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INTRODUCTION 
 

In the latest GLOBOCAN worldwide cancer statistics, 

approximately 338,000 new cases of kidney cancer have 

been diagnosed and 143,000 patients succumbed to this 

disease [1]. Renal carcinoma originates from the renal 

parenchymal urinary tubular epithelial system and is 

generally divided into four pathological subtypes: clear 

cell renal carcinoma (ccRCC, accounting for 70%-

80%), granulosa cell renal carcinoma, mixed cell renal 

carcinoma, and undifferentiated cell renal carcinoma 

[2–4]. Despite its lowest degree of malignancy, ccRCC 
progression is difficult to determine due to its 

complexity [5] clinically. With the tumor cells 

originating in the renal parenchyma and easily 

infiltrating the renal capsule, this disease can develop 

into hemangioma embolus and metastasis, thereby 

complicating the prognosis prediction [6]. 

 

Oncologic outcomes prediction and treatment 

recommendation is primarily guided by the tumor-

nodes-metastases (TNM) staging system. However, the 

definitions of TNM classification have recently been 

changed because clinical outcomes substantially vary 

even within the same stage group [7]. Finding new 

molecular biomarkers and designing personalized 

therapeutic approaches for patients with tumor have 
become a research focus. Zuzana Sporikova 

systematically summarized the clinical gene markers for 

triple-negative breast cancer that could serve as 
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ABSTRACT 
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AUC = 0.71, 1 year, AUC = 0.75). Finally, ENAM was selected for further analysis. In vitro experiment indicated that 
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and SW839). Immune infiltration analysis revealed that ENAM could remarkably increase the content of cytotoxic 
cells, NK CD56 cells, NK cells and CD8+ T cells in the tumor immune microenvironment, which may be one reason 
for its tumor-inhibiting effect. In summary, ENAM may suppress cell proliferation in ccRCC and can be used as a 
potential reference value for the relief and immunotherapy of ccRCC. 
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diagnostic and prognostic biomarkers to guide 

personalized therapeutic strategies [8]. A prognostic 

nomogram combining four immune signatures (MAL, 

MS4A1, OAS1, and WFDC2) with TNM stage was also 

developed to predict the prognosis of lung 

adenocarcinoma [9]. Given the benefits of genes in 

predicting cancer prognosis, the latest 8th edition of 

TNM staging system has been featured with biomarkers 

that are necessary for the stratification of patients 

requiring personalized medicine [10]. 

 

As an extraordinary technological advancement, high-

throughput sequencing produces massive genomic data 

that can be used to understand cancer development and 

progression [11]. Moreover, the broad discipline of 

bioinformatics has become increasingly in demand due 

to its strengths in handling "big data". In this study, 

DEGs were identified between patients with high and 

low T classifications. A useful model for predicting the 

OS of patients with ccRCC was then established. 

ENAM was finally selected for further analyses (gene 

set variation analysis, GSVA; gene set enrichment 

analysis, GSEA; immune infiltration analysis) and in 
vitro experiment by interacting model genes and top 20 

PPI nodes. Experimental results showed that ENAM is 

lowly expressed in ccRCC tissues and could inhibit 

tumor proliferation. Therefore, this molecule may be a 

valuable biomarker and therapeutic target for patients 

with ccRCC. 

 

RESULTS 
 

Identification of DEGs in KIRC 

 

A total of 168 genes were differentially expressed 

among patients with T4 and T1 classifications with the 

threshold of |logFC(fold-change)|>1 and adj. P<0.05. 

Among which, 65 were down-regulated, and 103 were 

up-regulated (Figure 1A). The flowchart of the whole 

study was shown in Supplementary Figure 1. 

