesendoderm24. Further insight into where and
when the IF cytoskeleton has an active role in shaping tissue
mechanics, for example during embryogenesis, represents a
fascinating question for future investigations.

It is interesting to note that we obtained very similar but not
identical results in two cellular systems: MDCK cells express
keratins (K)8 and K18, which are found in simple epithelia,
whereas MEKs are characterized by K5/K14 networks typical for
basal keratinocytes. Thus, the impact of distinct keratin networks
on DSM mechanics should be investigated in the future, and it
may be especially interesting to explore the mechanical role of
DSMs in heart muscle cells, which experience a very different
mechanical environment and engage the IF desmin. Our data
support a DP-isoform-specific function in keratinocytes, as
proposed earlier27 and consistent with the observation that DPII
is oriented perpendicular to the cell–cell contact43. Only DPII
displayed strong distance and angle-dependent loading in these
cells, an effect that should be studied in more detail. Finally, IF
networks are known to undergo stress-dependent remodeling44.
Future measurements of DP tension in the setting of mutations
that alter IF remodeling will help to build a better understanding
of how DSMs and the IF cytoskeleton respond to mechanical
load.

While this paper was under review, a separate study was
published indicating that desmoglein-2 experienced mechanical
load in unstressed MDCK cells45. Our measurements show neg-
ligible tension on DP under similar conditions. An alternative
connection between desmosomal cadherins and the actin cytos-
keleton is one possible explanation for these apparently con-
trasting observations. Future studies, potentially targeting other
desmosomal components, may help to shed light on when and
how desmosomal cadherins experience mechanical load.

Altogether, our data suggest that DSM–IF junctions are tuned
to withstand external mechanical stresses, but can do so without
hindering the cellular movements and shape changes that are
essential to maintaining tissue homeostasis. This physical role is
distinct from those of other intercellular adhesion complexes15,46,
and can help explain how the dynamics of DSMs are tuned to
allow the construction, maintenance, and repair of tissues that are
exposed to high external stresses.

Methods
Antibodies. The following primary antibodies were used: mouse anti-desmoplakin
I/II (Abcam, ab16434; dilution: 1:100), rabbit anti-keratin-5 (BioLegend, 905501;
1:1000), rabbit anti-keratin-14 (BioLegend, 905301; 1:1000), mouse anti-desmo-
glein-1/2 (Progen Biotechnik, 61002; 1:200), mouse anti-plakophilin-1 (Santa Cruz,
sc-33636; 1:200), mouse anti-plakoglobin (Thermo Fisher Scientific, 13-8500;
1:200), mouse anti-keratin-18 (Thermo Fisher Scientific, MA1-06326; 1:100), and
mouse anti-phospho-myosin light chain 2 (Cell Signaling Technology, 3675;
1:200). The following secondary antibodies were used: anti-mouse IgG Alexa Fluor-
647 (Thermo Fisher Scientific, A31571; 1:500), anti-mouse IgG Alexa Fluor-488
(Thermo Fisher Scientific, A21200; 1:500), anti-rabbit IgG Alexa Fluor-405
(Thermo Fisher Scientific, A31556; 1:500), and anti-mouse IgG Alexa Fluor-647
(Cell Signaling Technology, 4410; 1:1000).

Construct generation. For DPI-constructs, human DPI-GFP cDNA (Addgene,
32227) was used as a template. DPI-TS was assembled by a custom cloning service

