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ABSTRACT: Developing data-driven kinetic models from re-
action data is valuable for inferring the underlying reactions and
designing reactive processes without needing first-principles
models. However, recently developed techniques to learn
interpretable dynamical models from data are susceptible to
inherent experimental noise, especially in reaction kinetics data.
Here, we address these issues by (1) employing a new derivative-
free technique for sparse identification of dynamical equations that
approximates the integral rather than the derivative (which we call
as DF-SINDy) and (2) including domain information such as mass
balance and chemistry information. We demonstrate this using
retrospective examples to recover the true (known) governing
equations from synthetic data under varying noise levels, sampling
frequencies, and number of experiments. We observe that (1) models discovered from DF-SINDy have lower errors than those
discovered from SINDy (Proc. Natl. Acad. Sci. U.S.A. 2016, 113, 3932−3937, DOI: 10.1073/pnas.1517384113) and (2) adding
domain knowledge further helps recover correct terms, thereby improving the reliability of the interpretations obtained from these
models. This work is chemistry agnostic and represents a step toward developing domain-informed interpretable kinetic models for
complex reaction networks.

■ INTRODUCTION
Kinetic models of catalytic reactions allow for (1) predicting
rates and yields at new conditions to ultimately design new
processes and (2) infer the underlying mechanistic details of the
system. The state-of-the-art mechanistic kinetic models are
developed using density functional theory (DFT) based
microkinetic modeling along with infusion of experimental
kinetics data.2−5 However, for complex catalytic materials that
comprise multiple functionalities, dynamically restructuring
surfaces, large reaction networks, etc., such an approach can
still be computationally intractable requiring data-driven model
surrogates to reduce the computational burden.6−12 In these
cases, learning kinetic models directly from the data can be a
valuable starting point.6,13 Black-box neural networks,14 kinetic-
informed neural networks,15,16 and Bayesian equation discov-
ery17 are some examples of data-driven kinetic models.
However, we posit that learning interpretable models directly
from experimental kinetic data would advance our under-
standing of the underlying reaction mechanism, which could
then inform subsequent experiments or ab initio studies.
Advances in machine learning theories and algorithms and
data acquisition techniques have encouraged the development

of methods to discern governing laws or constitutive equations
directly from data.18−28

An emerging technique for developing interpretable kinetic
models is sparse identification of nonlinear dynamics
(SINDy).1,29,30 This method generates differential equation
models of observable states that contain a few dominant terms
from a candidate library of user-specified choices, resulting in
models that are sparse and, consequently, interpretable. SINDy
models can be built using only measurable data, and therefore,
the states retain their physical interpretation. The terms
identified by SINDy can, in principle, be explained to derive
mechanistic insights. For instance, if SINDy identifies a term
such as xy in x

t
d
d
, it suggests the presence of a reaction involving x

and y. While the exact sequence of elementary steps remains
unknown, this provides valuable insights into the underlying
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processes. Furthermore, the learning process primarily involves
linear regression (with L2 penalties), therefore, SINDy models
are straightforward to train. As a result, SINDymodels have been
used to discover partial differential equations31 and ordinary
differential equations in biological systems,30 chaotic systems,1

aeronautical systems,32 etc. Its use in building reaction models
has been attempted but has remained relatively less ex-
plored.29,33,34

Reaction experiments are often noisy; they do not close mass
or atom balances due to instrument calibration errors,
incomplete characterization of products, side reactions leading
to coke, etc. Further, instrumentation or experimental design
constraints may lead to insufficient sampling of the reaction
system, thereby missing important transients in concentrations.
In such contexts, a limitation of the original SINDy formulation
is that since derivative values are required at each time point,
noisy or sparsely sampled data can compromise the accuracy of
the discovered models and their generalizability to unseen data.
Previous work addresses these challenges in three broad ways.
The first approach involves denoising the measurements35 or
their derivatives36,37 and subsequently learning a model using
methods such as SINDy. The two steps, denoising and learning,
can also be combined into a single optimization problem.38 This
approach may lead to solving either an overall nonconvex
problem or approximating the derivatives, which can lead to
errors when data are not sampled frequently enough. The
second approach avoids approximating derivatives of measure-
ments and instead trains using the measured data alone. This
requires solving the assumed differential equation, which is
usually accomplished using collocation techniques39,40 although
numerical integration techniques may also be employed. This
approach can account for noisy and sparse measurements with
large sampling times and can even include unmeasured states in
the model; however, the optimization problem that is solved is
always nonconvex and, therefore, is computationally costlier
than SINDy and is guaranteed to converge only to a local
optimum. The third approach directly learns from noisy
measurements either using ensemble or Bayesian techni-
ques.41−44 This approach can be computationally demanding
when bootstrapping or subset selection is used, especially with a
large function library. If derivatives are computed via finite
difference, they can still compromise the accuracy of the model.
In this work, we address the challenge of noisy data and

