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ABSTRACT
Objective: Body mass index (BMI) may cluster in
space among adults and be spatially dependent.
Whether and how BMI clusters evolve over time in a
population is currently unknown. We aimed to
determine the spatial dependence of BMI and its 5-year
evolution in a Swiss general adult urban population,
taking into account the neighbourhood-level and
individual-level characteristics.
Design: Cohort study.
Setting: Swiss general urban population.
Participants: 6481 georeferenced individuals from the
CoLaus cohort at baseline (age range 35–74 years,
period=2003–2006) and 4460 at follow-up
(period=2009–2012).
Outcome measures: Body weight and height were
measured by trained healthcare professionals with
participants standing without shoes in light indoor
clothing. BMI was calculated as weight (kg) divided by
height squared (m2). Participants were geocoded using
their postal address (geographic coordinates of the
place of residence). Getis-Ord Gi statistic was used to
measure the spatial dependence of BMI values at
baseline and its evolution at follow-up.
Results: BMI was not randomly distributed across the
city. At baseline and at follow-up, significant clusters of
high versus low BMIs were identified and remained
stable during the two periods. These clusters were
meaningfully attenuated after adjustment for
neighbourhood-level income but not individual-level
characteristics. Similar results were observed among
participants who showed a significant weight gain.
Conclusions: To the best of our knowledge, this is the
first study to report longitudinal changes in BMI
clusters in adults from a general population. Spatial
clusters of high BMI persisted over a 5-year period and
were mainly influenced by neighbourhood-level income.

INTRODUCTION
Elevated body mass index (BMI) is a major
risk factor for cardiovascular diseases, dia-
betes, cancers and all-cause mortality.1

Growing evidence shows that adults with a
high BMI tend to cluster in space among
adults, and that the distribution of BMI is
spatially dependent.2 3 To explore the link
between the place of residence and health,
spatial analysis methods have been developed
and introduced in epidemiological research.4

Spatial clusters of a trait can be determined
by its spatial dependence (spatial autocorrel-
ation), defined as a covariation of properties,
such as BMI, within a geographic space.
Previous reports have used spatial analyses to
identify clusters of obesity and obesity-related
factors among adult populations.2 5 6 Using a
large adult population-based study in the
State of Geneva, Switzerland, Guessous et al3

showed that BMI levels were not randomly

Strengths and limitations of this study

▪ As far as we know, this is the first study to
report the persistence of spatial clusters of high
body mass index (BMI) values over a 5-year
period in adults from a general population.

▪ The observed east-to-west pattern of BMI clus-
tering fits known socioeconomic and ethnocul-
tural differences distinguishing these opposite
regions of the city of Lausanne, Switzerland.

▪ A consequence of the social policy applied by
the city is likely to fix populations with modest
income in subsidised housing located in specific
areas.

▪ While recruitment methods of the CoLaus study
aimed at collecting information on a representa-
tive sample of the general population, adult parti-
cipants and non-participants to the CoLaus study
may differ, and participation bias cannot be
excluded.

▪ We considered several individual-level covariates,
but data on individual income was missing. We
used, instead, the median income of the includ-
ing city statistical sector.
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distributed across the State, but that in specific areas an
individual’s BMI was associated with the mean BMI of
the neighbourhood. Significant clusters of high and low
BMIs were identified. Further, BMI levels appeared to be
spatially dependent according to community character-
istics.7 Although a number of neighbourhood-related
risk factors of obesity exist, income level is thought to be
of major importance3 while associations between other
community environmental attributes and obesity have
been inconsistent. Yet, the potential impact of income
on the spatial dependence of BMI levels has been rarely
assessed. For instance, a reduction of BMI clustering
after adjustment for the area-level income would suggest
that neighbourhood socioeconomic characteristics may
impact individual’s BMI directly, especially if this attenu-
ation is independent of individual-level factors such as
age, physical activity and individual socioeconomic
status.3

