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ABSTRACT
Introduction Digital health tools such as smartphones 
and wearable devices could improve psychological 
treatment outcomes in depression through more 
accurate and comprehensive measures of patient 
behaviour. However, in this emerging field, most studies 
are small and based on student populations outside of a 
clinical setting. The current study aims to determine the 
feasibility and acceptability of using smartphones and 
wearable devices to collect behavioural and clinical data 
in people undergoing therapy for depressive disorders 
and establish the extent to which they can be potentially 
useful biomarkers of depression and recovery after 
treatment.
Methods and analysis This is an observational, 
prospective cohort study of 65 people attending 
psychological therapy for depression in multiple London- 
based sites. It will collect continuous passive data from 
smartphone sensors and a Fitbit fitness tracker, and deliver 
questionnaires, speech tasks and cognitive assessments 
through smartphone- based apps. Objective data on sleep, 
physical activity, location, Bluetooth contact, smartphone 
use and heart rate will be gathered for 7 months, and 
compared with clinical and contextual data. A mixed 
methods design, including a qualitative interview of 
patient experiences, will be used to evaluate key feasibility 
indicators, digital phenotypes of depression and therapy 
prognosis. Patient and public involvement was sought for 
participant- facing documents and the study design of the 
current research proposal.
Ethics and dissemination Ethical approval has been 
obtained from the London Westminster Research Ethics 
Committee, and the Health Research Authority, Integrated 
Research Application System (project ID: 270918). Privacy 
and confidentiality will be guaranteed and the procedures 
for handling, processing, storage and destruction of 
the data will comply with the General Data Protection 
Regulation. Findings from this study will form part of 
a doctoral thesis, will be presented at national and 
international meetings or academic conferences and will 
generate manuscripts to be submitted to peer- reviewed 
journals.
Trial registration number https://doi.org/10.17605/OSF. 
IO/PMYTA

INTRODUCTION
Depression is a leading cause of disability 
worldwide,1 yet response to treatment is 
poor, with only 50%–60% of people recov-
ering after 3 months of treatment.2 3 Mental 
health science relies almost exclusively on 
subjective self- report to diagnose mental 
illness and measure outcomes. Reliance is 
therefore placed on patients being able to 
accurately recall and communicate complex 
mood states during clinical interviews, which 
many patients find difficult.4 5 Depending 
on subjective methods introduces a vulnera-
bility to recall biases6 which may worsen with 
increased severity.7

The use of digital tools within mental health 
has the potential to enhance traditional self- 
report measures by improving aspects of 
symptom tracking, illness management and 
treatment support. Remote measurement 

STRENGTHS AND LIMITATIONS OF THIS STUDY
 ⇒ The current mixed methods design to evaluate fea-
sibility and acceptability will provide a deeper un-
derstanding of the associations between patterns 
of missing data across the different data collection 
methods and clinical state.

 ⇒ Both passive sensing and active validated 
questionnaire- based data collection methods will be 
evaluated.

 ⇒ A 7- month participant follow- up provides a picture 
of engagement in the longer term, compared with 
previous studies.

 ⇒ For pragmatic reasons, the study uses a non- 
randomised, non- controlled design, which will limit 
conclusions about digital changes to treatment 
response.

 ⇒ This study does not use devices that are validated 
for medical use, drawing instead from digital sen-
sors in Android smartphones and a Fitbit fitness 
tracker, which have been previously used in mental 
health research.
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technologies (RMTs) such as smartphones and wearable 
devices can unobtrusively capture a more accurate picture 
of a patient’s clinical state in a continuous way, with far 
less burden to the user. Through embedded sensors, they 
can detect changes in behaviours associated with depres-
sive symptomatology such as sleep,8 sociability,9 phys-
ical activity10 and speech.11 Detecting such changes in a 
person’s behaviour can provide invaluable information 
for tailoring and improving treatment.

