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Parallel Implementation of Katsevich’s FBP Algorithm
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For spiral cone-beam CT, parallel computing is an effective approach to resolving the problem of heavy computation burden. It
is well known that the major computation time is spent in the backprojection step for either filtered-backprojection (FBP) or
backprojected-filtration (BPF) algorithms. By the cone-beam cover method [1], the backprojection procedure is driven by cone-
beam projections, and every cone-beam projection can be backprojected independently. Basing on this fact, we develop a parallel
implementation of Katsevich’s FBP algorithm. We do all the numerical experiments on a Linux cluster. In one typical experiment,
the sequential reconstruction time is 781.3 seconds, while the parallel reconstruction time is 25.7 seconds with 32 processors.

Copyright © 2006 Jiansheng Yang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

Spiral cone-beam CT can be used for rapid volumetric imag-
ing with high longitudinal resolution and for efficient uti-
lization of X-ray source. Katsevich’s filtered-backprojection
(FBP) inversion formula represents a significant break-
through in this area [2–4]. However, sequential implemen-
tation of this formula demands more intensive computation
and hardware resources [2, 3]. Parallel computation tech-
nique provides an effective solution to this issue.

Parallel computation technique was previously applied to
2D CT. Nowinski [5] investigated four forms of parallelism in
2D CT: pixel, projection, ray, and operation parallelisms. Us-
ing the data-parallel programming style, Roerdink and West-
enberg [6] studied parallel implementation for two standard
2D reconstruction algorithms: FBP and direct Fourier re-
construction. There were also some results on parallel im-
plementations of 3D CT image reconstructions for parallel-
beam and fan-beam geometries [7, 8]. For cone-beam CT,
parallel implementations of the Feldkamp algorithm on Be-
owulf clusters were reported, typically based on smart com-
munication schemes [9, 10]. In [9], a master node does all
the weighting and filtering of the projections, while the other
nodes perform the backprojection for their assigned image
subvolumes, respectively. In [10], each node weights and fil-
ters the projection data assigned to it, and then accomplishes
the backprojection for its assigned image subvolume in a
send-receive mode.

For image reconstruction from cone-beam projections,
the backprojection step is extremely time-consuming. In [1],
the authors proposed the cone-beam cover method for the
backprojection. This method is different from the conven-

tional methods based on PI line, and provides an alternative
efficient implementation scheme for Katsevich’s FBP formula
and its kind. In the cone-beam cover method, any filtered
cone-beam projection can be backprojected independently.
On the ground of this independence, we present a parallel
implementation for Katsevich’s exact reconstruction formula
in this manuscript. Numerical simulations demonstrate the
high performance of the proposed parallel scheme with re-
markable runtime reduction. For the 3D Shepp-Logan phan-
tom [11] with 256× 256× 256 voxels, 3× 600 source points
(600 points per turn) and 100 × 500 cone-beam projection
at every source point, the sequential cone-beam cover algo-
rithm takes 781.3 seconds to reconstruct the volume image,
while the proposed parallel implementation only needs 25.7
seconds with 32 processors on the same Linux cluster.

The structure of this manuscript is as follows. Section 2
introduces briefly Katsevich’s inversion formula and the
cone-beam cover method. Section 3 describes the proposed
parallel implementation of Katsevich’s inversion formula.
Section 4 provides experiment results and details of the com-
puting environment. Section 5 discusses relevant issues. Fi-
nally, Section 6 concludes the paper.

2. THE CONE-BEAM COVER METHOD

As shown in Figure 1, let C be a spiral defined by

C :=
{
y ∈ R3 : y1 = R cos(s), y2=R sin(s),

y3 = s

(
h

2π

)
, s ∈ I

}
,

(1)
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Figure 1: The spiral and image space U .

where s is the angular parameter, h > 0 is the spiral pitch and
I := [a, b], b > a. Let U be the image space defined by

