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Induced pluripotent stem cells (iPSCs) are an essential tool for studying cellular differentiation and cell types that are oth-

erwise difficult to access. We investigated the use of iPSCs and iPSC-derived cells to study the impact of genetic variation on

gene regulation across different cell types and as models for studies of complex disease. To do so, we established a panel of

iPSCs from 58 well-studied Yoruba lymphoblastoid cell lines (LCLs); 14 of these lines were further differentiated into car-

diomyocytes. We characterized regulatory variation across individuals and cell types by measuring gene expression levels,

chromatin accessibility, and DNA methylation. Our analysis focused on a comparison of inter-individual regulatory vari-

ation across cell types. While most cell-type–specific regulatory quantitative trait loci (QTLs) lie in chromatin that is open

only in the affected cell types, we found that 20% of cell-type–specific regulatory QTLs are in shared open chromatin. This

observation motivated us to develop a deep neural network to predict open chromatin regions from DNA sequence alone.

Using this approach, we were able to use the sequences of segregating haplotypes to predict the effects of common SNPs on

cell-type–specific chromatin accessibility.

[Supplemental material is available for this article.]

Understanding the genetic underpinnings of complex traits re-
mains a major challenge in human genetics. Genome-wide associ-
ation studies (GWAS) have provided awealth of information about
the general properties of loci affecting complex traits. Notably, the
majority of these loci lie outside of genes and likely act by modify-
ing gene regulation (Li et al. 2016). Unlike genetic variationwithin
coding regions, it is difficult to identify the molecular effects of
noncoding variants and, specifically, it is challenging to predict
the mechanisms by which noncoding variants act to affect gene
regulation. Consequently, a large body of work has been devoted
to understanding how genetic variation affects gene regulation
(Gibbs et al. 2010; Degner et al. 2012; Gutierrez-Arcelus et al.
2013; Kilpinen et al. 2013; Lappalainen et al. 2013; Banovich
et al. 2014; Battle et al. 2014; The GTEx Consortium 2015; Li
et al. 2016). These studies have demonstrated that it is possible
to connect loci in putative regulatory regions with the specific
genes whose regulation they affect. Studies of the genetics of
gene regulation have improved our ability to identify putatively
causal regulatory variants. In turn, based on functional regulatory

inference, we are able to better identify likely disease variants, even
when they do not meet genome-wide significance in GWAS stud-
ies (Cusanovich et al. 2012).

Thus, a better understanding of the regulatory role of individ-
ual genetic variants is critical for our ability to understand complex
disease. Yet, recent work suggests that many of these variants
have cell-type- or condition-specific effects, which are difficult to
characterize (Farh et al. 2015; Finucane et al. 2015). Indeed, to
study context-specific effects of genetic variation, researchers are
limited to a few commercially available cell lines, easily accessible
tissues (e.g., skin and blood) (Gibbs et al. 2010; Degner et al. 2012),
and, more recently, frozen post-mortem tissues (The GTEx
Consortium 2015). While studies using these resources have pro-
vided valuable insight into the genetic architecture of gene regula-
tion, they do not provide a flexible framework to study inter-
individual variation in gene regulation in multiple cell types
from the same genotype. In particular, many important cell types
cannot be obtained from adult post-mortem samples and regard-
less, post-mortem (typically frozen) samples are unsuited for func-
tional studies and perturbations that require living cells.

Induced pluripotent stem cells (iPSCs) are generated by trans-
forming somatic cells to an embryonic-like state (Takahashi and
Yamanaka 2006; Takahashi et al. 2007; Yu et al. 2007) and can
be differentiated into a myriad of somatic cell types representing
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all three germ layers. Importantly, iPSCs can be generated efficient-
ly using a small number of exogenous factors (Takahashi and
Yamanaka 2006; Takahashi et al. 2007; Yu et al. 2007), can be cryo-
preserved, exhibit unlimited self-renewal, and can be used to gen-
erate viable somatic cells upon differentiation (Burridge et al.
2016). These properties make iPSCs a valuable cellular model for
the study of gene regulation in a controlled setting. Although
some debate remains about whether iPSCs are truly equivalent
to embryonic stem cells (ESCs), studies have shown, using well-
matched lines, that iPSCs are nearly indistinguishable from ESCs
in their molecular profiles and their ability to differentiate
(D’Aiuto et al. 2014; Pagliuca et al. 2014; Choi et al. 2015;
Davidson et al. 2015).

Furthermore, recent work has demonstrated that gene ex-
pression and DNA methylation in iPSCs vary significantly and
reproducibly among donors (Rouhani et al. 2014; Burrows et al.
2016; DeBoever et al. 2017; Kilpinen et al. 2017), suggesting
that iPSCs can be used to study the impact of genetic variants
on gene regulation. Indeed, genetic variation appears to be the
main driver of gene expression variation in iPSCs (Kilpinen et al.
2013; DeBoever et al. 2017), an observation that is robust with
respect to a large number of technical considerations, including
the somatic cell type from which the iPSC was generated. Thus,
once differentiated into relevant cell types, iPSC-derived cells
can be used to study the regulatory effects of disease-associated
variants.