(Epoch Life Science, Inc). The mTFP1-F40-mEYFP module was inserted prior to
Pro1946 and flanked by 25 and 24 amino acid (aa) long flexible linker sequences
(N-term: LIKGSGGTGSTSGGSGGSTGGGTGA, C-term: GTGGGTSGGSGGSTS
GTGGSGSGR), and cloned into the pSBtet-Pur plasmid downstream of the TRE
promoter (Addgene, 60507). The DPI-constructs were also inserted into the pig-
gyBac vector downstream of the hEF1α promoter (DNA 2.0, pJ509-02) for tran-
sient expression in MEKs. The photometric control was generated with the
QuickChange Lightning Site-Directed Mutagenesis Kit (Agilent), replacing the
essential tyrosine for chromophore formation with a glycine (Y67G for mEYFP)47.
DPII was generated by overlap extension polymerase chain reaction (PCR) using
DPI as a template (overlap region: 5′-GAA TAT GAA AAT GAG CTG GCA AAG
GCA TCT AAT AGG ATT CAG GAA TCA AAG-3′). The YPet-F40-mCherry
module (Addgene, 101252) or YPet-FL-mCherry module (Addgene, 101170) were
inserted prior to Thr1354 and flanked by short linkers (N-term: VE, C-term: AAA).
DPII constructs were either assembled by standard enzyme-based cloning tech-
niques as described previously48 or with Gibson assembly (New England
Biolabs (NEB), E2621L). Donor-only controls were generated by Gibson
assembly and used TagBFP (Evrogen), SNAP (NEB, N9183S), and fluorescently
dead mCherry(Y72L)49. Final DPII expression constructs were inserted into
pLPCX (Clontech) after the CMV promoter; DNA sequencing (Eurofins Geno-
mics) confirmed the correct base pair sequence of these constructs. Plasmids
encoding all relevant sensor and control constructs are available on Addgene (DPI,
119186-119188, 119190 and DPII, 118714-118724).

Cell culture and construct expression. MDCK II cells (Sigma, 00062107) were
maintained in low-glucose DMEM (Thermo Fisher Scientific, 11885-076), sup-
plemented with 10% fetal bovine serum (FBS, Corning, 35011CV) and 1%
penicillin–streptomycin (Thermo Fisher Scientific, 15140122). Transfection was
performed with a Lonza 4D Nucleofector using the SE Cell Line solution (Lonza,
V4XC-1012) and protocol CM-113. For each transfection, 1.8 μg cDNA of the
expression construct and 0.2 μg of the transposase plasmid were used (Addgene,
34879). After 3 days, cells were selected in growth medium containing 2.5 μg mL−1

of puromycin (Thermo Fisher Scientific, A1113803). Fluorescence activated cell
sorting (FACS) was used to enrich for DPI-TS and DPI-ctrl expressing cells
(Stanford FACS facility), and sorted cells were cultured for 14 days in the absence
of doxycycline to dilute out the expression of exogenous DPI-constructs prior to
making frozen stocks. Parental and FACS-sorted cells were free of mycoplasma
contamination (PromoKine, PK-CA91-1096).

For imaging experiments, MDCK cell lines were treated with 0.1 μg mL−1 (DPI-
ctrl) or 0.5 μg mL−1 (DPI-TS and photometric controls) doxycycline in order to
achieve similar levels of construct expression for the cell lines, and plated onto
collagen-coated coverslips (Cellvis, D35-20-1.5-N) 48 hours (h) prior to imaging.
About 24 h before imaging, the cell-culture medium was exchanged for imaging
medium composed of L-15 media (Thermo Fisher Scientific, 21083027)
supplemented with 1% FBS, 1% penicillin–streptomycin, 1% ITS-A (Thermo Fisher
Scientific, 51300044), and the respective concentration of doxycycline.

