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A B S T R A C T

While kinetic models are widely used to describe viral infection at various levels, most of them are focused on
temporal aspects and understanding of corresponding spatio-temporal aspects remains limited. In this work, our
attention is focused on the initial stage of infection of immobile cells by virus particles (‘‘virions’’) under flow
conditions with diffusion. A practical example of this scenario occurs when humans or animals consume food
from virion-containing sources. Mathematically, such situations can be described by using a model constructed
in analogy with those employed in chemical engineering for analysis of the function of a plug-flow reactor with
dispersion. As in the temporal case, the corresponding spatio-temporal model predicts either the transition to a
steady state or exponential growth of the populations of virions and infected cells. The spatial distributions of
these species are similar in both of these regimes. In particular, the maximums of the populations are shifted to
the upper boundary of the infected region. The results illustrating these conclusions were obtained analytically
and by employing numerical calculations without and with the dependence of the kinetic parameters on the
coordinate. The model proposed has also been used in order to illustrate the effect of antiviral feed additives
on feedborne infection towards curbing disease transmission.

1. Introduction

The mechanisms of initiation and spread of viral infections are
inordinately diverse and complex, and one of the ways to clarify
them systematically is based on the development of theoretical models
(Bocharov et al., 2018b; Goyal et al., 2019; Altan-Bonnet et al., 2020;
Handel et al., 2020). The classification of such models includes four
complementary levels with emphasis, respectively, on (i) human or
animal populations [see, e.g., the articles by Gao et al. (2019) and
Fabricius and Maltz (2020), and references therein], (ii) populations of
viruses and cells [reviewed in Bocharov et al. (2018b), Smith (2018),
Goyal et al. (2019), and Handel et al. (2020)], (iii) interplay of in-
tracellular kinetic steps [reviewed by Yin and Redovich (2018) and
Zhdanov (2018)], and (iv) mechanistic details of single steps [reviewed
by Jefferys and Sansom (2019) and Altan-Bonnet et al. (2020)]. The
corresponding models are primarily temporal. The development of
spatio-temporal models pertaining to categories (ii) and (iii) is of-
ten complicated due to limited information about how viruses spread
within the complex tissues environments of living organisms [such
studies are briefly reviewed, e.g., by Sewald et al. (2016)] and what
happens inside cells [reviewed by Yin and Redovich (2018)].
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Herein, we focus on developing a mathematical framework to de-
scribe spatio-temporal aspects of the initial phase of viral infection
within the scope of category (ii), i.e., taking virus and cell populations
into account. At this level, existing spatio-temporal models are usually
aimed at human infections and are constructed by complementing the
corresponding temporal models with terms describing the Fickian dif-
fusion of virions in combination with the Neumann (no flux) boundary
conditions that do not account for flow in the medium. The first models
of this category were, to our knowledge, proposed fifteen years ago by
Funka et al. (2005) and Wang and Wang (2007). More recent treat-
ments are described in articles by Bocharov et al. (2018a), Bocharov
et al. (2019), Huang et al. (2019), Tang et al. (2019), Yang and Wang
(2019), Elaiw and Al Agha (2020), Elaiw et al. (2020), Segredo-Otero
and Sanjuan (2020), Tadmon and Foko (2020), Wang and Chen (2020)
and Wang et al. (2020). The focus in all these studies was primarily
on analyzing the propagation of an infection front [reviewed in Sec.
6 of the book by Bocharov et al. (2018b)] rather than on the start of
an infection. By contrast, the mathematical analysis that we develop
in this work is aimed at studying the initiation of an infection under
flow conditions with diffusion. This scenario is of interest from various
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perspectives. For example, there is growing evidence that contaminated
food and liquids can act as transmission vehicles, whereby the infection
of humans and animals often occurs via the consumption of virion-
containing food or liquids. In such cases, food and liquid move along
and are processed in the intestines, and the initial phase of infection
may include the interaction of virions with host cells forming the
mucosal layer there. In our model, some of these cells are assumed to be
infected by virions and generate new virions under suitable conditions
that contribute to growth of the virion population.