U :=
{
x ∈ R3 : x2

1 + x2
2 < r2, c

(
h

2π

)
< x3 < d

(
h

2π

)}
,

(2)

where 0 < r < R, c < d, a = c − sΔ, b = d + sΔ, sΔ is the
necessary offset of the angular parameter [1–4]. It is assumed
that an object f (x) is centered at the coordinate origin and
supported by U , that is, f (x) = 0 if x �∈ U . The cone-beam
(at vertex y) projection of f is defined by

Df (y,β) :=
∫∞

0
f (y + tβ)dt, β ∈ S2. (3)

Katsevich’s FBP inversion formula [3] can be represented
as

f (x) = − 1
2π2

∫
IPI(x)

1∣∣x − y(s)
∣∣

×
∫ 2π

0

∂

∂q
Df
(
y(q),Θ(s, x, y)

)∣∣∣
q=s

dγ

sin γ
ds,

(4)

where IPI(x) := [sb(x), st(x)] is the PI parametric interval
which is determined by the PI line LPI(x) passing through
x [12], see Figure 2.

This formula can be rewritten as

f (x) := − 1
2π2

∫
IPI(x)

1∣∣x − y(s)
∣∣Ψ(s,β(s, x)

)
ds, (5)

where

β(s, x) = x − y(s)∣∣x − y(s)
∣∣ , (6)

Ψ(s,β) :=
∫ 2π

0

∂

∂q
Df
(
y(q), cos(γ)β+sin(γ)e(s,β)

)∣∣∣
q=s

1
sin γ

dγ,

(7)
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Figure 2: PI-line and PI parametric interval. A PI-line is a line seg-
ment, the endpoints of which are separated by less than one turn
in the spiral. Any x ∈ U belongs to one and only one PI-line, de-
noted as LPI(x). Endpoints of LPI(x) are denoted as y(sb(x)) and
y(st(x)), where sb(x) and st(x) are angular parameters of the end-
points and sb(x) < st(x). The interval IPI(x) := [sb(x), st(x)] is called
PI parametric interval. The section of the spiral between y(sb(x))
and y(st(x)) is called PI arc, denoted as CPI(x).

for the unit vector β along which X-ray emitted from y(s) will
reach the Tam-Danielsson window [13, 14], see Figure 3.

Equations (5) and (7) imply that the inversion formula
is of the filtered-backprojection type. One first computes the
shift-invariant filtering of derivative of cone-beam projection
using (7) [3, 15, 16]. Then one performs the backprojection
according to (5). Here, for every x ∈ U , the backprojection
is performed along PI arc CPI(x) (the PI line method).

In [1], we introduce the cone-beam cover method to
perform backprojection in a way different from the PI line
method.

Definition 1. Let W(s0) be the Tam-Danielsson window at
source point y(s0) (s0 ∈ I), we call

V
(
s0
)

:= {x ∈ U : x̂ ∈W
(
s0
)}

(8)

cone-beam cover at source point y(s0), where x̂ is the projec-
tion of x onto the detector plane, see Figure 4.

The following theorem on the cone-beam cover was
proved in [1]. It is the footstone of the cone-beam cover
method.

Theorem 1. For x ∈ U , one has

x ∈ V
(
s0
)

iff s0 ∈ IPI(x). (9)

Applying Theorem 1 to the discrete form of (5):

f (x) = − 1
2π2

∑
s∈IPI(x)

Ψ
(
s,β(s, x)

)
Δs∣∣x − y(s)
∣∣ , (10)

we obtain the following equation

f (x) = − 1
2π2

∑
{s:x∈V(s)}

Ψ
(
s,β(s, x)

)
Δs∣∣x − y(s)
∣∣ . (11)

Equation (11) implies that the filtered cone-beam projection
at any source point y(s) contributes only to the reconstruc-
tion of voxels inV(s). Based on this fact, the cone-beam cover
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Figure 3: Tam-Danielsson window. The Tam-Danielsson window
is a region on the detector plane. It is bounded by the cone-beam
projection of the upper and lower turns of the spiral onto the detec-
tor plane.

y(s0)

xx̂

W(s0) V(s0)

Figure 4: Cone-beam cover V(s0). Let Ṽ(s0) be the cone with vertex
y(s0) and base W(s0), then V(s0) = Ṽ(s0)

⋂
U .

method provides an approach to performing backprojection.
The key point is as follows.