MEK-wt and desmoplakin-deficient MEK-KO cells were a gift from
Dr. Kathleen Green (Northwestern University). Cells were free of mycoplasma
contamination (Jena Bioscience, PP-401L) and maintained in the fully defined,
animal-component free culture medium CnT-Prime (Cell-N-Tec), which contains
0.07 mM CaCl2. Cells were split with accutase (Cell-N-Tec, CnT-Accutase-100)
and sub-cultured at a splitting ratio of 1:3–1:5. cDNA constructs were transiently
transfected with Lipofectamine 3000 (Thermo Fisher Scientific, L3000015). For
FRET measurements, MEKs were seeded in live-cell imaging dishes (Ibidi, 81158)
or imaging dishes with a hydrogel of defined stiffness (Matrigen, SV3520-EC-2/4/
12/25 PK) and transfected with 4.5 μg cDNA and 7.5 μL Lipofectamine. For
immunostainings, cells were seeded on no. 1.5 glass slides (Menzel) and transfected
with 1 μg cDNA using 2 μL Lipofectamine. To induce DSM formation in MEKs,
media was exchanged to CnT-Prime supplemented with 1%
penicillin–streptomycin and 1.5 mM CaCl2.

Drug treatments. For actomyosin inhibitor treatments, monolayers were prepared
in a collagen-coated multi-well plate (Cellvis, P24-1.5H-N). Y-27632 (Sigma,
Y0503) was used at a concentration of 10 μM for 60 minutes (min), cytochalasin-D
(Sigma, C2618) at a concentration of 1.5 μM for 30 min, and okadaic acid (Cayman
Chemical, 10011490) was used at a concentration of 50 nM for 12 h; an equivalent
volume and time of the corresponding drug solvent was used as control for Y-
27632 (water; 1:500), cytochalasin-D (DMSO; 1:3333), and okadaic acid (ethanol;
1:2500).

Immunostaining. During all procedures, samples were protected from light to
prevent photobleaching of the expressed fluorescent proteins. For F-actin and p-
MLC immunostaining, MDCK cells were fixed with 4% paraformaldehyde in
phosphate buffered saline (PBS, pH 7.4). For all other immunostainings of MDCK
cells and MEKs expressing DPI-constructs, samples were fixed with pre-cooled
methanol at −20 °C for 8 min and washed twice with PBS (pH 7.4). Blocking was
performed at room temperature (RT) for 1 h in PBS containing 1% bovine serum
albumin (BSA) and 0.1% Triton X-100 (Sigma). Primary antibodies (i.e., anti-
desmoplakin I/II, anti-keratin-18, anti-keratin-5) were diluted in blocking buffer
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and incubated with cells for 1–2 h at RT. Secondary antibodies were diluted in
blocking buffer containing 1 μg mL−1 Hoechst 34580 (Thermo Fisher Scientific,
H21486) and incubated for 1–3 h with cells at RT. For labelling F-actin networks,
ActinRed (Thermo Fisher Scientific, R37112) was added to the secondary antibody
buffer.

For immunostaining MEKs expressing DPII constructs, cells were rinsed twice
with PBS, the cytoskeleton stabilizing buffer (1 mM EGTA, 1 mM MgCl2, 50 mM
glycerol, 25 mM PIPES, pH 7.4), and fixed for 8 min with pre-cooled methanol at
−20 °C; cells were washed once with PBS, then PBS containing 0.02% Tween-20
(PBST), and PBST containing 1% BSA (PBSTB). Next, primary antibodies were
diluted in PBS containing 3% BSA and incubated with cells overnight at 4 °C. The
next day, cells were washed with PBST and PBSTB, and incubated for 1 h at RT with
secondary antibodies. Finally, cells were washed with PBST and PBS and mounted
in Prolong Gold antifade mounting solution (Thermo Fisher Scientific, P36934).
Immunostainings were imaged using a Zeiss LSM 780 confocal microscope.

Transmission electron microscopy (TEM). Transfected cells were fixed with 1%
glutaraldehyde for 1 h at 37 °C, followed by three times washing with PBS and
subsequent incubation with 2% osmiumtetroxide solution for 1 h at 4 °C. After-
wards, samples were dehydrated through an ethanol series from 20 to 100% and
embedded with Epon for 24 h at 80 °C. Finally, ultrathin sections (60–80 nm) were
cut with a diamond knife and stained with a saturated solution of uranyl acetate for
40 min and lead citrate for 5 min. Images were acquired with the transmission
electron microscope Libra 120 (Zeiss).