So far, studies specifically exploring the spatial distri-
bution of BMI clusters in adults have been limited by
their cross-sectional design.8–10 Similarly to what is being
done for infectious diseases, considering the spatial
dynamics of BMI clusters using longitudinal data could
further improve our understanding of the association of
urban environment and neighbourhood socioeconomic
context with obesity. This could also be an effective
approach to develop interventions that better take the
space and temporal variations into consideration.
In this study, we determine the 5-year changes in

spatial dependence of BMI, and the BMI spatial depend-
ence among participants who developed obesity, apply-
ing a spatial analytic approach to a Swiss urban
population-based cohort with longitudinal data on mea-
sured BMI at the individual level. Further, we assessed
the extent to which BMI special dependence is
accounted for by socioeconomic factors at the neigh-
bourhood and individual levels.

METHODS
CoLaus
We used the data from the CoLaus baseline and
follow-up study. The primary aims of the CoLaus study
were to assess the prevalence and determinants of car-
diovascular disease in the Caucasian population of
Lausanne, Switzerland.11 The CoLaus study complied
with the Declaration of Helsinki and was approved by
the local Institutional Ethics Committee. All participants
gave written informed consent. The sampling procedure
of the CoLaus study has been described elsewhere.11

Briefly, the CoLaus study was population-based and
included participants aged 35–75 years at baseline
(2003–2006). The recruitment took place in the city of
Lausanne in Switzerland, a town of 126 700 inhabitants
(as of December 2003). The complete list of the
Lausanne inhabitants aged 35–75 years was provided by
the population register of the city. A simple, non-
stratified random sample of 35% of the overall

population was drawn. The sample of 8121 individuals
who agreed to participate represented 41% of the ini-
tially sampled population. The baseline CoLaus study
enrolled 6733 participants (3544 women) of whom 5064
participants were willing to be recontacted for the
follow-up (2009–2012). At baseline and follow-up, parti-
cipants attended a single visit at the Centre Hospitalier
Universitaire Vaudois, which included an interview and
a physical examination. Average follow-up time was
5.5 years.
Body weight and height were measured by trained

healthcare professionals with participants standing
without shoes in light indoor clothing. BMI was calcu-
lated as weight (kg) divided by height squared (m2).
Self-reported information on education level (5 categor-
ies based on the highest level of education achieved),
ethnicity (Caucasian vs non-Caucasian), marital status
(living alone vs living in couple), receiving government
benefits (yes, no), physical activity (4 categories
based on the response to the following question: ‘How
many times per week do you take part for at least
20 min in leisure-time physical activity?’), smoking
status (current, former, non-smoker) and alcohol con-
sumption (yes, no).

Geocoding
Geocoding was performed using QGIS (Quantum GIS
Development Team, 2013) with the extension MMQGIS
(http://michaelminn.com/linux/mmqgis/) containing
a geocoding Python plugin facilitating the use of the
Google Maps API. We took into consideration for ana-
lysis individuals sampled in the urban area only
(further details in online supplementary material).

Neighbourhood-level income
To assess the impact of an area’s income level on BMI
spatial dependence, we compared results with and
without BMI adjustment for the area’s income. Data on
area’s income level were obtained from the 2009
Lausanne Census (Office Cantonal de la Statistique,
http://www.scris-lausanne.vd.ch). Information on
median annual income in Swiss francs CHF (1 CHF= US
$1.02, September 2015) covered 81 statistical sectors of
the city (average population of the statistical sectors is
1687). The income value was attributed to individuals
on the basis of the inclusion of their postal address
(place of residence) within the corresponding sector.
Online supplementary figure S1 shows a box map of the
median income in 2009 per statistical sector (81) in the
city of Lausanne.

Individual socioeconomic and demographic status
To assess the potential impact of individual-level
characteristics (including socioeconomic status) on BMI
spatial dependence, we ran additional models further
adjusted for age, sex, education level, Caucasian ethni-
city, marital status, government benefits, physical activity,
smoking status and alcohol consumption.
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Spatial dependence of BMI among participants with
weight gain
We then explored the spatial dependence of follow-up
BMI among participants showing a BMI increase ≥5%
between baseline and follow-up as used elsewhere.12

Models with raw BMI, BMI adjusted for
neighbourhood-level median income, and BMI further
adjusted for individual-level characteristics were used.