At any source point y(s), the cone-beam projection

Df
(
y(s),β

)
:=
∫∞

0
f
(
y(s) + tβ

)
dt (12)

is truncated by those unit vector β along which X-rays emit-
ted from y(s) will reach a region slightly larger than Tam-
Danielsson window W(s) on the detector plane [3]. As
shown in Figure 5, the region is bounded by the parallel-
ogram. Dealing with this cone-beam projection, one first
computes the shift-invariant filtering of derivative of the
cone-beam projection using (7) along the lines L(S2) (see
Figure 5), as discussed elsewhere [3, 16]. Then one performs
the backprojection according to (11). Here with the filtered
cone-beam projection at source point y(s) the backprojec-
tion is performed only for x ∈ V(s).

Note that using the above strategy, both filtering and
backprojecting on a single cone-beam projection can be per-
formed independently. This property of the strategy leads to
the sequential and parallel algorithms we will describe later.

A sequential implementation of Katsevich’s FBP formula
is stated in Algorithm 1. More details and experiment results
about this implementation can be found in [1].

s2 L(s2) V

U

Figure 5: The family of lines L(s2). The filtering is performed along
lines L(s2).

Step 1. for each voxel x of image space, set f (x) = 0.
Step 2. for each source point y(s), s ∈ I

do
(1) Filtering of derivative of the cone-beam

projection, get Ψ(s,β(s, x)).
(2) Backprojecting for x ∈ V(s)

f (x) = f (x) +
(
− 1

2π2

)(
1

|x − y(s)|
)

×Ψ(s,β(s, x)
)
Δs.

end

Algorithm 1: Sequential implementation of Katsevich’s FBP inver-
sion formula.

3. PARALLEL IMPLEMENTATION

We parallelize the above sequential implementation by par-
titioning the source points set. Let I be a discretization of I
(angular parameter interval), p be the number of processors.
If I is partitioned into p subsets

I =
P⋃
j=1

I j , (13)

then a parallel implementation of Katsevich’s FBP formula
can be pseudocoded Algorithm 2.

In Algorithm 2, each processor j just operates on its as-
signed cone-beam projections and gets f j(x), and no com-
munication between different processors is needed during
the processing.

4. EXPERIMENTS

We do all computations on the Beowulf cluster CCSE-HP at
Peking University. The cluster consists of 1 master node, 2
login nodes, 4 I/O nodes, and 128 computing nodes. All the
nodes are on a Gigabit Ethernet. The computing nodes are
also connected by 4 X InfiniBand (10 Gbps). The system con-
figuration is listed in Table 1.
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Table 1: System configuration.

Computing node

HP ProLiant DL360 G4 server, Dual 64-bit 3.2 GHz XeonTM DP,

1 MB L2 cache, 4 GB DDR333 RAM, 73 GB Ultra320 SCSI disk,

Voltaire HCA 400 PCI-X dual-port 4X InfiniBand (10 Gbps)

host channel adapter

I/O node

HP ProLiant DL380 G4 server, Dual 64-bit 3.2 GHz XeonTM DP,

1 MB L2 cache, 4 GB DDR333 RAM, Gigabit Ethernet adapter,

HP Smart Array 6402/128M SCSI controller

Master node Same as the computing node, except that the RAM is 2 GB

Login node Same as the computing node, except the InfiniBand host interface

InfiniBand switch Voltaire ISR 9288

Gigabit Ethernet switch HP ProCurve Switch 2848

Storage HP StorageWorks Modular Smart Array 30, 7TB (RAID5)

Operating system Red Hat EL WS 3.0

Compilers Intel 64-bit Compiler 9.0.021 (c/c + +)

Parallel Environment mpich 1.2.6-ib

Step 1. for each voxel x of image space, set f (x) = 0.

Step 2. for each processor j ( j = 1, . . . ,P),

do

for each voxel x of image space, set f j(x) = 0.

for each source point y(s), s ∈ I j

do

(1) Filtering of derivative of the

cone-beam projection, get Ψ(s,β(s, x)).