Fluorescence lifetime imaging microscopy (FLIM). For DPI-TS experiments,
fluorescence lifetime data were collected using a Zeiss LSM 780 confocal micro-
scope equipped with two-photon pulsed excitation MaiTai Ti:Sapphire laser tuned
to 860 nm, a Becker & Hickl SPC-150 detection system, a LCI Plan Apo ×40 water
immersion objective, a band-pass filter (Semrock, 475/28 nm) for mTFP1, and a
heating chamber (37 °C). Images were acquired as 512 × 512 pixels covering
70.85 × 70.85 μm2; for each experimental condition, 10 images were taken on 3–4
preparations resulting in a total of about 25–40 images. FLIM experiments for DPII
constructs in MEKs were performed on a confocal laser scanning microscope
(Leica TCS SP5 X) equipped with a pulsed white light laser (NKT Photonics), a
FLIM X16 TCSPC detector (LaVision Biotech), a ×63 water objective (HCX PL
APO CS), a band-pass filter (Chroma, 545/30 nm) for YPet, and a heating chamber
(37 °C, 5% CO2; Ibidi). Cells on hydrogel dishes were imaged at RT. Images were
acquired with a scanning velocity of 400 Hz for 512 × 512 pixels covering 61.51 ×
61.51 μm2. For each experimental condition, 15–20 images were taken on 3–8
individual days resulting in a total of about 50–100 images.

FLIM-FRET analysis. To analyze time-correlated single photon counting
(TCSPC)-FLIM data, custom-written MATLAB programs and software based on
previously published algorithms were used17. For measurements in MEKs, cell–cell
junctions were extracted by manually drawing masks. Next, the desmosomal signal
was isolated with a binary mask generated from the intensity image by blurring the
image (Gaussian, σ= 3 pixels) and isolating connected bright regions. For bulk fits,
all photons detected within the resulting mask were used to determine the fluor-
escence lifetime. For individual puncta, the masked intensity image was blurred
(Gaussian, σ= 3 pixels) and pixels were assigned to the nearest local intensity
maximum. Regions smaller than nine pixels were excluded.

For measurements in MDCK cells, a segmentation map was generated from the
intensity image by selecting pixels brighter than one standard deviation above the
mean image pixel intensity after band-pass filtering to enhance features of interest
(3–10 pixel diameter). To isolate individual puncta, pixels were assigned to the
nearest local intensity maximum, and regions smaller than nine pixels were
excluded. Furthermore, puncta in the cytosol or in regions with abnormally high
autofluorescence (i.e., from cell debris immediately above the cell monolayer) were
manually excluded.

To determine the fluorescence lifetime, an exponential decay was fitted to the
summed photon count time trace from each mask or punctum. The fit to the decay
curve was set to start 0.56 ns after the maximal photon count to minimize the
contribution of the instrument response function and autofluorescence. Fitting was
performed using MATLAB’s ‘fmincon’ with a maximum-likelihood cost function
based on Poisson statistics50,51.

The FRET efficiency E was calculated from the lifetime of the donor in presence
of an acceptor τDA and the mean donor-only lifetime τD, according to Eq. (1):

E ¼ 1� τDA
τD

: ð1Þ

The mean donor-only lifetime was determined from matched constructs with
disrupted chromophore formation of the acceptor (mCherry-Y72L and EYFP-
Y67G; Supplementary Fig. 3d-f). FRET efficiencies were calculated with 2.94 ns for
YPet-F40-mCherry (Supplementary Fig. 3f), 2.98 ns for YPet-F40-mCherry on soft
substrates and YPet-FL-mCherry (Supplementary Fig. 3h, i), 2.52 ns for mTFP1-
F40-mEYFP, and 2.55 ns for mTFP1-F40-mEYFP in drug treatment experiments.
The minimal required photon number was determined by the reduction in spread

of the lifetime fits to be 1000 photons for DPII, 175 photons for DPI, and
275 photons for DPI in drug treatment experiments. Individual puncta fits with
extreme (<0% or >100%) values were excluded from the analysis. No fits were
excluded from bulk analyses.