Given the relative recency of the field, and with an eye 
towards clinical implementation, studies on RMTs and 
depression have largely comprised proof- of- concept, 
feasibility and acceptability studies. While studies show 
RMTs to be generally feasible and acceptable,12 the data 
predominantly come from small, non- clinical or student 
samples with a median follow- up time of 2 weeks.13

To our knowledge, no such feasibility studies have 
been published on the use of RMTs to track mood and 
behaviour in clinical populations undergoing psycho-
therapy for depression. This population could derive 
greater benefits from the application of such digital 
methods by alleviating distress in more potentially severe 
cases and reducing pressure on healthcare services. In 
addition to the barriers of adopting RMTs for mood 
monitoring found across populations, such as concerns 
around privacy, confidentiality, affordability and acces-
sibility, there are likely to be additional considerations 
related to the help- seeking populations that remain unex-
plored and may help or hinder implementation practices 
in the future.

From a clinical perspective, exploring feasibility and 
acceptability in therapy populations can shed light on 
how changes in severity affect engagement with and use 
of digital devices, how they can be used to complement 
treatment and the barriers and facilitators to their use and 
implementation within services. From a methodological 
perspective, it would be important to establish the extent 
to which the amount and quality of data is usable and 
unbiased given that the added workload from therapy 
exercises, homework and clinical questionnaires as well 
as the severity of symptoms such as decreased motivation 
and cognitive abilities are likely to affect engagement and 
device use.12 Such studies could also inform future proj-
ects about the likely uptake in these samples in order to 
establish sample sizes and allocate resources.

Study aims
The primary aim of this project is to evaluate the extent to 
which data collection with digital tools on clinical samples 
is feasible. Specifically, the feasibility of using RMTs, such 
as Android smartphones and a Fitbit wearable device, to 
collect behavioural and clinical data in people under-
going therapy for depressive disorders, to establish the 
extent to which they can be potentially useful biomarkers 
of depression and changes in clinical state. The purpose 
of this is to describe patterns of user engagement and 
missing data, which are likely to impact the scientific 
integrity of future large- scale studies.

Secondary aims are to identify candidate signals for 
digital biomarkers by detecting correlations between 
objective features and clinical characteristics, and to 
explore whether these signals have prognostic value in 
the context of psychological treatments.

METHODS AND ANALYSIS
Design
This is an observational, prospective cohort study of 
people attending psychological therapy for depression. It 
will use RMTs to gather active and passive data for up to 
7 months and will adopt a mixed methods design to eval-
uate the feasibility and acceptability of such data collec-
tion methods.

Setting
Participants will be drawn from Improving Access to 
Psychological Therapies (IAPT) services in South London. 
The participating IAPT services will be from the boroughs 
of Lambeth, Lewisham and Croydon within the South 
London and Maudsley NHS Foundation Trust. IAPT is 
a publicly funded self- referral outpatient programme 
providing evidence- based psychological treatments for 
adults with mild- to- moderate mental health disorders. 
The service is free at the point of delivery.

Recruitment for this study initiated in June 2020 during 
the COVID- 19 pandemic. Given the government- imposed 
travel restrictions and social distancing measures, the 
entirety of this study will be carried out remotely.

Sample size
Formal sample size calculations are not a requirement 
for feasibility studies14; however, the general recom-
mendation is for samples of 50–60 participants to assess 
feasibility outcomes.15 In order to address our secondary 
aims, a sample size of 50 would be sufficiently powered 
to detect a correlation coefficient of 0.39 and above, 
assuming a significance level of 0.05 and type 2 error 
value of 0.20. Based on previous studies, we expect such 
an effect size.16–18 To account for a potential attrition rate 
of 20% we will aim to recruit 65 participants.

Recruitment
IAPT clinicians will act as gatekeepers to the initial 
recruitment process. Patients within their service, who 
have previously agreed to be contacted for research 
purposes, will be invited to take part, either by phone 
call or email. They will be given a summary of the aims 
and procedures of the study and be screened for eligi-
bility as per the inclusion/exclusion criteria below. 
When screening is done by email, participants receive 
a personalised email with a description of the study and 
a link to an online screening tool that participants can 
complete in their own time, the responses of which are 
relayed to the research team. If willing and eligible, 
potential participants will be sent the participant 
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information sheet and given at least 24 hours before 
going through the consent procedures and being 
enrolled in the study.

Inclusion criteria
A. Adults with a current depressive episode as measured 

by the Mini International Neuropsychiatric Interview 
(MINI19).