 

 
 

Figure 1. Identification of DEGs between high and low T classification, PPI network and enrichment analysis. (A) The volcano 
plot of TCGA; (B) PPI network of all DEGs; (C) Top 20 nodes in PPI network; (D) GO enrichment analysis of all DEGs; (E) KEGG enrichment 
analysis of all DEGs. Abbreviations: TCGA, The Cancer Genome Atlas; GEO, Gene Expression Omnibus; DEGs, Differentially expressed genes; 
PPI, protein-protein interaction; GO, Gene oncology; KEGG, Kyoto Encyclopedia of Genes and Genomes. 
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PPI network and enrichment analysis 

 

The PPI network was visualized using the Cytoscape 

software (Figure 1B). MCC value was calculated by 

cytoHubba plug-ins that arranged all the nodes, and the top 

20 crucial genes are shown in Figure 1C. GO and KEGG 

analysis was also performed on the identified DEGs. GO 

analysis revealed that for biological processes (BPs), 

DEGs were markedly enriched in “organic anion 

transport,” “organic acid transport”, “carboxylic acid 

transport”, and “extracellular structure organization” 

(Figure 1D). Changes in cellular components (CCs) were 

strikingly enriched in “extracellular matrix (ECM),” 

“apical plasma membrane,” “apical part of cell”, and 

“endoplasmic reticulum lumen” (Figure 1D). Changes in 

the DEG molecular function (MF) were primarily enriched 

in “organic anion transmembrane transporter activity,” 

“organic acid transmembrane transporter activity,” 

“carboxylic acid transmembrane transporter activity”, and 

“secondary active transmembrane transporter activity” 

(Figure 1D). KEGG analysis showed that DEGs were 

mainly enriched in “renin-angiotensin system,” “PPAR 

signaling pathway,” “complement and coagulation 

cascades”, and “insulin resistance” (Figure 1E). 

 

Weighted gene co-expression network (WGCNA) 

analysis 

 

WGCNA analysis was conducted on 539 tumor samples 

using the “WGCNA” package in R software to identify the 

genes associated with T classification in KIRC. “EdgeR” 

package was used to filter low counts, and the top 5000 

differential genes were extracted. A scale-free network 

was constructed with the power of soft-thresholding 

parameter = 5 (β = 5). After modules were merged with a 

dissimilarity of less than 25%, 12 distinct gene modules 

were identified (Figures 2A, 2B). The clinical data of each 

sample were subsequently matched, and the correlation 

between each gene module and T classification was 

analyzed. Finally, the purple (Cor = 0.77, P <0.0001) and 

yellow modules (Cor = 0.51, P <0.0001) were identified as 

the top two having the highest correlation with T 

classification (Figure 2C, 2D). ClueGO analysis showed 

that the purple module genes were mainly enriched in the 

terms “steroid hormone biosynthesis” and “biocellular 

tight junction.” For the yellow modules, the top two terms 

were “detoxification of inorganic compound” and 

“peptidase inhibitor activity.” From the intersection of all 

DEGs and two modular genes, 76 genes were identified 

and selected for further analysis (Figure 2E). 

 

Establishment and validation of the OS prediction 

model 

 

The survival relevance of these 76 genes was further 

explored. Univariate cox analysis was first performed to 

identify prognosis-related genes (Figure 3B). Random 

survival forest algorithm was then used to filter the 

genes according to importance screening (Figure 3A). 

The top 10 important genes were selected for 

multivariate cox analysis (Figure 3C). After the 

permutation and combination of these 10 genes, a log 

rank test was used to select the combination with 

significant P value and less gene number, which was 

defined as the prognosis signature (Figure 3D). T-

related genes WDR72, ENAM, GFPT2, SOWAHB, and 

C1orf210 were finally selected to construct a model for 

predicting the OS of patients with KIRC by using the 

formula of “Risk scores = GFPT2 expression * 0.173 + 

SOWAHB expression * -0.319 + ENAM expression * -

0.05 + WDR72 expression * -0.081 + C1orf210 

expression * 0.187” (Figure 3E–3I). The clinical 

correlation analysis showed that the risk scores are 

notably associated with worse clinicopathologic 

features (Figure 3J–3O; Stage III-IV, Grade 3-4, T3-4, 

M1). All patients were categorized into high- and low-

risk groups according to their risk scores (Figure 4A). 