(2) Backprojecting for x ∈ V(s)

f j(x) = f j(x) +
(
− 1

2π2

)(
1∣∣x − y(s)

∣∣
)

×Ψ(s,β(s, x)
)
Δs.

end

set f (x) = f (x) + f j(x).

end

Algorithm 2: Parallel implementation of Katsevich’s FBP inversion
formula.

The parameters of the data collection protocol are given
in Table 2.

We use the 3D Shepp-Logan phantom [11] to test our
parallel algorithm. The phantom consists of 10 ellipsoids as
specified in Table 3.

Figure 6 shows the reconstructed images from sequential
and parallel implementations at slices of x3 = −0.255, x2 =
−0.067, and x1 = −0.067, respectively. We use the gray scale
window [1.01, 1.03] to make low contrast features visible.

In terms of runtime, speedup S is defined as the ratio of
the time taken to solve a problem on a single processor to
the time required to solve the same problem on a parallel

Table 2: Parameters of the data collection protocol.

R (radius of the spiral) 3

h (pitch of the spiral) 1

r (radius of the object) 1

[c,d] [−2π, 2π]

sΔ 2.26

[a, b] [−2π − 2.26, 2π + 2.26]

Sampling number of
600

source points per tun

Detector array size 100× 500

Image volume 256× 256× 256

computer with P identical processors. Efficiency E is defined
as the ratio of speedup to the number of processors:

S = T1

TP
, E = S

P
, (14)

where T1 and TP represent the computing time for one pro-
cessor and P processors respectively [17]. Figures 7 and 8 dis-
play the speedup and efficiency of Algorithm 2, respectively.

5. DISCUSSIONS

Since the computation of image reconstruction in Algorithm
2 is mathematically equivalent to that in Algorithm 1, the im-
age reconstructed by Algorithm 2 is the same as that done by
Algorithm 1.

Figures 7(a) and 8(a) depict the algorithm’s speedup and
efficiency with the uniform partition of I . We can see that
the speedup increases from 1.0 to 22.9 while the efficiency
decreases from 100.0% to 71.5% when the number of pro-
cessors varies from 1 to 32. Obviously, the efficiency is not
satisfactory with four or more processors. Figure 9 displays
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Table 3: Parameters of the low-contrast Shepp-Logan phantom.

No. a b c x10 x20 x30 φ A

1 0.6900 0.920 0.900 0.00 0.000 0.000 0 2.00

2 0.6624 0.874 0.880 0.00 0.000 0.000 0 −0.98

3 0.4100 0.160 0.210 −0.22 0.000 −0.250 108 −0.02

4 0.3100 0.110 0.220 0.22 0.000 −0.250 72 −0.02

5 0.2100 0.250 0.500 0.00 0.350 −0.250 0 0.02

6 0.0460 0.046 0.046 0.00 0.100 −0.250 0 0.02

7 0.0460 0.023 0.020 −0.08 −0.650 −0.250 0 0.01

8 0.0460 0.023 0.020 0.06 −0.650 −0.250 90 0.01

9 0.0560 0.040 0.100 0.06 −0.105 0.625 90 0.02

10 0.0560 0.056 0.100 0.00 0.100 0.625 0 −0.02

∗ a, b, c are the lengths of half-axes of ellipsoid. x10, x20, x30 are the coordinates of the center. φ is the rotation angle around x3-axis, A is the
incremental density.