B. Being on the waiting list to receive treatment for de-
pression at IAPT services, with an expected wait of at 
least 7 days (to a maximum of 5 weeks) between sched-
uled enrolment and first treatment session. Due to the 
prevalent comorbidity with anxiety disorders, people 
with a main diagnosis of anxiety were also included, 
provided they met inclusion criterion A.

C. Existing ownership of Android smartphone with suffi-
cient memory space for the relevant apps.

D. Able and willing to use a wrist- worn device for dura-
tion of the study.

E. Able to give informed consent for participation.
F. Sufficient English language skills to understand con-

sent process and questionnaires.

Exclusion criteria
A. Lifetime diagnosis of bipolar disorder, schizophrenia 

and schizoaffective disorders as these have different 
digital patterns to depression.20 21

B. Health anxieties that may significantly worsen with 
constant monitoring of behaviour.

C. Extensive sharing of smartphone with friends or fam-
ily.

D. Night shifts, pregnancy or living with a baby aged 
0–6 months (due to sleep disruptions).

Study procedures
Once interest and eligibility have been ascertained, 
participants will be invited to attend an enrolment session 
via video call. Figure 1 shows the study timeline for partic-
ipants as they enter the study. After a further review of 
study procedures and opportunity for questions, partic-
ipants will be asked to sign an electronic consent form. 
Consent can be taken either using the Qualtrics platform, 
which has been approved for this purpose, or via MS Word 
or PDF documents which participants electronically sign 
from their devices.

Enrolment/baseline
Following consent, the enrolment session comprised 
three further sections: (1) obtaining sociodemographic 
and clinical data, (2) completion of self- reported ques-
tionnaires, and (3) technology set- up. The researchers 
will take demographic and clinical information related to 
current and previous physical and mental health condi-
tions, family history, treatment status as well as phone 
use, previous experience with health apps and devices 
and social and physical activity levels. In order to detect 
the presence of a depressive episode, and define whether 
atypical in nature, MINI and the Atypical Depression 
Diagnostic Scale22 will be administered. At the end of the 
session, participants will be asked to complete a battery of 
self- reported questionnaires as shown in table 1.

Technology set-up
Participants will be asked to download four apps on their 
phone: RADAR passive RMT (pRMT) app, which collects 
background sensor data from smartphones; the RADAR 
active RMT (aRMT) app, which delivers clinical question-
naires; THINC- it for Remote Assessment of Disease and 
Relapse- Central Nervous System (RADAR- CNS), an app 
assessing cognitive function; and the Fitbit app. These will 
be linked in call to the RADAR base platform.23 A Fitbit 
Charge 3 or 4 is then delivered to them within one to two 
working days, at which point they are guided through the 
set- up. Participants will be given £10.00 for completing 
the enrolment session and keep the Fitbit after the study. 
Table 1 shows the schedule of events for the Remote 
Assessment of Treatment Prognosis in Depression study.

Follow-up
From enrolment, longitudinal collection of active and 
passive data begins. The current study will use the RADAR 
base platform and their apps to collect passive and active 
data, as well as a Fitbit API integration source.23 More 
information can be found at radar-base.org/.

Passive measures
Passive measures will be continuously gathered from 
smartphone sensors via the pRMT app and wearable 
sensors from the Fitbit. Sensor data will include Global 
Positioning System (GPS), acceleration, light, phone 
interaction (total time on phone and app usage), paired 
and nearby Bluetooth devices, number of saved contacts, 

Figure 1 Study timeline for participants.

https://radar-base.org/
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Table 1 Schedule of events

Event Enrolment

Questionnaire frequency

Weekly Fortnightly Monthly Endpoint

Informed consent x         

Sociodemographic data x         

Clinical history x         

MINI x         

ADDS x         

Smartphone apps set- up x         

Active measures* (from REDCap)   

Validated questionnaires   

SAPAS x         

BIPQ x       x

Life stress (SRRS) x       x

CTQ x         

AUDIT x         

PHQ–9 x   x   x

GAD- 7 x   x   x

Rumination (RRS) x     x   

AUDIT (short version) x   x     

Oslo 3- item Social Support Scale x     x   

Perceived Stress Scale x     x x

WAI- SR†         x

Contextual information   

Caffeine intake x x       

Treatment status and content‡ x x       

Social activities x   x     

Social distancing practices x   x     

COVID- 19 experience x     x   

Active measures* (from aRMT app)   