Here, we report the reprogramming of 58 Yoruba lymphoblas-
toid cell lines (LCLs) into iPSCs, of which 14 were further differen-
tiated into cardiomyocytes. Previously, our group extensively
studied gene regulatory variation in the Yoruba LCLs. The estab-
lishment of iPSCs from a panel of well-studied individuals allowed
us to track the effects of genetic variation on gene regulation fol-
lowing cell reprogramming and differentiation. We therefore ex-
plored the utility of iPSCs and iPSC-derived cells to study the
impact of genetic variation on gene regulation in multiple cell
types. In particular, measuring DNA methylation, chromatin ac-
cessibility, and RNA expression levels in multiple individuals
and multiple cell types allowed us to study the mechanisms by
which genetic variation affects gene regulation in a cell-type–spe-
cific manner.

Results

Generation of a panel of iPSCs from 58 Yoruba individuals

We generated a panel of iPSCs from 58 well-characterized Yoruba
LCLs. Briefly, LCLs were reprogrammed using a previously-de-
scribed episomal approach (Okita et al. 2011). After a week in sus-
pension, cultured cells were seeded onto a layer of gelatin and
mouse embryonic fibroblasts. A single colony was obtained from
each line and passaged for 10wk before final characterization, con-
version to feeder-free growth, and collection. Pluripotency and
stability were confirmed for each line (Supplemental Fig. S1;
Supplemental Materials). This panel represents the largest stock
of characterized nonEuropean iPSCs to date and is available to oth-
er researchers, complementing parallel efforts in Europeans (see
Data Accession in Supplemental Materials; Kilpinen et al. 2017).

To study gene regulation in iPSCs, we assayed threemolecular
phenotypes: mRNA expression (using RNA-seq; n = 58), chromatin
accessibility (ATAC-seq; n = 57), andDNAmethylation levels (EPIC
arrays; n = 58). We also differentiated 14 iPSC lines into iPSC-
derived cardiomyocytes (iPSC-CMs) (Supplemental Materials;
Supplemental Table S1) and collected RNA-seq and ATAC-seq
from the 14 iPSC-CMs (Fig. 1A).We analyzed these newly collected
data jointly with data previously collected from the same Yoruba
LCLs (we complemented the original DNase I hypersensitivity
data with new ATAC-seq data for 20 of the LCLs). These data
were processed using canonical pipelines and procedures
(Supplemental Materials; Supplemental Figs. S2–S6).

Given the in vitro nature of the cell types reported here, we
sought to evaluate the similarity of the gene expression patterns
with respect to data from a broad panel of primary tissues and oth-
er cell types. Using RNA-seq data from a panel of tissues and cell
types from GTEx (The GTEx Consortium 2013) and ENCODE
(The ENCODE Project Consortium 2012), respectively, gene ex-
pression data from our LCLs cluster most closely with data from
ENCODE LCLs, as expected. Similarly, gene expression data from
our iPSCs cluster with data from H1 embryonic stem cell lines
from ENCODE, and data from our iPSC-CMs cluster most closely
with gene expression data from GTEx heart tissues (atrial append-
ages) (Fig. 1B; Supplemental Materials). Thus, our cultured cells
broadly recapitulate expected regulatory patterns.

Figure 1. Systematic measurements of molecular phenotypes across reprogramming and differentiation. (A) Summary of data collection. (B) Correlation
matrix of gene expression from our samples and samples from ENCODE (∗) and GTEx. Our LCL samples cluster most closely with LCLs samples from
ENCODE, while our iPSCs and iPSC-CM lines cluster most closely with H1-ESC (ENCODE) and heart (GTEx), respectively. Dark purple: GTEx bone marrow.
(C) Violin plots representing per individual log2 of the average square distance from the mean (Supplemental Materials) for iPSC, LCL, and iPSC-CM gene
expression levels. Plots for chromatin accessibility and DNA methylation levels are shown in Supplemental Figure S7.
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Regulatory variation in three different cell types

We compared molecular data across the three cell types using
the log2 average square distance from the mean (Supplemental
Materials); we observed that chromatin accessibility, gene expres-
sion, and DNA methylation levels were all more homogenous be-
tween individuals in iPSCs than in LCLs or iPSC-CMs (P < 10−5 for
all comparisons) (Fig. 1C; Supplemental Fig. S7). Furthermore, a
similar increase in expression variability is observed in primary
heart tissue (Supplemental Materials). This is consistent with the
notion that developmental processes are canalized (Waddington
1959) and that regulatory states in embryonic cells are tightly
controlled.

After examining overall properties in our data, we sought to
characterize the effect of genetic variation on gene regulation.
While there have been numerousmultitissue studies of expression
and expression quantitative trait loci (eQTLs), there is a paucity of
our data on QTLs for chromatin accessibility (caQTLs) outside of
LCLs (Cheng et al. 2016; Alasoo et al. 2017), and this study repre-
sents the first characterization of caQTLswithin iPSCs in combina-
tion with an iPSC-derived cell type.