generalizability in the context of kinetic models in two ways.
First, we employ a derivative-free SINDy-like approach, which
we term DF-SINDy, that is inspired by the formulation of the
integral problem.45,46 This approach eliminates the need to
approximate the derivatives of the measurements, keeps the
optimization problem convex in most cases, and retains the
flexibility and interpretability of SINDy. Second, we include
physics- and chemistry-based constraints, so that the inferred
models do not violate known domain knowledge. We
hypothesize that such constraints will prevent DF-SINDy from
proposing meaningless terms that may otherwise be identified in
the presence of noisy or limited data.
The contents of the article are as follows. First, we describe the

unconstrained formulation of DF-SINDy. Second, we propose
two domain-informed versions, namely, a mass balance
formulation and a chemistry-informed formulation. Third, we
test these formulations using retrospective examples of
recovering the true governing equations of a known reaction
model under increasingly imperfect data conditions, i.e., at
increased noise levels, fewer experiments, and reduced sampling

frequency. We show that the three DF-SINDy formulations
outperform traditional SINDy when the data are imperfect.
Additionally, to mimic realistic temperature controls, we
consider the problem of learning the Arrhenius-type temper-
ature dependence of kinetic parameters from isothermal
experiments conducted at multiple operating temperatures.
We also consider a stiff example to show the importance of
sampling in identifying the equations.We show that aDF-SINDy
like loss function (based only on the states) converges to a better
local minimum than the SINDy like loss function (based on
states and derivatives). Finally, we consider a case of
overestimating a reaction mechanism by adding extra reactions
and assuming an irreversible reaction to be reversible. We show
that our method can identify the correct terms in the model.

■ METHOD
Reaction kinetics experiments typically involve (1) measuring
the progress of a reaction system in batch experiments by
collecting concentration−time data for stable species (reactants,
intermediates, and products) for varying initial conditions and
temperature or (2) measuring exit concentrations of stable
species in flow reactors for different residence times, inlet
conditions, and temperatures. Our goal is to utilize such data
(since time and residence time can be used interchangeably for a
batch/plug flow reactor, we only consider batch systems here) to
derive a kinetic model, i.e., a set of ordinary differential equations
(ODE) of the form shown in eq 1, which holds for any reaction
system (regardless of the phase).

t
X t f X T p

d
d

( ) ( , , )=
(1)

The vector X t x t x t x t( ) ( ), ( ), ..., ( )n
T n

1 2
1= [ ] × repre-

sents the concentration of measured species in the system (n in
total) at time t. T represents the temperature, which can either
be constant for a reaction or change with respect to time, and p is
the parameter of the differential equations. The functions
f : n n n× describe the dynamics of the system that we
wish to learn from the measurements.
Unconstrained Formulation. Our initial (or naive)

formulation is one where we assume that the temperature is
fixed in all of the experiments. Each experiment is carried out
with differing initial concentration X(t = 0) and sampled
periodically to collect a data set X̂(t). For this case, the dynamics
are expected to be of the form given in eq 2.

t
x t f X t p g X t p k n

d
d

( ) ( ( ), ) ( ( )) 1, 2,k k k k k= = · { ··· }

(2)

We assume that the parameters pk appear linearly in f k (which
is reasonable given that we can assumemass action kinetics) and
are constant; that is, they do not vary with time. f k can therefore
be decomposed as a dot product (·) between features gk(X) and
parameters pk. Then, the solution to eq 2 is given by

x t x t g X t p t

x t p g X t t k n

( ) ( 0) ( ( )) d

( 0) ( ( )) d 1, 2, ...,

k k

t

k k

k k

t

k

0

0

= = + ·

= = + · { }

(3)

To find the parameters pk, one can formulate a least-squares
problem, dropping the subscript k and the explicit notation of
time dependence of X(t) for convenience, as follows (eq 4).
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p x x t p g X targ min ( ( 0)) ( ) dp

t

0
2
2* = =

(4)

Because parameters p appear linearly, the problem is convex
and therefore its analytical solution can be written as eq 5.
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Since we do not know g(X) a priori, we consider a functional
library vector Θ(X) of b terms that contains all possible
polynomial combinations of concentrations of all species (as
reaction kinetics models usually contain polynomial terms) as
shown in eq 6 and assume that g(X) ∈ Θ(X).