Concerning the validation of the model, we add that now it is well-
established that foodborne viruses such as norovirus and hepatitis A
virus cause infections in humans (Koopmans et al., 2002; Rodriguez-
Lazaro et al., 2012). More recently, and in the motivation of our model,
there has been growing attention to the role that virion-containing ani-
mal feed, feed ingredients, and liquids play in transmitting viruses such
as African Swine Fever virus (ASFv) and Porcine Epidemic Diarrhea
virus (PEDv) [reviewed by Dee et al. (2016), Boklund et al. (2018), Gor-
don et al. (2019), and Jones et al. (2019)]. In particular, ASFv is now
considered to be one of the most devastating viral infections affecting
pigs and wild suids due to the lack of an effective vaccine or antiviral
treatment [reviewed by Dixon et al. (2013), Costard et al. (2013),
Guinat et al. (2016), Karger et al. (2019), Simoes et al. (2019), and
Mason-D’Croz et al. (2020)]. Despite recent progress in characterizing
the structure and function of ASFv in vitro (including proteomics and
replication cycle aspects), there remain limited mechanistic insights
into function in vivo (Karger et al., 2019; Simoes et al., 2019). In the
context of our study, it is of interest to note that there is evidence that
the consumption of contaminated feed and liquids is a key transmission
route among domestic pigs while direct transmission through close
contacts can also be operative (Guinat et al., 2016; Niederwerder et al.,
2019). Our results clarify one of the related infection scenarios and also
establish a mathematical framework to determine how feed pathogen
mitigation might reduce the infection probability of an animal that
consumes contaminated feed.

Concerning the novelty of our model in the context of ASFv, we
note that now there are a few ASFv-related kinetic models (Barongo
et al., 2016; Vergne et al., 2016; Halasa et al., 2018; O’Neill et al.,
2020). In the framework of the classification above, they belong to
category (i). For example, the most recent temporal model proposed by
O’Neill et al. (2020) is based on the division of pigs into four groups
including those which are, respectively, uninfected and susceptible to
infection, infected and able to transmit the virus, survived, and dead.
Each of the first three groups is divided into two subgroups (young
and mature). Thus, there are seven equations for the corresponding
populations. With these ingredients, the model allowed the authors
to assess disease control strategies. In contrast, our model belongs to
category (ii) and accordingly is complementary to the above-mentioned
models.

Our presentation below is divided into five sections. First, we recall
how the initiation of viral infections is described within the framework
of the standard temporal model (Section 2). Second, we complement
this model by incorporating terms to describe the flow of a feed-
containing medium and the diffusion of virions, and present the corre-
sponding analytical results in the case when the kinetic parameters are
independent of the coordinate (Section 3). Third, we show the results
of numerical calculations performed without and with the dependence
of the kinetic parameters on the coordinate along the infected region
(Section 4). Fourth, we briefly discuss and illustrate how the function of
feed additives used in order to suppress the infection can be described
(Section 5). Finally, we outline our main conclusions (Section 6).

2. Standard temporal model

The minimal ‘‘standard’’ (or ‘‘basic’’) temporal model of viral in-
fection operates with the concentrations (or populations) of target and

infected cells and virions, 𝐶∗(𝑡), 𝐶(𝑡), and 𝑐(𝑡) (Perelson, 2002; Smith,
2018). Mathematically, it can be formulated as
𝑑𝐶∗
𝑑𝑡

= 𝑤 − 𝜇𝐶∗ − 𝑘𝑐𝐶∗, (1)
𝑑𝐶
𝑑𝑡

= 𝑘𝑐𝐶∗ − 𝜅𝐶, (2)
𝑑𝑐
𝑑𝑡

= 𝑟𝐶 − 𝛾𝑐 + 𝐽 , (3)

where 𝑤 and 𝐽 are the supply rates, 𝜇, 𝜅, and 𝛾 are the death (or
elimination) rate constants, 𝑘 is the infection rate constant, and 𝑟
is the virion-production rate constant. A slightly extended version of
this model can be obtained by dividing the population of infected
cells into two subpopulations staying in the eclipse and active phases,
respectively (Smith, 2018).