We first analyzed data from each cell type independently.We
identified thousands of putatively cis genetic associations with
all three regulatory phenotypes at 10% FDR (SupplementalMateri-
als; Supplemental Table S3). Despite the observation that regulato-
ry phenotypes are associated with lower inter-individual variation
in iPSCs compared to LCLs, we found similar or greater numbers of
expressionQTLs in iPSCswhen sample sizes arematched across cell
types (e.g., 1441 eQTLs in iPSCs versus 1168 in LCLs using 58 indi-
viduals). In addition, usingWASP, a powerful approach that lever-
ages allelic imbalance measurements to identify molecular QTLs
when sample sizes are small (vandeGeijn et al. 2015),we identified
517 eQTLs and 4045 chromatin accessibilityQTLs in differentiated
iPSC-CMs (14 individuals). In general, weobserved ahighdegree of
QTL sharing between cell types.We found71% to 91%overlap (de-
pending on our choice of P-value cutoff in the eQTL discovery cell
type) in eQTLs between iPSCs and LCLs, using an estimate of shar-
ing that accounts for incomplete power of the replication tests
(Storey’s π0) (Supplemental Fig. S9). The proportion of sharing is
lower when considering iPSC-CMs (Supplemental Fig. S9), as ex-
pected given the difference in sample size.

Cell-type–specific open chromatin explains

cell-type–specific QTLs

The high sharing of regulatory QTLs across cell types notwith-
standing, we asked about themechanisms by which a subset of ge-
netic variants affects gene regulation in one cell type with no
detectable effect in other cell types. Such a pattern is of particular
interest given that disease-associated variants are enriched in cell-
type–specific open chromatin (Finucane et al. 2015). We thus
wondered whether genetic variants in cell-type–specific open
chromatin often drive cell-type–specific variation in gene regula-
tion. In LCLs, about 2/3 of eQTLs are due to variants that alter
chromatin accessibility or histone marking (Li et al. 2016).
Consistent with the idea that cell-type–specific effects at the chro-
matin level percolate to cell-type–specific gene expression, we
found that the iPSC-specific caQTL SNPs we identified
(Supplemental Materials) were more likely to affect gene expres-
sion levels in iPSCs than were LCL-specific caQTL SNPs and that
the converse was also true (P = 0.01, P = 4.7 × 10−5, respectively;
Fisher’s exact test) (Fig. 2A; Supplemental Tables S4, S5). For over
80% of stringent caQTL-eQTL pairs (Supplemental Materials), we

found that the direction of caQTL effects were concordant with
that of the associated eQTL (Supplemental Fig. S10).We also found
that the magnitudes of caQTL effects were not predictive of the
corresponding eQTL effect sizes (Supplemental Fig. S11).
However, eQTLs associated with chromatin changes do tend to
have larger effect sizes on average (Supplemental Fig. S12).

We further asked about the mechanisms by which genetic
variants affect chromatin accessibility broadly, in multiple cell
types, or specifically in a single cell type. As expected, caQTLs
that are shared across cell types lie within regulatory regions that
are accessible in all cell types and likely affect the DNA binding
of the same factors (Supplemental Figs. S13, S14). In contrast,
most cell-type–specific caQTLs lie in regions that are accessible
in the affected cell type but show little or no accessibility in the
other cell types (Fig. 2B,C). While this is largely expected, we
were able to estimate that >70% of cell-type–specific caQTLs could
be explained simply by cell-type–specific regulatory activity (Fig.
2B). In contrast, only 48% of iPSC-specific eQTLs were driven by
iPSC-specific activity. Many of these cell-type–specific caQTLs
are located quite far from the gene they regulate (e.g., 50 kb or
more), and likely function by affecting distal enhancer or promot-
er elements (Supplemental Fig. S15; Supplemental Table S6).
Interestingly, we note that in iPSCs the frequent cell-type–specific
activation of enhancers located in the ERV family of transposable
elements, consistent with previous work in embryonic stem cells
(Fig. 2F; Kunarso et al. 2010), may allow for cell-type–specific evo-
lution of the regulatory network by co-option of the transposed el-
ements as regulatory elements, followed by fine-tuning through
the selection of DNA mutations (Kunarso et al. 2010).

While the notion that cell-type–specific caQTLs can often be
explained by cell-type–specific chromatin activity is quite intui-
tive, we also found numerous regions that were accessible in
multiple cell types but with a regulatory effect in a single cell
type only (Fig. 2D,F; Supplemental Table S6). In fact, up to 20%
of cell-type–specific caQTLs are accessible in multiple cell types
(Fig. 2E). This observation is consistent with the idea that multiple
DNA-binding factors may affect chromatin activity at the same
locus by binding to distinct but nearby motifs (Farley et al. 2015;
Maurano et al. 2015).

Sequence-based model for chromatin activity explains the

regulatory effects of QTLs

Our observations that cell-type–specific open chromatin regions
can often explain contrasting effects of genetic variants in differ-
ent cell typesmotivated us to explore the sequence features under-
lying differences in chromatin activity across cell types. In
particular, we aimed to identify DNA sequences that could predict
cell-type–specific effects of regulatory variants. We investigated
the use ofmachine learningmodels to predict the chromatin activ-
ity of regulatory elements across our three cell types using DNA se-
quence only (Zhou and Troyanskaya 2015; Hashimoto et al. 2016;
Kelley et al. 2016; Zeng et al. 2016). We developed a four-layered
neural network architecture, OrbWeaver, to predict cell-type–spe-
cific chromatin accessibility of 500-bp windows centered at a reg-
ulatory locus (Fig. 3A; Supplemental Fig. S16). In contrast to
popular approaches that learn all the parameters of the neural net-
work de novo, we used log-transformed position weight matrices
(PWMs) of 1320 human transcription factors (Supplemental
Materials; Matys et al. 2006; Jolma et al. 2013) as the first layer of
OrbWeaver. As training input, we used 282,088 loci that were
identified as accessible in at least one of the three cell types.
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When testing our predictions on a held-out data set of 7151 loci,
we achieved high accuracies in all three cell types: iPSC (AUC =
0.96), LCL (AUC= 0.90), and iPSC-CM (AUC= 0.91) (Fig. 3B; see
Supplemental Fig. S17 for precision recall results). We found that
the use of transcription factor PWMs as the first layer of
OrbWeaver yielded higher predictive accuracies with a simpler
neural network architecture than with a more complex architec-

ture that did not use transcription factor PWMs (Supplemental
Fig. S17).