X x x x x x x x x x x x( ) ... ... ...n n n1 2 1
2

1 2
2

1
3

1 2= [ ]
(6)

These polynomial terms are user-defined and are akin to the
original SINDymethod. Since g(X) ∈ Θ(X), to calculate ∫ 0

t g(X)
dt, we need xk ∈ X as an explicit function of time. We
approximate this explicit function of all the concentrations xk ∈
X using cubic spline interpolation47 on themeasurements xk . Let

X x x x( ) ( ) ( )... ( )n n1 1 2 2= { } be a set of interpolating
functions obtained from measurements X̂, then integrating the
library matrix results in eq 7.

Ä

Ç
ÅÅÅÅÅÅÅÅÅ

É

Ö
ÑÑÑÑÑÑÑÑÑ

X t X t t

t t t

t t t

( ) d ( ( )) d d

d ... d d

d ... d d ...

t

t

t

t

t

t

t

t

t

t

n t

t

t

t

t

t

n t

t

1

2 1
2

1 2
2

1
3

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

=

(7)

Consider the coefficient matrix , , ..., n
b n

1 2= [ ] ×

where each column ξi represents the coefficients corresponding
to the terms in the functional library matrix X( ( )), then the
linear system identification problem is formulated as shown in
eq 8. We also introduce a multiplicative matrix M n n× which
is an identity matrix here but will allow incorporating mass
balance and chemistry information in future sections.
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To find the optimal value of the coefficient matrix Ξ, the
optimization problem in eq 4 can be written as shown in eq 9,
where the summation is over all the measurements obtained
between the start time t = t0 and the end time t = tf. In this work,

we refer to this formulation as the unconstrained formulation.
The number of decision variables in this optimization problem
(eq 9) is bn

arg min
1
2

MSE (Equation 8)
t t

t f

1

* =
= (9)

Algorithm. Since g(X) ∈ Θ(X), we need to find a sparse
solution to the optimization problem given in eq 9. We use
sequential threshold least-squares (STLSQ)1 algorithm that
minimizes a least-squares objective function with ridge penalty
(λ). It sets the coefficients that are less than the thresholding
parameter (ϵ) to zero and solves the optimization problem
again. Note that other variable selection algorithms such as
LASSO, Elastic Net, SR3, etc., can also be used. The modified
optimization problem is given in eq 10.
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2

f

1

* = +
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(10)

There are two possible terminating conditions: (1) All the
coefficients in matrix Ξ are eliminated, in which case the
thresholding is too large to consider all the coefficients and no
solution is obtained. (2) There are no more coefficients to be
eliminated, in which case the optimal solution with the
remaining coefficients has been found. If the algorithm
eliminated all of the coefficients, then consider either lowering
the thresholding parameter or changing the terms in the
polynomial library. Once the algorithm is terminated success-
fully, the values of the coefficients are returned. The steps are
outlined in algorithm 2. We use an interior point solver called
IPOPT48 from CasADi49 to solve the optimization problem.We
also perform hyperparameter optimization given in algorithm 1
to select the best model based on eq 11. The various
hyperparameters used are given in the Supporting Information
(SI) (Tables S1−S6).

i
k
jjj y

{
zzzMSE

metric 2 log
2

complexity= · +
(11)

Mass Balance Formulation. In this formulation, we use the
fact that in a batch system, the sum of the masses of all the
species at any point is equal to the sum of the masses of those
species at the initial point, i.e., mass is always conserved.
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Therefore, the derivative of the sum of the masses is zero,
however the individual masses may change as described in eq 12.

m t m t t t t t

t
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= { }

= { }

= =

= (12)

Multiplying and dividing eq 12 by the molecular weight (wi)
of the corresponding species gives the rate of change of moles.
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(13)

For k = n, eq 13 can be written in a matrix form where the nth
row in the multiplicative matrixM in eq 8 is replaced by the ratio
of molecular weights of individual components by the nth
component as shown in eq 14
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(14)

Consequently, the optimization problem with (n − 1)b
decision variables can be written as follows (eq 15), where the
first term of the loss is the mean squared error of the measured
states and model predictions (using eq 14) for different times.