In reality, viral infection is accompanied by the activation of the
immune system. This means that the virion-elimination rate constant,
𝛾, increases with increasing time. In the standard model, 𝛾 is considered
to be constant. This approximation corresponds to the initial phase
of infection. We are interested in this phase and accordingly accept
the standard model. Aiming at this phase, we can simplify the model
further by assuming 𝐶(𝑡) ≪ 𝐶∗(𝑡) and neglecting the dependence of 𝐶∗
on time in Eq. (2), i.e., by replacing 𝐶∗ by 𝐶∗(0). Including then 𝐶∗(0)
into 𝑘, i.e., replacing 𝑘𝐶∗(0) by 𝑘, we rewrite Eq. (2) as
𝑑𝐶
𝑑𝑡

= 𝑘𝑐 − 𝜅𝐶, (4)

In this approximation, Eq. (1) is not needed, and we can operate only
with Eqs. (3) and (4).

The types of kinetics predicted by the standard model for the initial
phase of infection can be clarified by illustrating its prediction in the
steady-state case. In this case, Eq. (4) yields

𝐶 = (𝑘∕𝜅)𝑐, (5)

With this relation, Eq. (3) is reduced to

(𝑘𝑟∕𝜅)𝑐 − 𝛾𝑐 + 𝐽 = 0, or 𝑐 = 𝜅𝐽∕(𝛾𝜅 − 𝑘𝑟). (6)

The latter expression for the virion concentration indicates that the
steady-state regime is possible provided

𝛾𝜅 > 𝑘𝑟. (7)

If this condition is not fulfilled, the growth of the populations of
infected cells and virions is predicted to be exponential. This can be
proved by calculating the eigenvalues corresponding to Eqs. (3) and
(4),

𝜆1,2 = −(𝛾 + 𝑘)∕2 ± [(𝛾 + 𝑘)2∕4 − 𝛾𝜅 + 𝑘𝑟]1∕2. (8)

The kinetics predicted by Eqs. (3) and (4) contain exp(𝜆1𝑡) and exp(𝜆2𝑡).
If 𝛾𝜅 < 𝑘𝑟, we have 𝜆1 > 0, and accordingly the growth is exponential.

3. Standard model with flow and diffusion

Bearing in mind the initiation of viral infection occurring via con-
sumption of contaminated feed, we add the spatial ingredients into the
model described above (Section 2). In particular, we again neglect the
dependence of the concentration of the target cells on time, include this
concentration into the infection rate constant [as in (4)], and operate
with the concentrations of infected cells and virions, 𝐶(𝑥, 𝑡) and 𝑐(𝑥, 𝑡)
(𝑥 is the coordinate along the intestine). More specifically, we consider
that the cells are immobile and describe infected cells by using the
equation apparently identical to (4), i.e.,
𝜕𝐶
𝜕𝑡

= 𝑘𝑐 − 𝜅𝐶. (9)

The difference between Eqs. (4) and (9) is that the former is temporal
(i.e., 𝑐 depends only on time) while the latter is spatio-temporal (i.e., 𝑐
depends on time and the coordinate along the intestine). To describe
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Fig. 1. Logarithm of the normalized average populations of virions and infected cells as
a function of dimensionless time, �̄�𝑡, for 𝑟∕�̄� = 0.3, 0.35, and 0.4. The other parameters
are given in the text. With these parameters, the model predicts transition to the steady-
state regime for 𝑟∕�̄� = 0.3 and 0.35 and exponential growth of the populations for
𝑟∕�̄� = 0.4.

virions, we omit 𝐽 in Eq. (3) and complement it by the terms taking
medium flow and virion diffusion into account, i.e.,
𝜕𝑐
𝜕𝑡

= 𝑟𝐶 − 𝛾𝑐 − 𝑣 𝜕𝑐
𝜕𝑥

+𝐷 𝜕2𝑐
𝜕𝑥2

, (10)

where 𝑣 is the flow rate, and 𝐷 is the diffusion coefficient. The rate
constants in these equations have the same meaning as in (3) and (4).

Concerning the concentrations, 𝐶 and 𝑐, used in Eqs. (9) and (10),
we notice that in general concentration can be defined as a number
of species per unit volume, surface area, or length. In the case under
consideration, 𝐶 and 𝑐 can be defined as the number of infected
cells and virions per unit surface area and volume of the intestine,
respectively. Alternatively, both these concentrations can be defined
as the number of species per unit length of the intestine. The latter
definition is slightly preferable and employed below, because it allows
us to simplify the presentation of the results by normalizing 𝐶 and 𝑐 to
one properly chosen concentration.