Spatial analysis
Using the geographical coordinates of the postal
addresses (place of residence), we applied the Getis-Ord
Gi statistic

13 14 implemented in the GeoDa software15 to
detect where in the city clustering of high BMI values
may be occurring. Getis-Ord Gi indicators are statistics
that measure spatial dependence and evaluate the exist-
ence of local clusters in the spatial arrangement of a
given variable (here BMI). They compare the sum of an
individual’s BMI values included within a given spatial
lag proportionally to the sum of the individual’s BMI
values within the whole study area.13 Further details are
available in the online supplementary material. The Gi

statistic is a Z score. The null hypothesis for this statistic
is that the values being analysed exhibit a random
spatial pattern. Statistical significance testing was here
based on a conditional randomisation procedure16 using
a sample of 999 permutations, and based on the
Bonferroni/Sidak procedure to correct for multiple
comparisons.16 All maps shown in this paper correspond
to a significance level of 0.05 (see figure 5 in ref. 17),
with online supplementary figure S2 illustrating how
much the significance may vary according to different α
levels. Large statistically significant positive and, respect-
ively, negative Z scores reveal clustering of high and,
respectively, low BMI values. A hot spot13 is a statistically
significant cluster of high values. A cold spot is a statistic-
ally significant cluster of low values. All sampling sites
which are not significant are displayed in white. We ana-
lysed the BMI variables within 800 m around each indivi-
dual’s residence (ie, spatial lag). Quantile regression was
used to generate residuals to obtain adjusted BMI.18

To test the robustness of our findings, we ran the fol-
lowing additional sensitivity analyses: (1) analyses of
baseline BMI cluster restricted to participants who also
attended the follow-up examination, (2) all analyses
restricted to participants living in the urban area of the
city and who did not change residence between baseline
and follow-up (N=3950), (3) analyses implementing BMI
adjustment with different covariates (eg, education level
and median income; education level only; all socio-
economic variables, etc) and (4) we tested eight other
spatial lags (400, 600, 1000, 1200, 1400, 1600, 1800 and
2000 m). Finally, as Moran’s I method, unlike Getis-Ord
Gi, also identifies dissimilar values among the local high
and low spots (high–low and low–high), and thus pre-
venting misclassification of individuals in areas with rela-
tively high numbers of dissimilar neighbouring
individuals, we also ran local Moran’s statistics (detailed

in online supplementary material). Results provided
similar patterns (see online supplementary figures S3a, b,
S4a, b and S5a, b).

RESULTS
Among the 6733 participants at baseline, 252 (3.7%)
were excluded because they lived in municipal districts
in the countryside, and 17 (0.25%) could not be geo-
coded. Thus, 6481 (96%) participants living in the
urban area of Lausanne were geocoded using their
postal address (geographic coordinates of the
residence).
Among the 5064 participants at follow-up, 604 (12%)

were excluded because they had moved outside the
urban limits of the Lausanne municipality between 2006
and 2009. Thus, 4460 (88%) participants could be geo-
coded at follow-up.
The 17 urban districts (‘quartiers’ shown in figures 1–3)

contain between 2 and 10 statistical sectors (shown
in online supplementary figure S1). The statistical
sectors contain between 0 (for seven of them) and 328
individuals at baseline (mean=77.1; median=70) and
between 0 (for eight of them) and 222 individuals at
follow-up (mean=55.06; median=49). Baseline individual
characteristics of participants included at baseline and
at follow-up were similar (see online supplementary
table S1).
The mean (±SD) age of the 6481 (52.7% women) and

4460 (54.1% women) participants included at baseline
and at follow-up was 52.6±10.7 and 58.1±10.5 years,
respectively. The mean (±SD) BMI was 25.8±4.5
(median=25.2) and 26.2±4.6 (median=25.6) kg/m2 at
baseline and follow-up, respectively, and the prevalence
of obesity was 15.4% and 17.4% at baseline and at
follow-up, respectively. Median (minimum–maximum
range) area’s annual income level was 50 882 CHF
(31 306–98 586 CHF) at baseline, and 51 139 CHF
(31 306–98 586 CHF) at follow-up.