ROC curve and Kaplan–Meier survival curve revealed 

that the established model had good sensitivity and 

specificity in predicting the OS of patients with KIRC 

(Figure 4B, TCGA train, 5 years, AUC = 0.73, 3 years, 

AUC = 0.73, 1 year, AUC = 0.76; Figure 4C, TCGA 

test, 5 years, AUC = 0.74, 3 years, AUC = 0.65, 1 year, 

AUC = 0.73; Figure 4D, TCGA all, 5 years, AUC = 

0.72, 3 years, AUC = 0.71, 1 year, AUC = 0.75). A 

multivariable cox proportional hazards model was 

subsequently constructed, and a nomogram was plotted 

based on the clinical factors and risk scores of patients 

in TCGA (five-genes OS prediction model). Primary 

clinical factors include age, gender, T classification, 

clinical stage, and grade (Figure 4E). The final point 

was the sum of the points from each item. As a 

continuous variable, the point of age was calculated as 

"0.578* age - 14.447". For the T classification, the 

patients in T1, T2, T3, and T4 comprised the 0 point, 

3.934 points, 7.869 points and 11.803 points, 

respectively. Female was the 0 point, and Male was 

11.649 points. The points of Stage I, Stage II, Stage III 

and Stage IV was 0, 8.209, 20.275 and 40.358. As for 

the grade, the patients in G1, G2, G3, and G4 was 0 

point, 91.727 points, 96.828 points and 100 points, 

respectively. The points of our predictive model was 

"5.923* risk scores". The one-year survival probability 

was “5.08e-07* points ^3 + -0.000389964* points ^2 + 

0.078786403* points - 3.834997412". The three-year 

survival probability was " 5.08e-07* points ^3 + -

0.000355266* points ^2 + 0.061814757* points - 

2.236972943". The five-year survival probability was " 

5.08e-07 * points ^3 + -0.000336914 * points ^2 + 
0.05347929 * points - 1.543227337". The calibrations 

curves showed the great effectiveness and stability of 

the nomogram (Figure 4F, gray: ideal). The ROC curve 



 

www.aging-us.com 7038 AGING 

of the nomogram combined with risk scores and clinical 

features showed greater effectiveness than the 

predictive model (1-year AUC, predictive model: 0.76, 

nomogram: 0.820, increased: 0.06; 3-year AUC, 

predictive model: 0.73, nomogram: 0.817, increased: 

0.087; 5-year AUC, predictive model: 0.73, nomogram 

model: 0.844, increased: 0.114) (Figure 4G). GSEA 

results showed that in the high-risk group, the pathway 

of epithelial–mesenchymal transition and IL6-JAK-

STAT3 signaling were enriched (Figure 4H). The 

interaction of the model genes and the top 20 PPI nodes 

identified only one gene—ENAM, which was selected 

for further analysis (Figure 4I). ROC curves revealed 

that the AUC value, sensitivity and specificity of 

ENAM in predicting OS was 0.653, 0.566 and 0.655, 

respectively (Figure 4J). Besides, the logistic regression 

analysis revealed that the impact of ENAM on patient 

survival is independent of patient clinical parameters 

(Supplementary Figure 2, P= 0.043). 

 

Pathway enrichment and immune infiltration 

 

GSVA analysis determined that when ENAM 

expression was increased, remarkable enrichment was 

observed in metabolism-related pathways, such as 

amino acid metabolism, lipid metabolism, carbohydrate 

 

 
 

Figure 2. Identification of modules associated with the T classification in the TCGA-KIRC dataset. (A) Module-trait relationships. 

Each row corresponds to a color module and column corresponds to a clinical trait. Each cell contains the corresponding correlation and P-
value; (B) The scale independence and mean connectivity; (C) The purple module genes and their GO analysis in ClueGO; (D) The yellow 
module genes and their GO analysis in ClueGO; (E) The venn plot of yellow module genes, purple module genes and DEGs. 
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Figure 3. Construction of the prognosis model based on the T classification related genes. (A) Error rate for the data as a function 
of the classification tree and out-of-bag importance values all the predictors; (B) Volcano plot displayed the genes of the univariate Cox 
regression analysis; (C) Random survival forest analysis screened 10 genes; (D) After Kaplan–Meier analysis of 2 ‒1 = 1,023 combinations, the 
top 20 signatures were sorted according to the p value of KM. And the signature included five genes that were screened out, for it had a 
relative big −log10 p value and a small number of genes; (E) The association between WDR72 expression with T classification; (F) The 
association between ENAM expression with T classification; (G) The association between GFPT2 expression with T classification; (H) The 
association between SOWAHB expression with T classification; (I) The association between C1orf210 expression with T classification; (J) The 
correlation between risk scores and age; (K) The correlation between risk scores and gender; (L) The correlation between risk scores and 
grade; (M) The correlation between risk scores and stage; (N) The correlation between risk scores and Mstage; (O) The correlation between 
risk scores and Tstage. 
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metabolism, and oxidative phosphorylation (Figure 5A 