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑ
arg min

1
2

MSE (Equation 14)
t t

t

i

n

i
1

1

2
2

f

1

* = +
= =

(15)

Chemistry Formulation. A plausible reaction network is
often known to the expert (or can be postulated);39 in such a
case, we can say that

f S R= · (16)

where in eq 16, S n r× is the stoichiometric matrix of the
network (n represents the number of reactants and products and
r represents the number of reactions in the system) is a
stoichiometric matrix of the reaction network and R r 1× is
the rate of these reactions. In such a scenario, we can replace the
multiplicative matrixM by the stoichiometric matrix S and write

R = Θ(X)ξ. Further, often, the rates depend only on the
reactants and product concentrations. Therefore, Θ(X) is no
longer a polynomial combination of all the species but instead a
polynomial combination of only those species that the particular
reaction depends on. Consequently Θ(X) can be denoted as
Θ(r)(X) and the coefficients as Ξ ∈ {ξ1, ξ2, ... ξr} with the vector
ξr as the coefficients corresponding to the columns of Θ(r)(X)
since they are now reaction dependent. It should be noted that
the stoichiometric matrix of balanced reactions naturally
enforces mass balance. Additionally, this approach differs from
parameter estimation of a given reactionmechanism in that, with
parameter estimation, the analytical equations for the rates of
consumption/formation are known and only the kinetic or
thermodynamic constants are estimated, while in this approach,
we learn both the rate expressions and the parameters.
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Consequently the optimization problem with rc decision
variables (such that r ≤ n, c ≤ b) is written as follows (eq 18),
wherein the first term of the loss is a mean squared error between
the measurements and the model prediction (using eq 17) over
all sampled times.
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Nonlinear Least-Squares Problem: Isothermal Process
Conditions. The reaction systems given by eq 2 assume
constant parameters that appear linearly in the model. However,
when reactions are conducted at different temperatures, reaction
rates (therefore, the parameters) depend on the temperature. If
the rate constants follow the Arrhenius equation, then the
dynamical equation has the form given in eq 19.

t
x f X p g X h p T

g X k T T

d
d

( , ) ( ) ( , )

( ) ( ( ) e )

k k k k k

k ref
E R T T/ ( 1 1 )

ref

= = · =

· = (19)

where parameters pk are as follows: k(T = Tref) is a vector of
reaction rate constants at any given reference temperature (Tref),
E is a vector of activation energies, R is the universal gas
constant, and ⊗ is the element-wise product. When
concentration values are measured from isothermal experi-
ments, i.e., the temperature is constant in an experiment but can
vary from one to the next, h(p, T) is independent of time. Thus,
one can formulate a nonlinear least-squares problem in
parameters given by eq 20.
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p

x t x t h p T g X targ min ( ( ) ( 0)) ( , ) ( ) dp

t

0
2
2

* =

= ·

(20)

The main difference between this formulation and the
previous ones is that each element in Ξ is written as eq 21.

T T( ) ei i ref
R T T(1) / ( 1 1 )i

ref

(2)

= = (21)

where ξi
(1)(T = Tref) is the reaction rate at the reference

temperature and ξi
(2) is the activation energy.

Unlike the linear least-squares formulations previously
discussed, this is a nonconvex problem and therefore does not
have an analytical solution. However, we note that the
integration in eq 20 is straightforward and can be solved using
numerical techniques as a system of uncoupled differential
equations.
Kinetic Reaction Network. RN1: Cracking and Isomer-

ization of Butene.We consider a simplified network of cracking
and isomerization of butenes,50 a representative chemistry for
breaking down large hydrocarbons to smaller olefins.We assume
that the cracking reaction is irreversible while the isomerization
reactions are reversible and that all steps are pseudo first order.
The overall reaction network is given in Table 1, and the reaction
rates are in eq 22. The forward/reverse reaction rate constant is
denoted by k, the activation energy in J/mol is denoted by E, and
A, B, C, D correspond to 1-butene, ethene, 2-butene, isobutene,
respectively. The kinetic parameters have been scaled down
from the original source to remove multi-time-scale behavior
and reduce stiffness; further, reasonable activation barrier values
were assumed for the steps.
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When the reaction rates depend on temperature, the dynamic

equation is given as eq 23.
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RN2: Esterification of Carboxylic Acid. We also consider a

more complex reaction network of esterification of carboxylic

acid.51 The overall reaction network is summarized in Table 2.