Spatial dependence of BMI at baseline
Gi clusters for the 6481 adults at baseline are shown in
figure 1A, B. With regard to raw BMI, 2935 (45.2%) indi-
viduals presented no BMI spatial dependence, 1224
(18.9%) belonged to spatial clusters where individuals
locally showed a BMI proportionally higher than within
the whole study area (high BMI cluster class or hot
spots); 2322 (35.8%) belonged to spatial clusters where
individuals locally showed a BMI proportionally lower
than within the whole study area (low BMI cluster class
or cold spots). Clear BMI clusters were identified, with
hot spots predominantly in the northwest and in western
districts (2–4 and 14), and cold spots predominantly in
the eastern districts (5–9, 11 and south of 12) of the city.
The impact of neighbourhood-level income on spatial

dependence of BMI is shown on figure 1B. Adjustment
for neighbourhood-level income globally attenuated the
high BMI cluster areas (14.9% instead of 18.9% of
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Figure 1 Clusters for baseline showing the raw body mass index (BMI) (A) and the BMI adjusted for median income (B). White

dots show sampling places where the space is neutral (no spatial dependence). Red dots show individuals with a statistically

significant positive Z score (α=0.05), meaning that high values cluster within a spatial lag of 800 m, and are found closer together

than expected if the underlying spatial process was random. Blue dots show individuals with a statistically significant negative Z

score (α=−0.05), meaning that low values cluster within a spatial lag of 800 m, and are found closer together than expected if the

underlying spatial process was random. Lausanne districts are numbered from 1 to 17. For an exact description of the limits of

the districts see online supplementary figure S1. The background of the map was built on the basis of LIDAR data (height’s

model, Source: Géodonnées Etat de Vaud, 2012).
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Figure 2 Clusters for follow-up showing the raw body mass index (BMI) (A) and the BMI adjusted for median income (B). White

dots show sampling places where the space is neutral (no spatial dependence). Red dots show individuals with a statistically

significant positive Z score (α=0.05), meaning that high values cluster within a spatial lag of 800 m, and are found closer together

than expected if the underlying spatial process was random. Blue dots show individuals with a statistically significant negative Z

score (α=−0.05), meaning that low values cluster within a spatial lag of 800 m, and are found closer together than expected if the

underlying spatial process was random. Lausanne districts are numbered from 1 to 17. For an exact description of the limits of

the districts see online supplementary figure S1. The background of the map was built on the basis of LIDAR data (height’s

model, Source: Géodonnées Etat de Vaud, 2012).
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Figure 3 Clusters for follow-up showing the raw body mass index (BMI) (A) and the BMI adjusted for median income (B) among

participants showing weight gain (≥5% of BMI increase between baseline and follow-up). White dots show sampling places

where the space is neutral (no spatial dependence). Red dots show individuals with a statistically significant positive Z score

(α=0.05), meaning that high values cluster within a spatial lag of 800 m, and are found closer together than expected if the

underlying spatial process was random. Blue dots show individuals with a statistically significant negative Z score (α=−0.05),
meaning that low values cluster within a spatial lag of 800 m, and are found closer together than expected if the underlying

spatial process was random. Lausanne districts are numbered from 1 to 17. For an exact description of the limits of the districts

see online supplementary figure S1. The background of the map was built on the basis of LIDAR data (height’s model, Source:

Géodonnées Etat de Vaud, 2012).
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individuals). Attenuation was important in the north
(district 14), but did not affect the same category of
cluster in the west (districts 2–4). The adjustment atte-
nuated low BMI cluster areas (18.4% instead of 35.8% of
individuals), in particular in the east (districts 7–9 and
11), while one emerged in the centre of the city (district
1). Further adjustment for individual-level characteristics
(age, sex, education level, Caucasian ethnicity, marital
status, government benefits, physical activity, smoking
status and alcohol consumption) only slightly changed
BMI spatial dependence (see online supplementary
figure S6).
In unadjusted analyses the global Moran’s I (see

online supplementary material) was 0.011, and 0.0044
after adjusting for neighbourhood-level median income,
which is close to spatial independence in both cases.
These significant values of Moran’s I (p=0.01) show a
decrease of global spatial autocorrelation between the
two situations but above all highlight the local regime of
spatial dependence in the distribution of BMI values.