QIDS- SR x x       

WSAS x x     x

Speech task x   x     

Perceived sleep§ x x       

Cognition (THINC- it app) x     x   

Passive measures   

Fitbit Charge To be worn throughout the study.

pRMT app: GPS, acceleration, light, phone interaction, Bluetooth 
devices, number of contacts, battery level, weather

Will run in the background gathering data from enrolment.

Qualitative interview†         x

*Weekly time spent completing questionnaires should not exceed 10 min.
†Completed once during treatment.
‡Only for the duration of treatment.
§Daily for 90 days.
ADDS, Atypical Depression Diagnostic Scale; aRMT, active RMT; AUDIT, Alcohol Use Disorder Identification Test; BIPQ, Brief Illness Perceptions 
Questionnaire; CTQ, Childhood Trauma Questionnaire; GAD- 7, Generalized Anxiety Disorder; GSP, Global Positioning System; MINI, Mini 
International Neuropsychiatric Interview; PHQ- 9, Patient Health Questionnaire; pRMT, passive RMT; QIDS- SR, Quick Inventory of Depressive 
Symptomatology- Self- Report; REDCap, Research Electronic Data Capture; RRS, Rumination Response Scale; SAPAS, Standardised Assessment 
of Personality: Abbreviated Scale; SRRS, Social Readjustment Rating Scale; WAI- SR, Working Alliance Inventory- Short Revised; WSAS, Work and 
Social Adjustment Scale.
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battery level and weather. Fitbit generates digital features 
relating to sleep, physical activity and heart rate.

Neither the Fitbit nor the apps are validated medical 
tools, as they are not intended to diagnose or treat a 
medical condition; RADAR- based apps are purpose built 
for research, while the Fitbit is marketed as a fitness 
tracker. Despite questions surrounding the ability of 
digital sensors in detecting the behaviours of interest 
accurately, they have been found to reliably detect sleep, 
physical activity and location.24–26

No personally identifiable information will be gathered 
from these sensors; GPS signals are obfuscated and rela-
tive to previous location rather than exact points, and 
no contact details, website or app content is collected 
by the apps. Personal privacy is thus protected, and no 
identification of an individual’s home address or precise 
geographical location can be gathered.

Active measures
Participants will be asked to respond to questionnaires 
throughout the study period. Some of them will be deliv-
ered via the aRMT app, others will be collected via the 
Research Electronic Data Capture (REDCap) software,27 
a web- based platform for research that sends email notifi-
cations to participants throughout the study.
A. Weekly emailed questionnaires: participants will re-

ceive weekly emails with a link to complete REDCap- 
delivered questionnaires, which can be complete on 
a smartphone or a computer. Questionnaires will 
be scheduled at different time intervals (fortnightly, 
monthly), in such a way that the maximum amount of 
time needed to complete them is 10 min/week.

B. Weekly aRMT tasks: the aRMT app is designed to col-
lect health information from research participants by 
sending them notifications and asking them to com-
plete in- app tasks and questionnaires. These will in-
clude questions on depression, functionality, subjec-
tive sleep experiences and a speech task.

C. Speech task: participants will be asked to undertake 
two speech tasks. The first task will require them to 
read out prewritten text, and the second task will ask 
them to answer out loud a question such as: ‘Can you 
describe something you are looking forward to this 
week?’. Participants will record their voice in quiet sur-
roundings for both tasks via the aRMT app. Acoustic 
features such as pitch, jitter, shimmer, formants and 
intensity will be extracted.

D. Cognition via THINC- it app: once a month, the aRMT 
app will notify participants that it’s time to complete 
the THINC- it tasks, they will be asked to open the 
THINC- it app to do so. THINC- it is a validated tool 
designed to assess cognitive function in depression.28 
The tests incorporated in this tool—the One- Back 
Test, the Trail Making Test Part B, the Digit Symbol 
Substitution Test, Choice Reaction Time Task—assess 
attention, processing speed, executive function, learn-
ing and memory. The tool also incorporates the Per-

ceived Deficits Questionnaire,29 a self- report question-
naire that assesses a person’s cognitive concerns.