Feed moves along and is processed in the intestine. This means that
the conditions for the virion activity change along the intestine. In other
words, the rate constants in Eqs. (9) and (10) depend on 𝑥. 𝐷 can
depend on 𝑥 as well, and if this is the case one should replace 𝐷𝜕2𝑐∕𝜕𝑥2
in Eq. (4) by 𝜕(𝐷𝜕𝑐∕𝜕𝑥)∕𝜕𝑥. Below (in Section 4), we illustrate the
role of the dependence of the rate constants on 𝑥 in the kinetics under
consideration. The dependence of 𝐷 on 𝑥 is neglected, because in reality
the role of diffusion is expected to be less important compared to flow,
and accordingly we can keep 𝐷 constant in order to show general
trends.

By analogy with macromolecules (e.g., protein) in feed, one can
expect that the virions function primarily at a certain length scale,
i.e., at 0 ≤ 𝑥 ≤ 𝐿, because further on (at 𝑥 > 𝐿) their degradation
is rapid and their concentration is negligible. Following this line, we
solve Eqs. (9) and (10) at 0 ≤ 𝑥 ≤ 𝐿.

Mathematically, the structure of Eqs. (9) and (10) is similar to that
used in chemical engineering in order to describe heterogeneous cat-
alytic reactions occurring in a plug-flow reactor with dispersion (Mann,
2009). The terms describing the reaction steps in Eqs. (9) and (10)
and the corresponding kinetics are, however, qualitatively different
compared to those inherent for heterogeneous catalysis. In particular,
the exponential growth is not typical for heterogeneous catalysis. For
this reason, the available conventional results of the analysis or the
reaction kinetics in a plug-flow reactor with dispersion are not directly
applicable in our case.

With the reservation above, we can, however, notice that by anal-
ogy with chemical engineering [see, e.g., the discussion by one of us
(Zhdanov, 2020)], Eq. (10) can be solved with different boundary con-
ditions. One of the options is to use the Dirichlet boundary conditions
implying the concentration of virions at boundaries to be fixed e.g. as

𝑐(0, 𝑡) = 𝑐◦ and 𝑐(𝐿, 𝑡) = 0, (11)

where 𝑐◦ is the inlet concentration in the feed. The meaning of the
former boundary condition is obvious. Concerning the latter bound-
ary condition, it can be valid e.g. in the situations when the virion
degradation at 𝑥 > 𝐿 rapid and their concentration is there negligible.

Alternatively, one can employ at 𝑥 = 0 the Danckwerts boundary
condition implying that the total virion flux,

𝐹 = 𝑣𝑐 −𝐷 𝜕𝑐
𝜕𝑥

, (12)

is fixed. The discussion of this boundary condition in the context of
chemical engineering is given by one of us (Zhdanov, 2020). In our
present context, as we have already noticed, the role of diffusion is
expected to be less important compared to flow. In this limit, the
Dirichlet and Danckwerts boundary conditions are nearly equivalent.
With this reservation, we use the Dirichlet boundary conditions in
our analysis below, because the corresponding analytical results are
somewhat simpler. In particular, we operate with constant inlet concen-
tration. Practically, this means that the feed-mediated supply of virions
takes place over a long period. For short periods, the use of the viral
dose (or, in other words, viral uptake) might be preferable.

The suitable initial conditions for Eqs. (9) and (10) are as follows

𝐶(𝑥, 0) = 0 and 𝑐(𝑥, 0) = 0. (13)

For analytical and numerical calculations, it is convenient to use
the dimensionless coordinate, normalize the flow velocity and diffusion
coefficient,

�̄� = 𝑥∕𝐿, �̄� = 𝑣∕𝐿, and �̄� = 𝐷∕𝐿2, (14)

and rewrite Eq. (10) and conditions (11) and (13), respectively, as

𝜕𝑐
𝜕𝑡

= 𝑟𝐶 − 𝛾𝑐 − �̄� 𝜕𝑐
𝜕�̄�

+ �̄� 𝜕2𝑐
𝜕�̄�2

, (15)

𝑐(0, 𝑡) = 𝑐◦ and 𝑐(1, 𝑡) = 0, (16)

𝐶(�̄�, 0) = 0 and 𝑐(�̄�, 0) = 0. (17)

Then, Eqs. (9) and (15) can be solved analytically or numerically pro-
vided the rate constants are independent of 𝑥 or numerically provided
the rate constants depend 𝑥.