To identify transcription factors that help predict the shared
and cell-type–specific regulatory activity across loci, we computed
DeepLIFT scores (Shrikumar et al. 2016) with respect to each filter
in the first convolutional layer. Among 1320 factors for which we
had PWMs, the factor with the highest score for a given locus was

Figure 2. Mechanisms of cell-type–specific regulatory variation. (A) QQ-plot of LCL and iPSC eQTL signal conditioned on LCL- and iPSC-specific caQTLs.
Higher enrichment of LCL (iPSC) eQTLs among LCL (iPSC) caQTLs links cell-type–specific regulation of chromatin accessibility to cell-type–specific regu-
lation of gene expression. (B) Chromatin accessibility signal around cell-specific caQTLs in corresponding cell types (black rectangles) and in other cell types.
A lack of accessibility in other cell types suggests that cell-specific caQTLs often affect cell-specific accessible regions, e.g., C. (C,D) Examples of cell-type–
specific regulatory effects of genetic variation. SNP is correlated with accessibility of an iPSC-specific open chromatin region in iPSCs only (C) or of a non-
specific open chromatin region in LCLs only (D). (E) Scatter plot of iPSC and LCL chromatin accessibility at iPSC-specific caQTLs. About 20% of iPSC-specific
caQTLs are accessible in LCLs. Plot of LCL-specific caQTLs in Supplemental Figure S15. (F) Example of an iPSC-specific caQTL that is also an iPSC-specific
eQTL. SNP rs9367277 is associated with both chromatin accessibility of a strong enhancer and with expression of the CD2AP gene in iPSCs. Interestingly,
rs9367277 lies in a transposable element of the ERVL family, which is preferentially activated in embryonic stem cells (Kunarso et al. 2010).
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assigned to be the most important factor for explaining the chro-
matin activity of said locus. Aggregating the key factor across all
loci, we recovered transcription factors that are known to drive
cell-type–specific chromatin activity (Fig. 3C) and identified sever-
al additional factors that are putatively important for cell-type–
specific gene regulation (Supplemental Table S7). Notably, nearly
40% of iPSC-specific open chromatin loci could be explained by
the POU5F1 motif alone. In LCLs and iPSC-CMs, a larger number
of TFs are needed to explain the same fraction of cell-type–specific
open chromatin loci. This observation is consistent with the
higher predictive accuracy achieved for iPSCs compared to LCLs
and iPSC-CMs, even with simpler neural network models
(Supplemental Fig. S17), and suggests that fewer trans-acting fac-
tors establish the chromatin landscape in pluripotent cells than
in somatic cells.

Given our ability to predict cell-type–specific chromatin
activity on a genome-wide scale, from DNA sequence alone, we
reasoned that OrbWeaver might also allow us to predict cell-
type–specific effects of SNPs on chromatin activity (Fig. 3D).
Prediction of SNP effects on gene regulation, especially in specific
cell types, is a challenging problem but is an essential task for fu-
ture interpretation of personal genomes. Starting with iPSC
caQTLs, we found that OrbWeaver predictions track the observed
allelic imbalance ratio with a correlation of 0.50 (P = 6 × 10−184)
(Fig. 3E). Considering all tested SNPs in open chromatin peaks

(the majority of which presumably have no true effect on chroma-
tin accessibility), the correlation is more modest, though highly
significant (iPSC correlation 0.12; P < 10−308). Notably, our ability
to predict caQTL effects in one cell type is drastically reducedwhen
using our model for another cell type (Supplemental Fig. S18), in-
dicating that our model has high cell-type specificity. Altogether
these findings demonstrate our ability to identify trans-acting ele-
ments driving cellular differences in chromatin accessibility and,
more importantly, to predict effects of genetic variation in a cell-
type–specific manner.

iPSC-differentiated cells capture effects of disease variants

Ultimately, the iPSCs and their derived cell types may be valuable
for developing a variety of models of human disease, provided
that cultured differentiated cells are an effective system with
which to model gene regulation in the corresponding primary tis-
sue. We evaluated the fidelity of iPSC-CMs as a model for heart
tissues and heart-related diseases. As discussed above, gene expres-
sion from iPSC-CMs most closely resembles that of GTEx heart
samples. Furthermore, eQTLs detected in our iPSC-CMs are most
enriched for eQTLs identified in GTEx heart tissues (left ventricle)
(Supplemental Fig. S8). We used a polygenic method (Supplemen-
tal Materials) to identify enrichments of GWAS signals associated
with genes whose expression shows cell-type specificity. Genes