and Supplementary Table 1). GSEA analysis also 

indicated that in high ENAM expression phenotype, the 

pathways of oxidative phosphorylation, xenobiotic 

metabolism, heme metabolism, fatty acid metabolism, 

and bile acid metabolism were also enriched (Figure 5B). 

Given the tight linage of metabolism and immunity, the 

underlying association between ENAM expression and 

immune infiltration (or multiple immune cells) was 

further explored. ENAM was found positively correlated 

with cytotoxic cells, NK CD56 cells, NK cells, CD8+ T 

cells, and CD8 Treg cells but negatively associated with 

eosinophils cells and B cells (Figure 5C). 

 

ENAM is down-regulated in renal cancer tissues 

 

ENAM expression was evaluated in 72 paired tumor 

and paratumor samples, and its low expression was 

 

 
 

Figure 4. The evaluation of the model and the nomogram plot. (A) The risk plot of OS predictive model in TCGA-KIRC; (B) The ROC 

curve and Kaplan-Meier survival curves of TCGA-train group; (C) The ROC curve and Kaplan-Meier survival curves of TCGA-test group; (D) The 
ROC curve and Kaplan-Meier survival curves of TCGA group; (E) The nomogram plot; (F) The calibrations of 1, 3, 5 years; (G) The ROC curves 
of nomogram plot; (H) The GSEA analysis of high risk patients; (I) The venn plot of model genes and top 20 nodes in PPI; (J) The ROC curves of 
ENAM with best cutoff. Abbreviations: PPI: Protein-protein interaction. 
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found in the tumor tissues (Figure 6A). Fifty pairs of 

ccRCC tissues were then collected for qPCR analysis to 

detect the actual ENAM expression pattern, and the 

same conclusion was obtained (Figure 6B). Western 

blot analysis also showed a low protein expression in 

kidney cancer cell lines, among which OSRC-2 and 

SW839 presented the lowest levels (Figure 6C). 

Successful ENAM overexpression in vitro was verified 

through its mRNA and protein levels by using qPCR 

and Western blot analysis (Figure 6D, 6E). 

 

Overexpressed ENMA inhibits proliferation in renal 

cancer 

 

In OSRC-2 and SW839 cell lines, overexpressed 

ENAM elevated the protein level of Bax and cleaved-

cas3 but decreased Bcl-2 expression (Figure 7A, 7B). 

Clonogenic assay showed that the overexpressed 

ENAM could significantly decrease clonogenic 

capacities (Figure 7C). MTT assays further validated 

this observation, indicating that ENAM overexpression 

could also inhibit the proliferation of renal cancer cells 

(Figure 7D). 

 

DISCUSSION 
 

As one of the top 10 causes of cancer death, renal 

cancer progression is relatively difficult to predict and 

understand, and its control is thus challenging [12]. 

ccRCC is the most frequently occurring subtype of 

kidney cancer and causes almost over one million 

deaths worldwide [13]. Although the 5-year survival 

rate of ccRCC is above 90% at the early stage, this 

value declines to 15% in advance stage [13]. T 

classification is a powerful predictor of the condition 

and prognosis of patients in clinical practice. This study 

has considerable relevance in the search for novel 

biomarkers associated with T classification, new 

therapeutic targets, and new therapeutic methods and 

provides new directions for future research. 

 

 
 

Figure 5. Enrichment analysis and immune infiltration of ENAM. (A) GSEA analysis of ENAM; (B) GSVA analysis of ENAM; (C) The 

association between KIF20A and 24 immune cells calculated by ssGSEA. 
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T classification-related genes remarkably associated 

with the OS of patients with ccRCC were screened by a 

series of bioinformatics analysis. These genes may 

participate in cancer progression, and some of which 

have not been reported in ccRCC. WGCNA results 

identified ENAM for further analysis and in vitro 

experiment. This gene was proven to inhibit 

proliferation in ccRCC. 