End of study
Twelve weeks after participants have finished treatment, 
the research team will contact them to finalise their time 
in the study and complete endpoint assessments. In case 
of an unexpected change regarding their treatment, such 
as treatment being reduced or extended, the 3- month 
follow- up will commence on the day of their last core 
treatment session with IAPT services.

Extra participant contact
To maintain engagement and stay abreast of any issues, 
participants will be contacted after their first week after 
enrolment, and then in months 1, 3, 5 and 7. Researchers 
will initially contact participants on the phone unless an 
alternative method of contact is preferred and followed 
up with an email. Any issues raised in these calls, or 
sporadically reported by participants throughout the 
course of the study, will be recorded. Additionally, partic-
ipants will be sent a monthly newsletter, via email, which 
will include study updates, tech tips and any frequently 
asked questions.

Post-treatment qualitative interview
In order to inform the feasibility and acceptability aims 
of this study, participants who complete therapy will be 
invited to take part in an optional qualitative interview. It 
will be a 30 min semistructured interview looking at partic-
ipant experiences of using RMTs during psychotherapy 
for depression. We will invite participants to this interview 
once they complete treatment and will interview the first 
20 who agree to take part. See online supplemental mate-
rials for a full interview schedule.

Outcome measures
Primary outcomes
The primary outcome is to establish the feasibility of using 
wearable devices and smartphone sensors to monitor 
the behaviour of people with depression while receiving 
psychological treatment. Key feasibility outcomes will be 
related to clinical and methodological considerations, 
and will evaluate recruitment and participant flow, subjec-
tive reports of acceptability of methods, data availability 
and data quality.

The following feasibility outcomes will be reported:
 ► Estimates of recruitment and attrition rates (figure 2).
 ► Presence and absence of passive data: ‘wear time’ 

for wearable devices and ‘on time’ for smartphone 
sensors, and the extent to which the available data 
allow for correlational and predictive analyses with 
significant statistical power.

 ► Active data availability and data quality: percentage 
number of tasks completed.

 ► Qualitative data: participant experience and attitudes 
towards data collection instruments and procedures.

https://dx.doi.org/10.1136/bmjopen-2021-059258
https://dx.doi.org/10.1136/bmjopen-2021-059258


6 de Angel V, et al. BMJ Open 2022;12:e059258. doi:10.1136/bmjopen-2021-059258

Open access 

Secondary outcomes
Secondary outcomes will evaluate the relationship 
between digital data and clinical outcome measures, both 
at individual time points and as prognostic factors for 
recovery after treatment. Scores on clinical scales will be 
used in addition to individual symptom domains.

Digital outcomes will be derived from smartphone and 
Fitbit sensors, and digital features from passive measures 
described in the ‘Passive Measures’ section, such as GPS 
signal patterns, sleep, phone use and Bluetooth interac-
tions. They will be extracted to form averages that encap-
sulate daily, weekly and within- treatment means and SDs 
or frequency counts.

Clinical state will be measured using:
 ► Patient Health Questionnaire (PHQ- 9)30: the nine- 

item questionnaire that is widely used for measuring 
depression in IAPT services.

 ► Generalized Anxiety Disorder31 questionnaire: will be 
measured as it gathers important anxiety symptoms 
which are so often comorbid with depression.

 ► Quick Inventory of Depressive Symptomatology- Self- 
Report (QIDS- SR)32: this is a 16- item inventory of 
depression for patients who identify as depressed or 
who may be suffering from depression.

 ► Work and Social Adjustment Scale33: a measure of 
quality of life/disability, which is a five- item assess-
ment of perceived social and work- related functional 
impairment used widely across a range of mental and 
physical disorders.

 ► Cognition via the THINC- it app.
Participants will be considered to be in remission if they 

have experienced a reduction of at least 50% in depres-
sive symptomatology from the start of treatment, or no 
longer meet criteria for depression according to the 
PHQ- 9 (scoring below the cut- off of 5). Subdimensions 
of depression—for example, interest in activities, motiva-
tion, appetite—will be gathered from the QIDS- SR.