Figure 3. Predicting chromatin activity from sequence using deep neural networks. (A) OrbWeaver is a four-layered neural network where the parameters
of the first convolutional layer are fixed to known position weight matrices of human transcription factors. The activation function used in each of the con-
volutional and dense layers is the Rectified Linear Unit (ReLU). (B) The OrbWeavermodel for one cell type poorly predicts open chromatin in other cell types
(gray), highlighting that the model captures cell-type–specific regulatory elements. (C ) Transcription factors important for each locus were identified using
DeepLIFT scores; this panel illustrates the top key TFs for each of the seven categories of chromatin activity and the fraction of loci explained by them. (D) An
example of a locus that is open in iPSCs and LCLs but was identified to be an iPSC-specific caQTL. The subpanels on the left show the raw ATAC-seq signal in
each cell type stratified by genotype of the most significant SNP of the iPSC caQTL. The subpanels on the right show the marginal change in OrbWeaver
predictions due to mutating the reference base at each position to an alternate base. The sequence shown corresponds to the shaded portion on the left
subpanels, and the reported Δpred values correspond to the change between alleles of themost significant SNP. The TF important for this locus as identified
by DeepLIFT is YB-1, a factor highly expressed in all three cell types. (E) Scatter plot comparing the observed allelic imbalance at iPSC caQTLs, estimated by
WASP, and the predicted difference inmedian chromatin activity between haplotypes tagged by the two alleles of the causal SNP. Note that theOrbWeaver
model was learned using the reference genome sequence alone and had no information regarding genetic variation in the population when learning the
model parameters.
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more specifically expressed in iPSC-CMs are enriched for signals
from GWAS for body mass index (BMI), coronary artery disease
(CAD), and myocardial infarction (MI), while genes more specifi-
cally expressed in LCLs are enriched for signals from GWAS for
multiple sclerosis (MS), and rheumatoid arthritis (RA) (Fig. 4A).

We also used stratified linkage disequilibrium (LD) score
regression (Finucane et al. 2015) to estimate enrichment of herita-
bility explained byGWAS signal within open chromatin in the dif-
ferent cell types (Fig. 4B). As expected, heritability explained by
SNPs in LCL ATAC-seq peaks were enriched in both autoimmune
diseases we tested: Crohn’s disease (CD, 15.4-fold, P = 2 × 10−5)
and rheumatoid arthritis (RA, 18.6-fold, P = 7 × 10−5). For the two
heart-related GWAS tested, CAD andMI, we observed a significant
enrichment among SNPs in iPSC-CM ATAC-seq peaks (CAD, 8.2-
fold, P = 2 × 10−4; MI, 5.8-fold, P = 0.02) and among SNPs in heart
H3K27ac peaks (CAD, 11.1-fold, P = 4 × 10−11; MI, 9.7-fold, P =
3 × 10−9). However, SNPs in LCL or iPSC ATAC-peaks showed
weaker enrichment for CAD (P = 0.19 and P = 0.05, respectively)
and MI (P = 0.79 and P = 0.20, respectively). The variability in her-
itability explained by regulatory marks in different cell types sug-
gests that we must be careful in how we assess the suitability of a
cell type to model specific diseases. Nevertheless, our observations
support the general belief that cellular reprogramming followed by
differentiation is a promising strategy to generate disease models
for which primary tissue or cell type is difficult to obtain.

Discussion

We established a unique resource of 58 fully characterized iPSC
lines. These lines were reprogrammed from LCLs obtained from
Yoruba individuals originally collected as part of the HapMap pro-
ject. At this time, ours is the largest panel of iPSCs from individuals
of African ancestry, and it is available to any interested researcher
with no restriction or limitation. Our study design allowed us to
characterize multiple regulatory phenotypes (gene expression,
chromatin accessibility, and DNA methylation) across three cell
types fromthe samepanelof individuals.Using thesedata,we stud-
ied regulatory variation between individuals across cell types at
multiple levels. We found that regulatory variation between indi-
vidualswas lower in iPSCs than in LCLs, cardiomyocytes, andheart
tissue. Interestingly, this reduced variation in regulatory pheno-
types did not diminish our ability to identify QTLs in iPSCs.

From a statistical perspective, this may
seem counterintuitive, but these results
are consistent with previous work show-
ing that, while inter-individual variation
in gene expression was reduced in iPSCs
compared with LCLs, a high proportion
of the variation in iPSCs segregated by in-
dividual (Thomas et al. 2015). Taken to-
gether, these results suggest that a lower
proportion of the regulatory variation in
differentiated tissues is under genetic
control—consistent with the notion
that differentiated tissues can tolerate a
highdegree of gene expressionvariability
(i.e., canalization)—while pluripotent
cells are more tightly regulated. Interest-
ingly, we find the increased variation in
differentiated cell types is also associated
with a slight but significant increase in

correlated expression levels across genes (SupplementalMaterials),
further highlighting the level of regulatory control in iPSCs.