 

A total of 145 DEGs were identified between the high 

T (T4) and low T (T1) staging groups on the basis of 

the transcriptome and clinical data of patients with 

ccRCC. GO enrichment analysis revealed that the gene 

module was predominantly enriched in some areas, 

including the transport of organic anion and ECM. 

Only a few studies focused on the transport of organic 

anion and extracellular matrix and were unable to 

clarify their vital role in cancer progression and 

development. Abe and their colleagues reported that 

OATP1B, a member of the organic anion transporting 

polypeptides superfamily, is up-regulated in multiple 

gastrointestinal cancer and associated with patient 

clinical outcomes [14]. A large number of unique ECM 

structures with multiple biological functions could 

multimetrically affect the physiological and bio-

chemical processes of cells [15]. Along with tumor 

progression, the increase in structural constituents such 

as ECM in the tumor microenvironment could lead to 

rapid tumor growth [16, 17]. 

 

A model with five genes was constructed for predicting 

the OS of patients with ccRCC on the basis of all the 

DEGs and two modular genes of WGCNA. KM and 

ROC curve revealed that the model was reliable for the 

training and validation groups. Furthermore, GSEA 

analysis was conducted to understand the biological 

difference between the high- and low-risk groups. The 

results suggested that the epithelial–mesenchymal 

transition (EMT) and IL6-JAK-STAT3 signaling were 

the top two significant pathways that play an essential 

role in the progression and development of multiple 

tumors [18, 19]. EMT is a process in which epithelial 

cells transdifferentiate into motile mesenchymal cells 

and obtain the capacity of cell movement [20]. By using 
 

 
 

Figure 6. ENAM is down-regulated in ccRCC. (A) Expression of ENAM was down-regulated in 72 paired tumor compared with paratumor 

samples in TCGA; (B) Expression of ENAM was frequently down-regulated in 50 ccRCC tumor tissue; (C) ENAM protein expression in HK-2, 
OSRC-2, SW839, Caki-1 and A498 cell lines; (D) qPCR of indicated cells transfected with ENAM-vector and ENAM; (E) Western blotting of 
indicated cells transfected with ENAM-vector and ENAM. Abbreviations: NS: P>0.05; *: P<0.05; **: P<0.01; ***: P<0.001. 



 

www.aging-us.com 7043 AGING 

the transgenic mouse model, Zeisberg and their 

colleagues revealed that the EMT might be an 

essential source for the carcinoma-associated 

fibroblasts and critically contributes to tumor 

progression [21]. EMT plays a vital role in the 

development and progression of multiple tumors [22]. 

By exploring the B7-H4 level in glioma tissues with 

different grades, Yao and their colleagues found that 

the cross-talk between glioma-initiating cells and 

macrophages mediated by B7-H4 through the 

IL6/JAK/STAT3 pathway could result in poor 

prognosis [23]. In hepatocellular carcinoma, miR-515-

5p inhibits the invasion and migration of cancer cells 

by suppressing the IL6/JAK/STAT3 pathway [24]. 

 

Intersection with five model genes and PPI top 20 genes 

revealed that ENAM might be significantly correlated 

with T classification and patient prognosis. This gene 

encodes the largest protein in the enamel matrix of 

developing teeth and is generally associated with dental 

caries [25]. However, in some tumors, ENAM exhibits 

extraordinary expression patterns and is possibly 

involved in the disease progression. For instance, 

Sanchez and their colleagues identified the over-

expression character of ENMA based on a cohort of 100 

B-cell precursors from patients with acute 

lymphoblastic leukemia; this feature may lead to poor 

prognosis [26]. To date, the role of ENAM in ccRCC 

has not been reported. In this work, a series of in vitro 

experiments revealed that ENAM is down-regulated in 

high T classification ccRCC and could inhibit the 

proliferation of ccRCC cells. 

 

Immune infiltration analysis showed a positive 

correlation between ENAM expression and multiple 

immune cells such as cytotoxic cells, NK CD56 cells, 

NK cells, and CD8+ T cells, et al. This finding partially 

explains the tumor-suppressing function of ENAM. 

According to the comprehensive systematic review 

conducted by Martínez–Lostao, cytotoxic and NK cells 

are chief participants in killing tumor cells [27]. 