As in the case of the temporal model (Section 2), it is instructive
first to treat analytically the steady-state situation with 𝐶 = (𝑘∕𝜅)𝑐 [cf.
Eq. (5)]. With this relation, Eq. (15) is reduced to

(𝑘𝑟∕𝜅)𝑐 − 𝛾𝑐 − �̄� 𝜕𝑐
𝜕�̄�

+ �̄� 𝜕2𝑐
𝜕�̄�2

= 0. (18)

The solution of this equation with conditions (16) is given by

𝑐
𝑐◦

=
exp(𝜂1�̄�) − exp(𝜂1 − 𝜂2 + 𝜂2�̄�)

1 − exp(𝜂1 − 𝜂2)
, (19)

where

𝜂1,2 =
�̄�
2�̄�

±

[

(

�̄�
2�̄�

)2
−

𝛽
�̄�

]1∕2

(20)
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Fig. 2. (a) Normalized average populations of virions and infected cells as a function of dimensionless time, �̄�𝑡, for 𝑟∕�̄� = 0.1, 0.2, 0.5, and 1 (the other parameters are given in
the text). (b) Distribution of virions and infected cells along the infection region in the end (at �̄�𝑡 = 100) of the runs with 𝑟∕�̄� = 0.2 and 0.5.

Fig. 3. (a) Normalized average populations of virions and infected cells as a function of dimensionless time, �̄�𝑡, for 𝑟∕�̄� = 0.3 and 0.4 (the other parameters are given in the text).
(b) Distribution of virions along the infection region in the end (at �̄�𝑡 = 104) of the runs with 𝑟�̄� = 0.3. In both panels, the results obtained by including the dependence of the
virion elimination rate constant on the coordinate along the infection region [Eq. (26)] are shown by thick lines. The thin lines correspond to the case when this dependence is
neglected. Note that the average populations of virions are nearly equal in these cases so that the corresponding thick and thin lines are hardly distinguishable.
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Fig. 4. (a) Normalized average populations of virions and infected cells as a function of dimensionless time, �̄�𝑡, for 𝑟∕�̄� = 0.3 and 0.7 (the other parameters are given in the
text). (b) Distribution of virions and infected cells along the infection region in the end of the runs (at �̄�𝑡 = 104) shown in panel (a) for 𝑟∕�̄� = 0.3. These results were obtained by
including the dependence of the cell-infection rate constant on the coordinate along the infection region [Eq. (27)].

and

𝛽 ≡ 𝑘𝑟∕𝜅 − 𝛾. (21)

If 𝛽 < �̄�2∕4�̄�, 𝜂1 and 𝜂2 are real and expression (19) can be used directly.
If 𝛽 > �̄�2∕4�̄�, 𝜂1 and 𝜂2 are complex and can be represented as

𝜂1,2 = 𝑏1 ± 𝑖𝑏2, (22)

where

𝑏1 ≡
�̄�
2�̄�

and 𝑏2 ≡

[

𝛽
�̄�

−
(

�̄�
2�̄�

)2
]1∕2

. (23)

With this specification, expression (19) can be rewritten as

𝑐
𝑐◦

=
exp(𝑏1�̄�) sin[𝑏2(1 − �̄�)]

sin(𝑏2)
. (24)

The stability of the steady-state solution [(19) and (24)] of Eqs.
(9) and (15) can be identified by calculating the corresponding eigen-
values. In particular, our analysis indicates that the solution is stable
provided

𝛽 < �̄�2∕4�̄� + �̄�𝜋2 or 𝑘𝑟∕𝜅 − 𝛾 < �̄�2∕4�̄� + �̄�𝜋2. (25)

If this condition is not fulfilled, the model predicts exponential growth.
Comparing conditions (7) and (25), we conclude that the flow and
diffusion extend the domain of applicability of the steady-state solution.
Mechanistically, these processes contribute to the removal of virions
from the region under consideration (0 ≤ 𝑥 ≤ 𝐿) and accordingly help
to keep infection under control.