One of our goals was to use a multi-omics approach to better
identify genetic variants with cell-type–specific regulatory effects
in LCLs, iPSCs, and iPSC-CMs. To this end, we identified a list of
iPSC- and LCL-specific eQTLs. We further identified chromatin
features that are associated with cell-type–specific and shared
eQTLs across all three cell types (Supplemental Fig. S19). As we
collectedmultiple sources of data, wewere also able to identify pu-
tative mechanisms that drive such eQTLs. In particular, the chro-
matin accessibility data allowed us to identify cell-type–specific
caQTLs in LCLs, iPSCs, and iPSC-derived cardiomyocytes. We esti-
mated that 80% of the cell-type–specific caQTLs affected loci with
cell-type–specific accessibility patterns, whereas the remaining
20% are affected loci where chromatin was accessible in multiple
cell types. We hypothesize that cell-type–specific caQTLs within
loci accessible in multiple cell types are likely driven by cell-
type–specific TF binding, although more work is needed to deter-
mine the transcription factors involved in such cases and whether
these loci correspond to chromatin targeted by pioneer TFs.

Amajor goal of human genetics is to predict the impact of ge-
netic variants on phenotype. Machine learning methods and, in
particular, deep learning have become promising tools for identi-
fying important features in genomics data sets (Libbrecht and
Noble 2015). The chromatin accessibility data generated in this
study seemed particularly amenable to such techniques. Thus,
we developed a deep learning tool, OrbWeaver, in an attempt to
identify sequence features predictive of open chromatin.
OrbWeaver allowedus to identify TFswith known cell-type–specif-
ic effects. In the future, we expect that OrbWeaver, or similar ap-
proaches, will help us identify additional TFs underlying
chromatin accessibility changes in response to functional pertur-
bations. More interestingly, we found that OrbWeaver can accu-
rately predict the direction of effect of cell-type–specific caQTLs.
We acknowledge that, while the prediction accuracy is high for
SNPs known to be caQTLs, predicting the effect of genetic variants
on chromatin accessibility remains highly challenging.

Finally, we demonstrate the utility of iPSC-derived cells for
the study of regulatory phenotypes. While iPSCs have been used
to model a number of human diseases (Yagi et al. 2011; Choi
et al. 2013; Liang et al. 2013; Miller et al. 2013; Aflaki et al. 2014;
Pashos et al. 2017; Cayo et al. 2017), there is a limited amount of
work demonstrating their ability to model regulatory phenotypes

Figure 4. Modeling complex disease using iPSC-derived cells. (A) Heat map of enrichment P-values of
GWAS signals near genes with cell-type–specific expression (Supplemental Materials). (B) Enrichments of
SNPs associated with four different diseases in different partitions of the genome (computed using
LDscore regression; point estimates ±95% confidence intervals). In both analyses, the autoimmune traits
(multiple sclerosis [MS] or Crohn’s disease [CD] and rheumatoid arthritis [RA]) show enrichment near
genes and chromatin that are more active in LCLs, and the heart-related traits (coronary artery disease
[CAD] and myocardial infarction [MI]) are enriched in iPSC-CM active regions.
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(Alasoo et al. 2017). iPSC-CMs recapitulate gene expression pat-
terns observed in primary heart tissue obtained from the GTEx
Consortium, and eQTLs identified in iPSC-CMs are also enriched
among eQTLs identified in primary heart tissue (Supplemental
Fig. S8). These observations suggest that iPSC-derived cells not
only recapitulate the broad regulatory profile of their in vivo coun-
terparts but alsomirror tissue-specific functional genetic variation.
These results have important implications as many disease-associ-
ated genetic variants are thought to have context- and cell-type–
specific effects. For example, we found an iPSC-CM-specific en-
richment of variants involved in cardiac diseases. A next goal is
to identify mechanisms by which genetic variants affect disease
by inducing iPSC-derived cells into different disease-relevant
contexts.

Ultimately, we believe that our iPSC lines will be of great val-
ue. In particular, future studies using this panel of iPSCs will be
able to assay dynamic gene regulation by characterizing gene ex-
pression during differentiation, in multiple cell types from the
same individuals, and in terminally differentiated cell types sub-
jected to experimental perturbations. The move toward dynamic
studies of gene regulation in disease-relevant tissues will help to
elucidate mechanisms underlying complex disease that were pre-
viously difficult or impossible to study. The research presented
here is a first step toward this goal.

Methods

Sample collection

After at least three passages in feeder-free conditions, iPSCs were
passaged into a 10-cm culture dish. At near full confluence, cells
were enzymatically dissociated and counted. After dissociation,
all additional steps are performed on ice or in a temperature-con-
trolled centrifuge. One 10-cm dish yields between 3 million and
15 million cells. From each line, 400,000 cells were divided into
two tubes to be used for ATAC-seq (Buenrostro et al. 2013). The tag-
mentation step of the ATAC-seq protocol was performed immedi-
ately on the two cell pellets containing 200,000 cells each. The
library preparationof ATAC-seq sampleswas done in larger batches
at a later time. The remaining material was split among three
tubes for RNA and DNA extractions. We isolated RNA and DNA
using the Zymo dual extraction kits (Zymo Research) with a
DNase treatment during RNA extraction (Qiagen) on a single cell
pellet from each line. Fifty-base pair single-end RNA sequencing
libraries were generated from extracted RNA using the Illumina
TruSeq kit as directed by the manufacturer. Sequencing of
samples was performed on an Illumina HiSeq 2500. Extracted
DNA was bisulphite-converted and hybridized to the Infinium
MethylationEPIC array (Illumina) at the University of Chicago
Functional Genomics facility. A similar procedure (Supplemental
Materials) was used to collect iPSC-CM samples.