Spatial dependence of BMI at follow-up
BMI spatial dependence, BMI cluster areas and the
impact of neighbourhood-level income at follow-up, were
very similar to those at baseline, albeit less pronounced
(figure 2). With regard to raw BMI (figure 2A),
2287/4460 (51.3%) individuals presented no BMI spatial
dependence; 747 (16.7%) were in the high BMI cluster
class; 1426 (32.0%) were in the low cluster class. High
BMI clusters were predominantly located in the north-
western districts (2–4, 14 and 16), while the low BMI
clusters were predominantly located in the southeastern
districts (5–9 and 11) of the city. The adjustment for
neighbourhood-level income globally attenuated the
high BMI cluster areas (10% instead of 16.7% of indivi-
duals). These hot spots persisted in the west (districts
2–4, 17), the high cluster in the north disappeared (14),
while part of the cold spots in the east were attenuated,
especially in districts 6–9 and 11 (for a global decrease
from 32% to 12.7%, see figure 2B). Further adjustment
for individual-level characteristics (age, sex, education
level, Caucasian ethnicity, marital status, government
benefits, physical activity, smoking status and alcohol con-
sumption) did not meaningfully change BMI spatial
dependence (see online supplementary figure S7).
At follow-up, the global Moran’s I was 0.0094, and

0.0031 after adjusting for neighbourhood-level median
income. These values show a decrease of global spatial
autocorrelation in the adjusted case, but here again
highlighting a behaviour close to spatial independence
in the two situations.

Spatial dependence of BMI among participants showing
weight gain
Weight gain (≥5% of BMI increase between baseline
and follow-up) was found in 1351 adults (maximum
BMI increase=35.6%, mean=9.73, median=8.24; 59%
women, mean age 50.76±10.1), and was spatially

scattered all over the city. Among these adults, 1109
(82.1%) individuals presented no spatial dependence in
raw BMI, 107 (7.9%) belonged to spatial clusters where
individuals locally showed a BMI increase proportionally
higher than within the whole study area (hot spot), and
135 (10%) belonged to spatial clusters where individuals
locally showed a BMI increase proportionally lower than
within the whole study area (cold spot) (figure 3A). Hot
spots were distributed in the west (districts 2–4, and 16)
and in the centre to a lesser extent (districts 1 and 10),
whereas cold spots were distributed mainly in the east
(districts 8, 9 and 11), with a central spot too (districts 1,
3 and 5). Adjustment for neighbourhood-level income
(figure 3B) did not change the general spatial pattern
described above, but altered the intensity of spatial
dependence. Indeed, 105 (instead of 107) individuals
constituted stable hot spots in the west, while 162
(instead of 135) formed cold spots. The latter are con-
centrated in the central part of districts 1, 2, 3 and 15.
In the eastern part of the city (districts 8, 9 and 11),
median income cancelled 72% (61/84) of the cold
spots. Finally, adjusting for individual-level characteristics
(see online supplementary figure S8) globally neutra-
lised the local BMI clusters aforementioned but led to
the emergence of a cold spot in the north (57
individuals).
Sensitivity analyses restricted to participants living in

the urban area of the city and who did not change resi-
dence between baseline and follow-up (N=3950) and
analyses using different adjustment models provided
similar results (maps available on request).