Sensitized emission ratiometric FRET analysis. Epifluorescence imaging was
performed on an inverted Nikon Ti-E microscope controlled with Micromanager
1.4.2252. The microscope was equipped with a Heliophor light engine (89 North),
an Andor sCMOS Neo camera using a CFI Plan Apo Lambda ×40 air objective lens
and a heating chamber (37 °C). Sensitized emission FRET (SE-FRET) analysis was
performed with three channel acquisitions on an epifluorescence microscope:
donor signal after donor excitation (Dobs), acceptor signal after donor excitation
(Fobs), and acceptor signal after acceptor excitation (Aobs). Images were flat-field
corrected by subtracting dark frame intensity and dividing by a normalized cali-
bration image from a uniformly fluorescent sample in PBS (riboflavin for CFP,
FRET, and YFP channels, and TRITC for RFP). A rolling ball background filter
(50 pixel/~8 μm diameter) was employed to remove background intensity from
each channel. After flat-field correction and background subtraction, the corrected
FRET intensity (Fcor) was determined by linear de-mixing based on correction
factors ε (Eq. 2). The values for ε were obtained by fitting fluorophore-only sam-
ples53.

Dcor

Fcor
Acor

2
64

3
75 ¼

1 εFD εAD
εDF 1 εAF
εDA εFA 1

2
64

3
75

Dobs

Fobs
Aobs

2
64

3
75 ð2Þ

For the mTFP1/mEYFP FRET pair used in DPI-constructs the correction
factors were εFD= 4.9 · 10−3, εAD= 4.5 · 10−4, εDF= 0.62, εAF= 0.092, εDA= 2.4 ·
10−3, and εFA= 3.8 · 10−3. For the YPet/mCherry FRET pair used in DPII
constructs the correction factors were εFD= 2.4 · 10−3, εAD= 1.3 · 10−4, εDF= 0.29,
εAF= 0.056, εDA= 0.038, and εFA= 0.13. A segmentation map was generated from
the acceptor channel (Acor) by selecting pixels brighter than four standard deviation
above the mean pixel intensity of a background region of the monolayer and using
the same puncta-based signal extraction method as with the FLIM-FRET analysis.
The FRET index I was calculated by Eq. (3):

I ¼ Fcor
Dcor þ Fcor

� 100: ð3Þ

Puncta that were too dim (<5000 total intensity [a.u.] in Acor for DPI-TS,
or <2000 total intensity [a.u.] in Acor for DPII-TS) or that had extreme FRET index
values (<0 or >100) were excluded; puncta in regions showing misalignment in an
overlay of donor and acceptor channel acquisition images were manually
discarded.

Micromanipulation experiment and recoil analysis. A glass micropipette was
mounted on a micromanipulation device assembled with two manual single axis
stages (ThorLabs, PT1) for x–y translation and a motorized single axis stage
(ThorLabs, MTS50) to control height. The micropipette was lowered onto the
confluent monolayer until a cell was pinched between the micropipette and the
glass surface, and was then pulled horizontally. The monolayer displacement at the
point of contact was optimized for minimal cell rupture and maximal mono-
layer relaxation after tip removal. For MDCK cells, a total displacement of
~50–100 μm was used; for MEKs, displacements of <20 μm were applied (Sup-
plementary Fig. 4 and Supplementary Movie 1). In MEK monolayers, only the
cell–cell junction adjacent to the pull was used for subsequent analysis.