iPSC and iPSC-CM generation and characterization

We reprogrammed LCLs into iPSCs using an episomal reprogram-
ming approach described previously (Okita et al. 2011; Burrows
et al. 2016). Briefly, we transfected 1 million LCLs with 1 µg of
oriP/EBNA1 PCXLE-based episomal plasmids that contain the
genes POU5F1, SOX2, KLF4, MYCL, LIN28, and an shRNA against
TP53 (Supplemental Materials; Okita et al. 2011; Burrows et al.
2016). All iPSC lines were characterized for pluripotency and
stability using the following criteria: (1) the ability of lines to dif-
ferentiate to all three germ layers using the embryoid body (EB) as-
say; (2) all lines were karyotyped to search for large genomic

rearrangements; and (3) PluriTest (Muller et al. 2011) was applied
to gene expression data to assay pluripotency bioinformatically
(Supplemental Materials). Differentiation from iPSCs to cardio-
myocytes was performed using slight modifications of existing
protocols (Supplemental Materials for more details; Lian et al.
2013; Burridge et al. 2014). All samples reported here were of a
high purity (a median of 82% of cells of each individual express
cardiac Troponin T) (Supplemental Materials).

Molecular data processing

RNA-seq from LCLs (Lappalainen et al. 2013) and iPSCs were
mapped using the STAR RNA-seq aligner (Dobin et al. 2013) stan-
dard settings and processed usingWASP to filter out reads thatmap
with allelic bias (van de Geijn et al. 2015). RNA-seq reads from car-
diomyocytes were mapped using Subread (Liao et al. 2013), allow-
ing for two mismatches, and were also filtered using WASP for
biases in allelic mapping (Supplemental Materials).

Paired-end ATAC-seq reads were mapped using Bowtie 2
(Langmead and Salzberg 2012), allowing for two mismatches per
read. After mitochondrial reads were removed, we once again re-
mapped all nuclear reads using the WASP to remove reads that
map with allelic bias. We then removed all duplicate fragments
(duplicates of both read pairs) and reads with a mapping quality
(MAPQ) less than 10.

Regulatory variation in iPSCs

To quantify the regulatory variation in gene expression, chromatin
accessibility, and DNA methylation levels, we calculated the
average square distance from themean for each individual n as de-
fined as:

Vn = N
L(N − 1)

∑L

l=1

(xnl − �x)2
�x2

for loci l and locus mean �x.

QTL mapping

We used the following approaches to identify molecular QTLs in
our study:

• eQTLs in iPSCs and LCLs: We transformed expression levels to a
standard normal within each individual. We next accounted for
unknown confounders by removing principal components from
the LCL (15 PCs) and iPSC (10 PCs) data. Genotypes were ob-
tained using impute2 as described previously (Li et al. 2016).
We only considered variants within 50 kb of genes. To identify
association between genotype and gene expression, we used
FastQTL (Ongen et al. 2016). After the initial regression, a vari-
able number of permutations were performed to obtain a gene-
wise adjusted P-value (Ongen et al. 2016). To identify significant
eQTLs, we used Storey’s q-value (Storey and Tibshirani 2003) on
the adjusted P-values. Genes with a q-value less than 0.1 are con-
sidered significant.

• eQTLs in iPSC-CMs: We used the combined haplotype test
(CHT) (van de Geijn et al. 2015) to identify eQTLs using both re-
gression and allelic imbalance tests in combination. We focused
on variants within 25 kb of a gene. Following the procedure out-
lined by the authors (Storey and Tibshirani 2003), we performed
the CHT and one permutation of the CHT. We noted that our
tests were not well calibrated, owing to the small number of sam-
ples. We therefore identified significant SNPs by performing
Storey’s q-value correction (Storey and Tibshirani 2003) on the
null data. We then identified the largest P-value in the null
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datawith a q-value less than 0.1.We used this P-value as a thresh-
old in the nonpermuted data to identify significant eQTLs.

• meQTLs in iPSCs and LCLs: We transformed methylation levels
to a standard normal within each individual, and principal com-
ponents were removed to account for unknown confounders
(iPSC: six PCs removed; LCLs: five PCs removed). In accordance
with previous work, genetic variants within 3 kb of a CpG were
tested for associations with methylation levels. Methylation
QTLs were identified using the FastQTL software (Ongen et al.
2016) following the procedure described above.

• caQTLs in all cell types: We pooled the ATAC-seq data for 12 in-
dividuals from whom we have ATAC-seq data in all three cell
types to create a chromatin accessibility track for each cell type
(Supplemental Materials for more details). We then used WASP
to identify caQTLs in all cell types separately.

• distal caQTLs in LCL and iPSCs: We used ATAC-seq data
from iPSCs (n = 58) and DNase-seq data from LCLs (n = 68).
Chromatin accessibility levels were fit to a standard normal
across individuals and qqnormed within individual (Degner
et al. 2012). Principal components were removed to account
for unknown confounders (iPSCs: one PC removed; LCLs: two
PCs removed). Associations between genetic variants within
500 kb of a peak and chromatin accessibility levels were identi-
fied using FastQTL (Ongen et al. 2016).