4. Numerical calculations

To integrate Eqs. (9) and (15) numerically, we first consider that
the rate constants are independent of 𝑥 and normalize them and �̄� to �̄�.
The corresponding calculations were performed by employing the con-
ventional discrete scheme with normalized (dimensionless) parameters

𝑘∕�̄� = 0.1, 𝜅∕�̄� = 0.01, 𝛾∕�̄� = 0.1, and �̄�∕�̄� = 0.1, and dimensionless time,
𝑡 = �̄�𝑡. The normalized virion-production rate constant, 𝑟∕�̄�, was used as
a governing parameter. According to condition (25), the model predicts
in this case the transition to a stable steady state provided 𝑟∕�̄� < 0.36.
For 𝑟∕�̄� > 0.36, the growth of the populations of virions and infected
cells is exponential. These regimes are illustrated in Figs. 1 and 2(a) by
showing the average populations of virions and infected cells,

⟨𝑐⟩ = ∫

𝐿

0
𝑐 𝑑𝑥∕𝐿 and ⟨𝐶⟩ = ∫

𝐿

0
𝐶 𝑑𝑥∕𝐿,

for long and short runs up to �̄�𝑡 = 104 and �̄�𝑡 = 102, respectively. Typical
distributions of virions and infected cells in the end of the latter runs are
exhibited in Fig. 2(b). For both regimes, the distributions are similar.
In particular, there is a maximum shifted to the right. This feature is
related with relatively slow diffusion of virions.

Two examples of the kinetics calculated with the dependence of
one of the rate constants on 𝑥 are shown in Figs. 3 and 4. In the first
example (Fig. 3), we consider that the virion elimination rate constant
increases with increasing 𝑥 as

𝛾 = 𝛾∗𝑥∕𝐿, (26)

where 𝛾∗ is the corresponding maximum value. To illustrate the role
of this factor, we used 𝛾∗∕�̄� = 0.1. This value is the same as that
employed for 𝛾∕�̄� in the calculations presented in Fig. 1. The other
parameters were fixed also as those used to construct in Fig. 1. With
these parameters, the kinetics and virion and infected-cell distributions
calculated with and without the dependence of 𝛾 on 𝑥 are nearly the
same. This can be explained by relatively rapid removal of virions from
the infection domain (0 ≤ 𝑥 ≤ 1) due to flow and diffusion. This channel
is more efficient than the conventional elimination, and accordingly the
details of the conventional elimination are not important.

In the second example (Fig. 4), we consider that the cell-infection
rate constant increases with increasing 𝑥 as

𝑘 = 𝑘∗𝑥∕𝐿, (27)
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where 𝑘∗ is the corresponding maximum value. By analogy with the
first example, this value was chosen to be the same (𝑘∗∕�̄� = 0.1) as
that employed for 𝑘∕�̄� in the calculations presented in Fig. 1, and the
other parameters were fixed as in the case of Fig. 1 as well. With these
parameters, the shape of the kinetics and the virion and infected-cell
distributions calculated with and without the dependence of 𝑘 on 𝑥
are similar, but the transition to the exponential growth takes place
at much larger values of the governing parameter, 𝑟∕�̄� > 0.6, than in
the case when 𝑘 is constant (Fig. 1 with 𝑟∕�̄� > 0.36).

In addition, we performed calculations in the case when both 𝛾
and 𝑘 depend on 𝑥 as described above. As expected, the corresponding
kinetics are close to those shown in Fig. 4 (not shown).

5. Effect of virus-mitigating feed additives

The model under consideration can be easily extended in various
directions. In particular, it can be used directly or with modifications
in order to describe e.g. the role of feed additives that can inhibit virus
in the feed in order to reduce the chance of infection occurring in
animals that consume the feed [such additives employed in the animal
agriculture sector are reviewed by Jackman et al. (2020a,b)]. At the
simplest level, one can e.g. consider that the viral elimination rate
constant depends on the concentration of the additive, 𝑐a,

𝛾 = 𝛾◦ + 𝐴𝑐a, (28)

where 𝛾◦ is the value corresponding to the additive-free case, and 𝐴
is a constant. Then, the model can be used directly by considering
𝑐a (or 𝐴𝑐a∕�̄�) to be a governing parameter. This choice is reasonable
provided that an additive is used for a long period (for short periods,
the additive dose can be employed). Alternatively, one can consider
that 𝑐a depends on the coordinate and complement Eqs. (9) and (10) [or
(15)] by the corresponding equation that can be constructed by analogy
with Eq. (10).