This reaction network consists of six reversible reactions and 11

different species, the reaction rates of which are given in eq 24.

Table 1. Simplified Reaction Mechanism of Cracking and Isomerization of Butenes

Ri Reaction Forward reaction Reverse reaction

1 A → 2B k1 = 4.283, E1 = 30000
2 A ↔ C k2 = 1.191, E2 = 40000 k3 = 5.743, E3 = 45000
3 A ↔ D k4 = 10.219, E4 = 50000 k5 = 1.535, E5 = 60000

Table 2. Reaction Mechanism of Esterification of Carboxylic Acid

Ri Reaction Forward reaction Reverse reaction

1 F + D ↔ E + X k1 = 0.3 k7 = 1.2
2 E + B ↔ G + D k2 = 0.4 k8 = 0.6
3 A + G ↔ E + C k3 = 1.1 k9 = 0.7
4 B + D ↔ J + E k4 = 0.9 k10 = 0.1
5 A + E ↔ D + K k5 = 1.0 k11 = 0.5
6 X + K ↔ L + D k6 = 0.2 k12 = 0.8

Table 3. List of Parameters of the System for Three Different Training Conditions

RNi System parameters Noise Experiments Sampling rate

1

Initial conditions (5, 20) (5, 20) (5, 20)

Number of experiments (nexpt) 6 2, 4, 6 6
sampling rate (Δt) 0.01 0.05 0.01, 0.05, 0.1
standard deviation of noise (σ) 0, 0.1, 0.2 0 0

2

Initial conditions (5, 20) (5, 20) (5, 20)

Number of experiments (nexpt) 25 15, 20, 25 25
sampling rate (Δt) 0.01 0.01 0.01, 0.05, 0.1
standard deviation of noise (σ) 0, 0.1, 0.2 0 0
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Generation of Synthetic Data. To synthesize testing data,
we integrate the dynamics using odeint in python with random
initial conditions uniformly distributed in [5, 10]. We record
data up to 10 s with a time step of 0.01 s and 6 different initial
conditions (Table 3). We use the same testing data for all cases
and approaches to rigorously compare the performance of the
discovered models across different training conditions. Training
data depends on the three training conditions and is summarized
in the following table. We note that while a sampling rate of 0.01
s is unlikely with methods such as chromatography, such rates
can be feasible with techniques such as infrared spectroscopy or
mass spectrometry.
For training the nonlinear least-squares problem, we consider

the same set of parameters except the temperature, which now
changes in every experiment and is chosen between 360 K and
385 K.

■ RESULTS AND DISCUSSION
Increasing Noise Levels.We first study the effect of noise

on the recovery of the true model from the unconstrained, mass
balance, and chemistry-based formulations with naive SINDy as
our reference. We add Gaussian noise with two different
standard deviation values (0.1 and 0.2) to the synthesized
training data while being mindful that adding excessive noise can
lead to irrecoverable conditions.52 We then perform hyper-
parameter optimization and select the model that minimizes eq
11. Once the model is chosen, we report the complexity
(number of retained terms) and mean squared errors on the test
set. Figure 1a for RN1 and Figure 1b for RN2 provide a
comparison of these approaches for model complexity andmean
squared errors at varying noise levels. In the absence of noise, all
methods recover the true complexity for RN1. However, for
RN2 without noise, SINDy fails to recover the correct terms
while all other formulations accurately identify them. This
suggests that our integral formulation requires fewer data
compared to SINDy to discover accurate models. As the noise
level increases (i.e., at higher standard deviations of Gaussian
noise), SINDy starts to retain additional terms that are not in the
original model (for RN1) or drop terms that are in the original
model (especially for RN2). The unconstrained and mass
balance DF-SINDy formulations also produce models with
incorrect complexity as SINDy, however, their MSE is typically
1−2 orders of magnitude lower, emphasizing the relative
accuracy of loss functions that are based on state measurements
rather than their derivatives (as in the case of SINDy). In
particular, finite differences of noisy data further amplify the
noise in measurements and thus lead to poorer recovery. The
chemistry formulation provides the best recovery; it is robust to
noise, and the MSE is considerably lower than the other three
formulations.