Peak calling using MACS2

To identify a stringent set of accessible regions in our cell types, we
used MACS2 (Zhang et al. 2008; https://github.com/taoliu/MACS)
to call peaks in all individual ATAC-seq samples separately:

macs2 callpeak - -treatment bamfile - -gsize hs - -format
BAMPE -q 0.01

We next merged all peaks for each individual sample by cell
type, requiring that a peak has a 15× fold change enrichment
over background signal.

Estimating QTL sharing

Storey and Tibshirani (2003) developed a method to estimate the
true proportion of null statistics from a given P-value distribution.
This metric (π0) can be used to calculate the proportion of signifi-
cant tests from a P-value distribution by taking 1− π0 (π1). Here, we
calculate π1 for eQTLs, caQTL, and meQTLs between cell types. To
obtain a better estimate of the true sharing, we generated π1 statis-
tics for a range of stringencies. Specifically, for eQTLs and caQTLs,
we calculated π1 cumulatively from the top 150 most significant
genes/loci to the top 2000 most significant genes/loci in intervals
of 25 genes/loci. For meQTLs, we calculated π1 from the top 500
CpGs to the top 10,000 CpGs in intervals of 100 CpGs. This meth-
od allows us to see sharing across a wide space of stringencies.

Linking cell-type–specific caQTL to eQTL signal

Weused a one-sided Fisher’s exact test to determine the level of sig-
nificance at which the number of iPSC-specific caQTLs that are
also iPSC eQTLs is greater than the number of LCL-specific
caQTLs that are also iPSC eQTLs (and vice versa). This yielded a
P-value of 4.7 × 10−5 and 0.01 for the two comparisons, respective-
ly. This result is robust with respect to various thresholds at which
we defined LCL and iPSC eQTLs (e.g., 10−2, 10−3, 10−4, 10−5). To
obtain a set of iPSC-specific caQTLs that also affect expression of
distal genes, we identified cell-type–specific caQTLs SNPs that
were also associated with expression level of a nearby gene (100
kb) in iPSC with a nominal P-value of, at most, 0.001.

GWAS signal enrichments in gene expression data

We used RolyPoly, a polygenic method that identifies trait-in-
volved cell types by analyzing the enrichment of GWAS signal in
cell-type–specific gene expression genome-wide (Calderon et al.
2017). To compute disease heritability enrichments in chromatin
marks and our ATAC-seq peaks, we used stratified LDscore regres-
sion (Supplemental Materials; Finucane et al. 2015).

Neural network models for chromatin accessibility

To predict the chromatin activity of a genomic locus across three
cell types (iPSC, LCL, and iPSC-CM) from the DNA sequence, we
used a one-hot encoding of the reference DNA sequence of length
500 bp centered at the locus as the input to the neural network
model. The input layer therefore consists of 4 × 500 binary-valued
variables. The output of a neural network model is a categorical
variable O ∈{1,…, 7} where the values of the variables denote the
following: 1 if open in iPSC-CM alone, 2 if open in LCL alone, 3
if open in iPSC-CM and LCL, 4 if open in iPSC alone, 5 if open
in iPSC and iPSC-CM, 6 if open in iPSC and LCL, 7 if open in all
three cell types.

We used the sigmoid activation function to model the
probability of the categorical variable in the output layer. The ar-
chitecture of our neural network, OrbWeaver, can be found in
Supplemental Materials. The filters of the first convolutional layer
in OrbWeaver were kept fixed to log-transformed position weight
matrices of 1320 human transcription factors. For each TF, we used
PWMs curated from two sources—TRANSFAC (Matys et al. 2006)
and HT-SELEX (Supplemental Materials; Jolma et al. 2013).

To train our neural network, we used a training set of 282,088
loci to learn the parameters of eachmodel usingADADELTA (Zeiler
2012).

We queried and interpreted the importance of each of the fac-
tors in predicting active chromatin belonging to one of the seven
categories by fixing the filters in the first convolutional layer to
known TF PWMs. We computed importance scores using
DeepLIFT (Shrikumar et al. 2016), and for each of the seven catego-
ries, we used loci belonging to that category if the model correctly
predicted their category. For each locus, we calculated DeepLIFT
scores on the input with respect to each filter in the first convolu-
tional layer; this gives us a score for each TF at each position in the
locus (Supplemental Methods).

To predict the effects of genetic variation on chromatin acces-
sibility at loci tested for caQTLs, we first used qtlBHM, a Bayesian
hierarchical model (https://github.com/rajanil/qtlBHM), without
any annotation to compute the probability that a locus is a
caQTL (πl) and the probability that a SNP is the causal variant for
a locus conditional on the locus being a caQTL (πs). Restricting
to loci with πl > 0.99 and πs > 0.99, using a 500-bpwindow centered
at the causal variant of each such locus, we computed the
OrbWeaver prediction at each of the 240 haplotypes (correspond-
ing to 120 YRI individuals). Partitioning the haplotypes based on
the alleles of the causal SNP, we then computed the difference in
themedian prediction of chromatin activity between the reference
and alternate alleles for each of the three cell types.

Software availability

OrbWeaver, our deep learning software, is available freely at https
://github.com/rajanil/OrbWeaver and as a Supplemental file.

Data access

All data from this study have been submitted to the Gene
Expression Omnibus (GEO; www.ncbi.nlm.nih.gov/geo/) under
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accession no. GSE89895 and at http://eqtl.uchicago.edu/yri_ipsc/.
Other accession numbers can be found in Supplemental Table S7.
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