In this section, we use the former approach including Eqs. (9), (15),
and (28). To describe the system without feed additive (𝑐a = 0), we
choose the coordinate-independent parameters (𝑘∕�̄� = 0.1, 𝜅∕�̄� = 0.01,
𝑟∕�̄� > 0.5, 𝛾◦∕�̄� = 0.1, and �̄�∕�̄� = 0.1) so that the populations of
virions and infected cells grow exponentially (Fig. 5). Then, 𝐴𝑐a∕�̄� is
employed as a governing parameter. The corresponding kinetics were
calculated for 𝐴𝑐a∕�̄� = 0.01, 0.1, 1, and 10 (Fig. 5). For 𝐴𝑐a∕�̄� = 0.01,
the effect of an additive on the evolution of infection is predicted
to be practically negligible, so that the corresponding kinetics are
not distinguishable from those obtained with 𝑐a = 0 (not shown). If
𝐴𝑐a∕�̄� = 0.1 and 1, the effect of an additive on the kinetics is relatively
weak and strong, respectively, and, in both cases, the growth remains
exponential. For 𝐴𝑐a∕�̄� = 10, the system reaches a steady state with
small populations of virions and infected cells. In other words, this
means that the exponential growth is suppressed, and the infection is
under control.

6. Conclusion

The initiation of viral infection can be described in the framework of
the standard temporal model. We have extended this model by includ-
ing spatio-temporal aspects that capture important elements of viral
infection. Our attention has been focused on the initiation of infection
of immobile cells by virions under flow conditions with diffusion. The
effects of feed additives used to mitigate viral pathogens and curb dis-
ease transmission have also been briefly discussed. The corresponding
kinetics have been calculated with the parameters independent of the
coordinate as well as with the coordinate-dependent parameters. As
in the temporal case, the spatio-temporal model predicts either the
transition to a steady state or exponential growth of the populations
of virions and infected cells. The spatial distributions of these species
are similar in both these regimes. In particular, the maximums of the
populations are shifted to the upper boundary of the infected region. In

Fig. 5. Logarithm of the normalized average populations of virions and infected cells as
a function of dimensionless time, �̄�𝑡, for 𝐴𝑐a∕�̄� = 0, 0.1, 1, and 10. The other parameters
are given in the text. With these parameters, the model predicts exponential growth
of the populations for 𝐴𝑐a∕�̄� = 0, 0.1, and 1 and transition to the steady-state regime
with small populations of virions and infected cells for 𝐴𝑐a∕�̄� = 10.

addition, our calculations illustrate how virus-mitigating feed additives
can influence the initiation of infection. Our present analysis is focused
on the case when the virus supply is steady. The model can, however,
be used to describe periodic exposures of virus-containing feed as well.

In our calculations, we employed normalized dimensionless pa-
rameters. This has allowed us to illustrate general trends. From the
perspective of applications, it might be of interest to know the scale
of the parameters without normalization. In the ASFv-aimed models of
category (i) (according to the classification given in the Introduction),
the scale of the parameters is already known (Barongo et al., 2016;
O’Neill et al., 2020). For the ASFv-aimed models of our category
(ii), the related experimental data are, however, still scarce and not
sufficient for reliable estimates of the parameters we need.

The model employed is generic and helps to understand the specifics
of one of the scenarios of the initiation of viral infection. Thus, the
results presented are of interest in the context of theoretical virology
and outline the basic steps that can be used to analyze real-life infection
cases such as ASFv outbreaks, especially as more mechanistic informa-
tion becomes available about viral infections in such cases. Some of
the diffusion- and flow-related elements of our analysis can be useful,
as already mentioned in the Introduction, for constructing the kinetic
models aimed at norovirus and hepatitis A infections. These elements
are also relevant in other cases including e.g. such respiratory infections
as influenza and currently active COVID-19 in which cases the supply of
virions is mediated by air flow and often occurs by means of 𝜇m-sized
water droplets containing virions (Stadnytskyi et al., 2020).
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