DISCUSSION
Using repeated georeferenced measurements of BMI at
the individual level in adults from the general popula-
tion, we identified clusters highlighting a particular
structure in the spatial distribution of high and low BMI
values in the city of Lausanne. In adults, BMI is not dis-
tributed at random and shows a spatial dependence.
Using longitudinal data, we also found that clusters of
low and high BMI did not change in a 5-year period.
Also, neighbourhood-level income clearly influenced
BMI spatial dependence independently of individual-
level characteristics.
In line with previous cross-sectional studies, we found

spatial clustering of BMI in adults from the general
population.2 3 5 6 8 Our results extend these previous
findings by identifying clear high and low BMI clusters in
a city of Switzerland that is characterised by a low preva-
lence of obesity compared to international estimates,19 a
low level of social inequality (as measured by the Gini
coefficient), one of the longest life expectancy in the
world,20 and a universal health insurance coverage. We
observed an east-to-west pattern of BMI clustering.
Indeed, socioeconomic and ethnocultural differences
between the east and west of the city of Lausanne
are known (see http://www.scris-lausanne.vd.ch/).
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In the west live a majority of migrant workers, usually of
Mediterranean origin. In the east live mostly Swiss
citizens and people with a higher level of education.
Workers and subordinates are more numerous in the
west than in the east where business leaders and execu-
tives are more numerous.
Generally, association studies on BMI did not account

for spatial information and assumed independence
across observations. Our results are in line with a recent
report,3 and clearly show that this assumption is not
correct. This may explain some of the inconsistencies
reported on the impact of social and built environment
on obesity.21

The previously mentioned cross-sectional studies and
other studies on BMI clustering conducted in various
populations6 10 22–24 used self-reported BMI. Similarly to
Drewnowski et al,25 we used measured BMI allowing us
to estimate unbiased BMI. In addition, while previous
studies have analysed single time points, we reported
spatiotemporal information. At baseline and after a
5-year period, significant clusters of high versus low
BMIs were clearly identified and persisted between the
first and the second periods. To the best of our knowl-
edge, this is the first study to report longitudinal BMI
spatial clustering in the general adult population. An
increasing body of evidence shows that neighbourhood
socioeconomic context, measured by neighbourhood
deprivation, neighbourhood segregation, or population
density predicts the development of obesity and other
related health outcomes.26 27 Poorer physical infrastruc-
tures and transports, worse housing conditions, fewer
health and community services, and lower stocks of
social capital in poor neighbourhoods are factors that
have been proposed to explain how the place of resi-
dence might directly affect health.28 In addition,
network phenomena, including social network, appear
to be crucial factors in the biological and behavioural
traits of obesity as it seems to spread through social
ties.29 While all these factors are potentially dynamic,
our study showed that BMI clusters remained static
within the 5-year interval, suggesting a stable distribution
of individual-level and neighbourhood-level character-
istics in the city of Lausanne within this time frame.
Our longitudinal data also enabled the mapping of

weight gain (≥5% of BMI increase), which appeared to
be spatially scattered all over the city. In addition, we
found that even among participants who gained weight,
clusters of high and low BMI could be identified, and
that these clusters corresponded—albeit less pro-
nounced—to BMI clustering found among all partici-
pants. This is the first study to explore and report such
correspondence of BMI clustering. This result suggests
that the spatial clustering of high and low BMI observed
in the general adult population remains identical
among the limited group of persons having gained
weight between baseline and follow-up: individuals
gained more weight where high BMI clusters were
observed among all participants.

It is well acknowledged that both individual-level and
neighbourhood-level attributes can contribute to the
spatial clustering of BMI.9 We used neighbourhood
median income to characterise neighbourhood environ-
ment. Neighbourhood-level income is often used to
identify variations in health behaviours and outcomes.30