Figure 1. A comparison of model complexity and mean square testing error (MSE) for RN1 (a) and RN2 (b) is shown for the three linear DF-SINDy
formulations (unconstrained, mass balance, and chemistry) compared with the naive SINDy for different levels of noise (i.e., increasing standard
deviation of Gaussian noise).

Industrial & Engineering Chemistry Research pubs.acs.org/IECR Article

https://doi.org/10.1021/acs.iecr.4c02981
Ind. Eng. Chem. Res. 2025, 64, 2601−2615

2606

https://pubs.acs.org/doi/10.1021/acs.iecr.4c02981?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.4c02981?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.4c02981?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.4c02981?fig=fig1&ref=pdf
pubs.acs.org/IECR?ref=pdf
https://doi.org/10.1021/acs.iecr.4c02981?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Figure 2 and Figure S2 show the coefficient values of nonzero
terms in the recovered models in the four formulations vis-a-vis
the original (true) model in the presence of noise (in particular,
standard deviation of 0.1) for RN1 and RN2 respectively. SINDy
not only misses a few true terms but also proposes spurious
terms. The unconstrained and mass balance formulations ofDF-
SINDy are better than SINDy at recovering true terms, but they
also propose spurious ones. The chemistry formulation of DF-
SINDy, in addition to being most accurate in terms of MSE, is
also precise in recovering the true terms (i.e., it finds no spurious
ones). These results thus reinforce the value of constraining
models to as much domain information as possible so that they
are quantitatively accurate and qualitatively precise.

Decreasing Number of Experiments. In this subsection,
we study the effect of decreasing the amount of data by reducing
the number of experiments on the recovery of the model from
different formulations. Figure 3a for RN1 and Figure 3b for RN2
compare the performance of unconstrainedDF-SINDy, the mass
balance formulation, and the chemistry-based formulation with
naive SINDy. We see that the performance of all of the models
improves with an increasing number of experiments, as
expected. SINDy generally performs worse than the three DF-
SINDy formulations, in terms of either the complexity of the
models discovered, MSE, or both. For RN2, SINDy fails to
recover the original model, while all other formulations
accurately identify the correct model when the number of

Figure 2. Coefficients and terms of the original model and the discovered models using linear DF-SINDy formulations and naive SINDy for the case
with a Gaussian noise of standard deviation of 0.1. r0−3 refer to the rate expression of the consumption/production of species A−D (whose
concentrations are termed x0−3 in RN1).
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experiments is 20 or higher. This suggests that the integral
formulations require fewer data (fewer experiments) to recover
accurate models compared to SINDy, indicating that integral
formulations are more efficient. The chemistry-based formula-
tion consistently performs well for all three levels of data
availability and for both reaction networks; as before, it is
quantitatively accurate and qualitatively precise. This is also
borne out by the recovered terms shown in Figure 4 for RN1;
SINDy proposes spurious terms and misses the true terms, while
the chemistry-based formulation is consistently correct in
identifying the true terms (and those alone). This is also
observed for RN2 (the coefficient plot in Figure S3).
Decreasing Sampling Frequency. In this subsection, we

study the effect of decreasing the amount of data by reducing the
sampling frequency on recovering the model with different
formulations. We generate training data by varying the output
time step Δt = 0.01, 0.05, and 0.1 (corresponding to a sampling
frequency of 100, 20, or 10 samples per second, respectively)
while keeping the number of experiments fixed. The perform-
ance of the formulations in terms of model complexity and MSE
is shown in Figure 5a for RN1 and Figure 5b for RN2; The
coefficients and terms of the recovered models for RN1 and
RN2 are in Figures S1 and S4. As Δt increases (or frequency
decreases), both reaction networks either fail to identify the
correct terms or identify coefficients that are slightly off the
original coefficients, thereby increasing the MSE of the models.
However, again among the formulations, the chemistry-based
formulation shows either significantly lower MSE, precise
recovery, or both. The unconstrained and mass balance
formulations provide intermediate results, while SINDy
performs the worst.