(a) (b) (c)

Figure 6: (a) Slice: x3 = −0.255; (b) slice: x2 = −0.067; (c) slice: x1 = −0.067. Top: reconstructed image by Algorithm 1; bottom: recon-
structed image by Algorithm 2. Since the computation of image reconstruction in Algorithm 2 is same as that in Algorithm 1, the images
reconstructed by Algorithm 2 are same as those by Algorithm 1.
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Figure 7: (a) Speedup with the uniform partition of I ; (b) speedup with the nonuniform partition of I . The speedup with the nonuniform
partition of I is better than that with the uniform partition of I .
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Figure 8: (a) Efficiency with the uniform partition of I ; (b) efficiency with the nonuniform partition of I . The efficiency with nonuniform
partition of I is better than that with the uniform partition of I .
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Figure 9: Wall time of each processor with the uniform partition of
I . The graph looks like a trapezoid, exhibiting a problem of load im-
balance. The processors in the middle bear higher load, while those
on the two sides bear lower load.

the wall time1 for each processor. The graph looks like a
trapezoid, exhibiting a problem of load imbalance. The pro-
cessors in the middle bear higher load, while those on the two
sides bear lower load.

The reason is as follows. When the X-ray source point
goes near the bottom or top of the image space, the cone-
beam cover becomes smaller and smaller, making the load of
the corresponding processors lower and lower. Nonuniform
partition of I can overcome the load imbalance. The follow-
ing describes a scheme of nonuniform partition of I .

1 “Real world” time (what the clock on the wall shows), as opposed to the
system clock’s idea of time. http://computing-dictionary.thefreedictiona-
ry.com/wall%20time.

Recall that I = [a, b] is the angular parameter interval
of the spiral, the interval [c,d] expresses the axial position of
image spaceU . Let sΔ be the maximal axial-direction distance
of points in the cone-beam cover from the source point, then
a = c− sΔ, b = d+ sΔ. Figure 10 illustrates computation time
for the filtering and backprojecting at source point y(s).

We divide [a, a+ 2sΔ), [a+ 2sΔ, b− 2sΔ), [b− 2sΔ, b] into
p uniform subintervals, respectively, as

[
a, a + 2sΔ

) =
p⋃
j=1

I1, j ,
[
a + 2sΔ, b− 2sΔ

) =
p⋃
j=1

I2, j ,

[
b − 2sΔ, b

] =
p⋃
j=1

I3, j ,

(15)

and let

I j = I1, j

⋃
I2, j

⋃
I3, j , j = 1, . . . , p, (16)

then

[a, b] =
p⋃
j=1

I j (17)

determines a nonuniform partition of I .
Figures 7(b) and 8(b) display the algorithm’s speedup

and efficiency with the above nonuniform partition of I . We
can see that the speedup increases from 1.0 to 30.4 and the
efficiency decreases from 100% to 95% when the number
of processors varies from 1 to 32. The speedup and the ef-
ficiency with the nonuniform partition of I are apparently
better than those with the uniform partition of I . The algo-
rithm’s speedup and efficiency maintain a higher level with
larger image sizes. The algorithm’s speedup and efficiency
with the image volume 512 × 512 × 512 are displayed in
Figure 11.

http://computing-dictionary.thefreedictionary.com/wall{%}20time
http://computing-dictionary.thefreedictionary.com/wall{%}20time
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Figure 10: Computation time for the filtering and backprojecting
at source point y(s). The time of the filtering is same at all source
points and denoted by t0.
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Figure 11: The illustration of the algorithm’s speedup and effi-
ciency with the image volume 512× 512× 512.

The idea of the cone-beam cover is a key point for
us to design the parallel implementation of Katsevich’s in-
version formula. From the perspective of the cone-beam
cover, backprojecting any filtered cone-beam projection can
be performed independently. Therefore a partition of cone-
beam projections gives a parallel implementation of im-
age reconstruction. The presented results demonstrate the
high performance of the proposed parallel algorithm. The
cone-beam cover method can also be employed to establish
parallel schemes for other reconstruction algorithms, such
as Feldkamp-type algorithms [11, 18], Zou and Pan’s algo-
rithm [19, 20]. In addition, parallel implementation of the

Katsevich’s FBP algorithm based on PI line method would be
an important topic of future research.

6. CONCLUSIONS

For spiral cone-beam CT, parallel computing is an effective
approach to improving the reconstruction efficiency. Basing
on the cone-beam cover method, we have proposed an effi-
cient parallel implementation of Katsevich’s FBP algorithm
and demonstrated its high performance with numerical sim-
ulations. Further work is under active investigation.
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