The sociodemographic, clinical and contextual vari-
ables measured, such as illness severity, cognitive function 
and social support, will be taken as covariates.

 ► Standardised Assessment of Personality: Abbreviated 
Scale34: an eight- item personality test that screens for 
personality disorder.

 ► Brief Illness Perceptions Questionnaire35: provides an 
insight into the participant’s views about their under-
lying condition and how well they see themselves 
coping with it.

 ► Life Stress Scale (Social Readjustment Rating Scale)36: 
this is a retrospective questionnaire for identifying 
major stressful life events.

 ► Childhood Trauma Questionnaire37: a 26- item scale 
that assesses five types of maltreatment: sexual abuse, 
physical abuse, emotional neglect, physical neglect 
and emotional abuse.

 ► Alcohol Use Disorder Identification Test38: widely 
used scale in primary care that measures alcohol 
consumption, drinking behaviours, and identifies 
harmful alcohol use.

 ► Oslo 3- item Social Support Scale39: a brief instrument 
that assesses social support.

 ► Perceived Stress Scale40: a measure of the degree to 
which situations in one’s life are appraised as stressful. 
Items were designed to assess how unpredictable, 
uncontrollable and overloaded respondents find 
their lives to be.

 ► Working Alliance Inventory- Short Revised41: a 12- item 
scale measuring therapeutic alliance on three key 
components: (a) agreement on the tasks of therapy, 
(b) agreement on the goals of therapy, and (c) devel-
opment of an affective bond.

 ► Rumination Response Scale42: a 10- item scale that 
measures rumination.

 ► COVID- 19- related questions: isolation status and their 
perceived effect, confirmed or suspected diagnosis of 
COVID- 19 as well as social distancing practices.

 ► Treatment status: questions on whether psychotherapy 
has begun, whether they take concomitant medica-
tion and adherence (eg, ‘Are you taking medication 
for your mental health? If so, which one?’ or ‘Have 
you missed any psychotherapy sessions this week?’) 
and the broad content of their therapy sessions.

STATISTICAL ANALYSIS
Primary aims
Since our primary aims are descriptive, they will be 
presented as frequencies, percentages, means and SDs 
as appropriate. Missing data will be calculated as the 
percentage amount of data available from the total 
amount of expected data. Engagement will be assessed 
through data availability in passive data streams and data 
quality will be measured as the number of active tasks that 
are incomplete. Associations between engagement and 
clinical characteristics will be explored. Recordings of the 
semistructured interviews will be transcribed verbatim, 
checked for accuracy by a second researcher and analysed 

Figure 2 Participant flow in the Remote Assessment of 
Treatment Prognosis in Depression (RAPID) study.
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using a deductive approach to thematic analysis, with the 
iterative categorisation technique.43 Where participant 
responses can be quantified, they will be presented as 
aggregated counts or percentages, otherwise, summaries 
of participant responses will be presented narratively. 
Sporadic reports of issues with the technology or study 
methodologies will be summarised.

Secondary aims
Digital features that account for sleep, activity, sociability 
and cognition will be extracted from sensor data and 
correlated against scores on scales of depression, anxiety 
and functionality. Feature extraction will replicate the 
methods used by the RADAR- CNS consortium.23 44 Regres-
sion or classification analyses will be carried out for clin-
ical scores to see whether higher impairment is associated 
with behavioural features. Regression and classification 
approaches will also be used to determine whether clin-
ical data predict subject attrition or missing data patterns.

We will carry out univariate and multivariate asso-
ciations on digital features and clinical state, as well as 
within and between individual comparisons. In order to 
unearth digital profiles in the sample, individuals will 
be clustered together based on their response patterns 
using latent class analysis. This person- centred approach 
will unpick some of the heterogeneity in the sample 
and assumes there are underlying latent variables that 
underpin distinct symptom profiles,45 and has been used 
extensively in the construction of the subtypes of depres-
sion.46 This model will aid in the description of longitu-
dinal behavioural patterns in this sample.