Nonlinear Formulation: Isothermal Experiments at
Different Temperatures. As a final comparison, we consider
the problem of learning from different isothermal experiments
(conducted at different temperatures) for RN1. Figure 6 shows
the performance of the nonlinear formulation with chemistry
constraints relative to a modified SINDy approach for RN1 and
with varying noise. Similar performance for varying sampling
frequency and number of experiments is shown in Figure S6 and
Figure S8, respectively. In both approaches, we solve a nonlinear
optimization problem. In the proposed approach, we solve the
differential equations via interpolation and construct the loss on
the state measurements while the modified SINDy still employs
finite differences of the measurements but requires nonlinear
optimization to tackle the Arrhenius behavior of rate constants.
Both approaches incorporate chemistry information; therefore,
the complexity per eq 23 is 10. As can be seen in Figure 6, a
chemistry-based nonlinear formulation of DF-SINDy consis-
tently performed better than modified SINDy by not only
identifying the correct terms but also discovering models with
low MSE. A comparison of the coefficients of the discovered
model with those of the original model is given in Figure S5 for
different noise levels, Figure S7 for different numbers of
experiments, and Figure S9 for different sampling frequencies.
Effect of Stiffness on Recovery: Michaelis−Menten

Kinetics. To show the efficacy of our formulations on stiff
systems we consider the Michaelis−Menten reaction network51

with the reactions given in Table 4. It consists of four different
species with one reversible and one irreversible reaction. We
consider four different cases, where in each case, the reversible
reaction (R1) is faster than in the previous case. The reaction
rates for all cases and each of the species are given in eq 25.

Figure 3. A comparison of model complexity and mean square testing error (MSE) for RN1 (a) and RN2 (b) is shown for the three linear DF-SINDy
formulations (unconstrained, mass balance, and chemistry) compared with the naive SINDy for different number of experiments (i.e., increasing
number of runs).
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We observe from Figure 7 that beyond a certain stiffness all
formulations fail to identify the true parameters. This is because
the reaction dynamics are faster than the sampling frequency
(Δt = 0.01), preventing the capture of accurate concentration
transitions. This claim is justified in Figure 8, in which the
sampling frequency is increased (Δt = 0.001) and the recovery is
much better, especially for case 4, compared to the models in
Figure 7. Furthermore, from Figure S12 and Figure S15, we
observe that the integral formulations perform better by

identifying parameters that are closer to the true values than
the parameters identified using naive SINDy. Figures S10, S11,
S13, and S14 compare the coefficient plots of the discovered
models for the remaining cases. We also observe that even
though the model parameters are incorrectly estimated such as
in cases 3 and 4 for Δt = 0.01 and case 4 for Δt = 0.001, the ratio
of forward (k1) and reverse (k2) rate constants of the quasi
equilibrated species (C) is correctly estimated.
Handling Overinformed Reaction Network. Modern

tools such as automated network generators53 can be used to
construct reaction networks comprehensively. However, such
tools are more likely to ”overestimate” the network, i.e., generate
many reactions that allow alternative routes to form the products

Figure 4. Coefficients and terms of the original model and the discovered models using linear DF-SINDy formulations and naive SINDy for the case
with the number of experiments = 2. r0−3 refer to the rate expression of the consumption/production of species A−D(whose concentrations are termed
x0−3) in RN1.
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but may ultimately not be flux-carrying. In this section, we show
that overestimating the reaction network usually is not a
problem, as given enough data, the chemistry formulation ofDF-
SINDy will automatically push the spurious reactions/terms to
zero. For the reaction network RN1 given in Table 1, suppose we
assume the incorrect reaction mechanism given in Table 5,
where the reaction R1 is reversible and a spurious reversible
reaction R4 is included. We follow the same steps as before but

now with the incorrectly specified stoichiometric matrix in eq

26.
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Figure 5. A comparison of model complexity and mean square testing error (MSE) for RN1 (a) and RN2 (b) is shown for the three linear DF-SINDy
formulations (unconstrained, mass balance, and chemistry) compared with the naive SINDy for different sampling frequency (i.e., changing the output
time step Δt while generating data).

Figure 6. Plot of model complexity and mean squared errors for different noise levels for the nonlinear least-squares problem. The performance of the
models discovered from modified SINDy and the derivative-free formulation with chemistry constraints for RN2 is compared.