Three FRET images were collected for each pull cycle: before tip contact (Pre),
while the monolayer was held at maximal displacement (Pull), and 1–5 min after
withdrawal of the pipette tip when the monolayer had stopped recoil movement for
at least 10 s (Post). Individual puncta were isolated and FRET indices for individual
puncta were determined at each time point as described above. To track the motion
of puncta in deformed regions, 6–10 corresponding control points were selected
manually to generate a projective map with MATLAB’s ‘fitgeotrans’. After this
initial warp, a bipartite matching algorithm from MATLAB’s central file exchange
(gaimc: Graph Algorithms in Matlab Code) was used to match individual puncta
between time points by minimizing the total displacement. Recoil vectors were
calculated by matching puncta during the pull to their position post-pull; the length
of this vector was defined as the recoil distance dr. Isolated puncta and puncta that
recoiled in a substantially different direction than the average of neighboring
puncta were identified as mismatches and excluded.

A second matching was performed between post-puncta to pre-puncta to
identify corresponding puncta from before tip contact. To determine the recoil
angle αr, the local cell–cell contact slope was calculated for each punctum by a
linear fit through the punctum and all neighboring puncta within 4 μm with
MATLAB’s ‘robustfit’; at least three points and a standard error of ≤9° on the
resulting slope angle were required. Finally, the acute angle between the cell–cell
contact slope (mc) and the slope of the recoil vector (mr) was used to determine the
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angle of the recoil relative to the cell–cell contact, using Eq. (4):

αr ¼ tan�1 mr �mc

1þmrmc

� �
: ð4Þ

FRET index differences were determined using a linear mixed-effects model
with a grouped effect for puncta obtained from the same image (described in
Statistical analysis). The recoil distance- or angle-binned DP-TS data were
compared to corresponding, not binned DP-ctrl data.

Statistical analysis. Statistical tests for change in mean FRET index or FRET
efficiency of puncta were performed with R using a linear mixed-effects model with
a grouped effect for puncta obtained from the same image. This model accounts for
the statistical dependence of puncta from the same image. To this end, grouped
error between images is assumed to follow a normal distribution around zero.
Including the grouped effect yielded more conservative and robust estimates of
statistical confidence relative to tests treating each puncta as independent. The
model fretIndex ~ isTensionSensor+ (1|imageNumber) was used, where isTen-
sionSensor was set to 1 for the sensor data and 0 for matched truncated control
data; imageNumber was a unique index for each image54. For drug treatment
experiments, a comparison between the solvent control and drug treatment con-
ditions was performed with fretIndex ~ isTensionSensor*isDrugWell+ (1|ima-
geNumber) where isDrugWell was set to 0 for the solvent control and 1 for the
drug treated conditions. Reported confidence intervals and p-values were obtained
from the lmer-test package55. For statistical evaluation of bulk fitted FLIM data and
phospho-MLC quantification, boxplots were generated using MATLAB’s ‘boxplot’
showing the median, the 25th and 75th percentile and whiskers reaching to the last
data point within 1.5× interquartile range corresponding to 2.7 standard deviation
for normally distributed data. To compare statistical significance, a two-sided
Kolmogorov–Smirnov (KS) test with a default significance level of α= 0.05 was
used because not all data sets satisfied the KS-test for normality. Statistical sig-
nificances are given by the p-value: ***p < 0.001; **p < 0.01; *p < 0.05; n.s. (not
significant), p ≥ 0.05

Code availability. Software for TCSPC-FLIM analyses is based on previously
published custom-written MATLAB software17,56, and was adjusted to this project
as described above. Ratiometric FRET analysis was performed using custom-
written MATLAB software. Statistical testing was performed using R. Software is
available upon request.

Data availability
Data supporting the findings of this manuscript are available from the corre-
sponding authors upon reasonable request. A Reporting Summary for this Article
is available as a Supplementary Information file. The FRET efficiencies, FRET
indices, lifetimes, photon counts, puncta numbers, and p-values for Figs. 2–5 and
Supplementary Figs. 2 and 3 are provided as a Source Data file.
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