To evaluate the prognostic value of digital features, 
we will use machine learning methods on the extracted 
aggregated features and clinical information, provided 
there are sufficient data points. A multivariate prediction 
model will be constructed, and different feature selec-
tion algorithms will be applied. Model performance will 
be evaluated through cross- validation, putting stress on 
sensitivity and specificity of relapse prediction model. We 
will also use dynamic structural equation modelling to 
evaluate the lagged associations across study time points.

Where data are missing at random and assuming it is 
not significantly high, multiple imputation methods will 
be carried out. If missing data are high, this may be incor-
porated into the model as a predictor, or otherwise used 
informatively.

Reporting standards
In the interest of open and reproducible science, we 
will follow basic transparency recommendations,13 47–49 
including the reporting of basic demographic and clin-
ical data, attrition and participation rates, missing data, 
evidence of the validity or reliability of the sensors and 
devices used. For each behavioural feature, a full defi-
nition and description of feature construction will be 
provided, with links to GitHub repositories and source 
code, where available. Definition and handling of missing 
data will be specified. In machine learning models, model 

selection strategy, performance metrics and parameter 
estimates in the model with CIs, or non- parametric equiv-
alents, will be described in full.

Patient and public involvement
This research was reviewed by a team with experience 
of mental health problems and their carers who have 
been specially trained to advise on research proposals 
and documentation through the Feasibility and Accept-
ability Support Team for Researchers: a free, confidential 
service in England provided by the National Institute for 
Health Research Maudsley Biomedical Research Centre 
via King’s College London and South London and Maud-
sley NHS Foundation Trust.

ETHICS AND DISSEMINATION
This study has been reviewed and given favourable 
opinion by the London Westminster Research Ethics 
Committee, approval from the Health Research Authority, 
Integrated Research Application System (project ID: 
270918) and confirmation of capacity and capability to 
carry out research from the South London and Maudsley 
NHS Foundation Trust. The research will be carried out 
in accordance with the Helsinki Declaration and Inter-
national Conference on Harmonisation- Good Clinical 
Practice Guidelines. Privacy and confidentiality will be 
guaranteed and the procedures for handling, processing, 
storage and destruction of the data will comply with 
the General Data Protection Regulation. Data collected 
will be hosted on KCL infrastructure. Participant Fitbit 
accounts will be created using generic email accounts so 
no personal details are shared with Fitbit.

The results of the study will be presented at local, 
national and international meetings or academic confer-
ences, and will generate manuscripts to be submitted to 
peer- reviewed journals. Additionally, the results from this 
study will form part of a doctoral thesis and will be shared 
with participants, if they wish, after the study has been 
completed.

DISCUSSION
If digital technologies are to fulfil their potential to 
revolutionise the clinical management of mental health 
conditions, we need to establish the feasibility and accept-
ability of using RMTs such as wearables and smartphones 
to track mood and behaviour in those seeking and under-
going treatment for such conditions.

There are some anticipated challenges faced by this 
study. Continuous tracking of behaviours like physical 
activity and sleep may result in favourable changes to 
health behaviours and improved self- management. While 
the current study is non- interventional and does not aim 
to affect improvement rates, such behavioural changes 
may directly impact mood and treatment outcome.

The main concern, however, arises from the impact of 
the COVID- 19 pandemic. Although the current public 
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health crisis will impact this study in several ways, we iden-
tify three main areas. First, part of the data collection 
will cover periods of time when there were government- 
imposed restrictions to movement and social proximity, 
meaning people’s daily routine will have been greatly 
disrupted, and signals will bear additional noise. Second, 
the impact on individuals’ mental health will be sizeable.50 
The profile of patients referred to psychological services 
may be different than before or after the pandemic, as we 
are faced with new mental health challenges.51 Finally, the 
pandemic has resulted in the forced adoption of digital 
technology for all aspects of life, including healthcare, 
likely affecting attitudes towards technology and there-
fore engaging with and accepting RMTs.52

Given the recency of the field and the interest in imple-
menting digital technologies within healthcare, assessing 
the acceptability and feasibility of such methods in this 
target population is of great importance in informing 
implementation efforts as well as planning future research 
studies involving such samples. Through the use of mixed 
methods, the current study aims to identify and address as 
many of these issues as possible.
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