Neighbourhood-level income was recently identified as
an effect modifier of the relationships of food environ-
ments with BMI z-score among children.31 Although
many other attributes such as the built environmental
features have been used to characterise neighbourhood,
associations between such environmental attributes and
obesity have been inconsistent.22 23 32 33 Interestingly,
residential property values were related to high and low
BMI clusters in a recent study of 1602 adults included in
the 2008–2009 Seattle Obesity Study, whereas built envir-
onment features were not.24 In our study, we lack infor-
mation on residential property value—known to be a
strong independent predictor of BMI34—but it is very
likely that neighbourhood median income is highly cor-
related with residential property value, which could
explain—at least in part—the major effect of neighbour-
hood median income on BMI spatial dependence
observed in our study. Indeed, the city of Lausanne is an
important land owner, and a consequence of the social
policy applied may fix populations with modest income
in subsidised housing located in the specific areas where
the clusters of high BMI values were detected. Of note,
we showed that further adjustment for individual-level
characteristics had a minor influence on BMI spatial
dependence. In fact, adjustment for individual-level
characteristics had also a minor influence on raw BMI
spatial dependence (maps not shown, available on
request). This can be related to findings from Huang
et al24 showing that high and low obesity clusters were
only attenuated after adjusting for individual-level
characteristics and disappeared once neighbourhood
residential property values and residential density were
included in the model. On the other hand, our results
and Huang et al report contrast with results from a cross-
sectional analysis using Northern California, USA, Kaiser
Permanente data from 15 854 adults with diabetes
showing that adjusting for neighbourhood-level factors
reduced BMI clustering by 50%, whereas adjusting for
individual-level characteristics reduced BMI clustering by
68%.9 To better disentangle the role of individual-level
and neighbourhood-level characteristics on BMI spatial
dependence, further spatial studies with both
neighbourhood-level and individual-level indicators
should be conducted, particularly if also including
individual-level income which was not available in this
study. While doing so, other factors (eg, built areas vs
green spaces, services, transportations) that could
explain, at least in part, the observed spatial dependence
should be considered. For example, Hollands et al35 con-
ducted a spatial analysis of the association between res-
taurant density and BMI in Canadian adults, and found
that fast-food restaurant density was positively associated
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with BMI, independently of individual-level
characteristics.
Our spatial approach allowed us to detect different

patterns within statistical sectors that may have not been
identified based on aggregated data. Georeferenced
data enabling the characterisation of health risk factors
or disease is increasingly used, and has been proposed
as a tool to guide public health interventions.36 The use
of such information to contextualise BMI values like in
the present study can have potential impacts. It could
lead to specific recommendations for future healthy
urban planning (type of housing, food environment and
type of urban environment37). In particular, high BMI
clusters that persisted after adjustment for individual-
level and neighbourhood income deserve to be further
considered as they might be related to other obesogenic
factors such as the food environment. The use of spatial
approaches can allow identifying specific areas where to
intervene and to support specific prevention campaigns,
for example. Such models are being used in the UK to
identify areas where antiobesity policies should be imple-
mented.29 In addition to improving interventions, the
dynamic surveillance of BMI clusters can also contribute
to determining the effectiveness of such interventions.

Study limitations
We chose to use an 800 m spatial lag, but other choices
may produce slightly different results. Yet, we tested the
robustness of our findings using different spatial lags
and found no meaningful difference in the results
(clusters). We preferred the Getis-Ord Gi statistic to
other statistics such as Moran’s I as our interest focused
primarily on the detection of local clusters of high and
low BMI values.
While recruitment methods of the CoLaus study

aimed at collecting information on a representative
sample of the general population, adult participants and
non-participants to the CoLaus study may differ and par-
ticipation bias cannot be excluded (for instance, indivi-
duals residing in the same household could have
participated in the study). We considered several
individual-level covariates, but other data such as individ-
ual income were not available, and population density
not accounted for; thus, residual confounding
cannot be excluded. While reports suggest that
neighbourhood-level and individual-level income are
comparable in terms of ability to identify variations in
outcomes,38 individual-level income should ideally be
considered as neighbourhood-level and individual-level
income might measure different constructs.

CONCLUSION
To the best of our knowledge, this is the first study to
explore longitudinal changes in the spatial distribution
of BMI geocoded at the postal address level (geographic
coordinates of the residence). While previous studies
have analysed single time points, the spatiotemporal

approach proposed here identified persistent clusters
with high BMI. These results suggest that specific pre-
vention interventions involving urban planning decisions
could be targeted to such areas. Further studies are
needed to better understand the causes of such cluster-
ing, both at the individual level and at the structural
level, and to plan interventions aiming at modifying
these determinants.
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