Table 4. Michaelis−Menten Reaction Network with Increasing Stiffness

Case Ri Reaction Forward reaction Reverse reaction O(Largest k/Smallest k)

1
1 A + B ↔ C k1 = 0.1 k2 = 0.2

100
2 C → B + D k3 = 0.3

2
1 A + B ↔ C k1 = 1 k2 = 2

101
2 C → B + D k3 = 0.3

3
1 A + B ↔ C k1 = 10 k2 = 20

102
2 C → B + D k3 = 0.3

4
1 A + B ↔ C k1 = 100 k2 = 200

103
2 C → B + D k3 = 0.3
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We compare the coefficients of the discovered model using a
linear least-squares formulation (Figure 9) and a nonlinear least-
squares formulation (Figure 9) with the coefficients of the
original model. We observe that in both cases R0 is correctly
identified as an irreversible reaction (as a single term is
discovered) while R2 and R3 are reversible reactions (as two
terms are discovered). Additionally, spurious reaction R4 is
completely neglected.

■ CONCLUSION
In this work, we introduced DF-SINDy, a method to discover
interpretable kinetic models of ordinary differential equations
from the reaction data. This method eliminates the need to take
derivatives, as was needed in the original SINDy method. We
further incorporate domain knowledge through mass balance
and chemistry formulations, wherein we additionally enforce
that the model conserves mass or an underlying reaction
network. We show that DF-SINDy discovers models that are

Figure 7. Coefficients and terms of the original model and the discovered models using linear DF-SINDy formulations and naive SINDy for 4 cases of
Table 4 andwith sampling frequencyΔt = 0.01. r0−3 refer to the rate expression of the consumption/production of species A−D(whose concentrations
are termed x0−3).
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quantitatively more accurate (in terms of mean squared errors)
and qualitatively more precise (in terms of identifying the
correct terms in the model) than those obtained from SINDy,
especially in the presence of imperfect data, i.e., noisy
measurements, less sampling, and fewer experiments. In
particular, including chemistry information, i.e., a postulated
reaction network, always leads to the best result, wherein the
complexity is correctly determined and no spurious terms are
identified. Incorporating domain knowledge, thus, (1) reduced

Figure 8. Coefficients and terms of the original model and the discovered models using linear DF-SINDy formulations and naive SINDy for case 4 of
Table 4 and with sampling frequency Δt = 0.001. r0−3 refer to the rate expression of the consumption/production of species A−D (whose
concentrations are termed x0−3).

Table 5. Assumed Reaction Mechanism of Cracking and
Isomerization of Butenes

Ri Reaction Forward reaction Reverse reaction

1 A ↔ 2B k1, E1 k2, E2

2 A ↔ C k3, E3 k4, E4

3 A ↔ D k5, E5 k6, E6

4 C ↔ D k7, E7 k8, E8
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the complexity of the optimization problems, (2) decreased
susceptibility to noisy measurements, (3) retained only
meaningful terms in the model (especially with chemistry
information), and (4) improved interpretability, particularly in
inferring underlying reaction mechanisms. Finally, we showed
that DF-SINDy can be extended to deal with nonlinearity in
kinetic parameters, particularly their temperature dependence,
although this results in a nonlinear optimization problem. Our
results suggest that our approach is quantitatively and
qualitatively more accurate than SINDy. The biggest advantage

of SINDy-like methods is the interpretability afforded by the
explicit identification of model equations. Therefore, we note
that domain-informed DF-SINDy, given its relative robustness,
is particularly well suited for learning kinetic models from noisy
experiments and utilizing them to understand the reaction
mechanism (i.e., flux-carrying overall reactions, reaction orders,
apparent barriers of steps, etc.) even if elementary steps may not
be directly inferred. Since the proposed method works only with
measured states, unlike the integration-based nonlinear
approaches discussed earlier.39 While this simplifies the learning

Figure 9. Coefficients and terms of the original model and the discovered models using the derivative-free formulation with overestimated chemistry
constraints are compared. r0−3 refer to the rate expression of the consumption/production of species A−D (whose concentrations are termed x0−3.
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process, it does not directly allow building elementary step
models wherein states (e.g., surface intermediates) not
measured need to be included, unless domain knowledge or
additional measurements (e.g., spectroscopy) allows relating
unmeasured states with measured ones via algebraic functions.
However, DF-SINDy is computationally tractable when the
complexity of the reaction system (due to phases, multiplicity of
sites, or dynamically evolving catalytic structures) makes it
significantly harder to build elementary-step based microkinetic
models.
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