Dumont and their colleagues found that CD8+ T cells 

have a high expression of cytotoxic molecules that 

could effectively inhibit the proliferation of cancer cells 

and thus may be a target for immune therapy [28]. 

These results indicated that ENAM might inhibit the 

occurrence and development of cancer through its 

interactions with these immune cells and therefore has a 

potential reference value for the relief and immuno-

therapy in ccRCC. 

 

 

 

 
Figure 7. ENAM regulates the proliferation of renal cancer cells. (A, B) Upregulation of ENAM significantly increased the expression 
of Bax and Cas3, yet decreased the expression of Bcl-2; (C) Upregulation of ENAM reduced the mean colony number in the colony formation 
assay; (D) MTT assays revealed that upregulation of ENAM significantly reduced the cell viability. Abbreviations: NS: P>0.05; *: P<0.05; **: 
P<0.01; ***: P<0.001. 
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This study inevitably suffers from certain limitations. 

Although the data were based on a large sample in the 

TCGA database, the small number of included Asian 

patients remains to be a limitation. Whether the 

conclusion applies to patients with ccRCC in Asia 

remains unclear. In addition, the clinical data stored in 

TCGA-KIRC were limited. As a result, the T 

classification data used for analysis were not 

comprehensive and may lead to potential errors or 

biases. Finally, the mechanism by which ENAM 

inhibits the progression of ccRCC requires further 

investigation. 

 

CONCLUSIONS 
 
An effective predictive model for OS in ccRCC based 

on five T classification related genes was established by 

conducting serial bioinformatics analysis and in vitro 

experiment. ENAM was found to inhibit proliferation in 

ccRCC, which has not been previously reported. Its 

interaction with immune cells in the tumor 

microenvironment renders ENAM as an underlying 

immunotherapy target in ccRCC. 

 

MATERIALS AND METHODS 
 
Acquisition of public data and preprocessing 

 
The gene expression profile of patients with ccRCC 

were obtained from TCGA database (TCGA-KIRC, 

FPKM), the world’s largest resource integrating the 

genomic and clinical information of 33 cancers [29]. 

Clinical and prognosis information was downloaded as 

“bcr xml” file and processed by the author’s own R 

code. Data preprocessing included background 

correction, data normalization, complementing missing 

values, and combining normal and tumor group data. 

“Homo_sapiens.GRCh38.99.chr.gtf” file was used for 

ID transformation. 

 
DEG identification and enrichment analysis 
 

R package “limma” stored in Bioconductor was used to 

identify the DEGs between T4 and T1 tissues with the 

threshold of |logFC(fold-change)|>1 and adj. P<0.05 [30]. 

GO and KEGG analyses were performed using the 

“ClusterProfiler” package for the underlying function of 

DEGs [31]. 

 
PPI network construction 
 

The protein interaction information of identified DEGs 

was obtained from STRING (http://string-db.org; 

Search Tool for the Retrieval of Interacting Genes), an 

online biological database used to excavate key 

regulatory genes [32]. The meaning of network edges 

was based on evidence, and protein interaction with a 

score of >0.4 was considered statistically significant. 

Plug-ins “Cytohubba” was used to identify the hub 

genes according to the MCC value [33]. Open-source 

bioinformatics software, Cytoscape (version 3.4) was 

used to visualize PPI networks [34]. 

 

Weighted correlation network analysis (WGCNA) 

 

A co-expression network was constructed using the 

WGCNA package to identify the significant mRNAs 

associated with the T classification in ccRCC [35]. The 

goodSamplesGenes function was applied to check 

whether the DEmRNAs of data matrix meet the criteria 

and to eliminate the unqualified data. The 

pickSoftThreshold function was used to calculate the 

value of β (a soft threshold power parameter) to ensure 

a scale-free network. A tree diagram was also visualized 

by hierarchical clustering. The correlation between 

module eigengenes (MEs) and clinical traits was 

calculated and used to screen the MEs related to the T 

classification of ccRCC. 

 

Construction of predictive-model and nomogram for 

predicting OS 

 

All candidate genes were first analyzed by univariate 

cox regression analysis to identify prognosis-related 

genes. Supervised regression random forests were then 

performed using the R package “randomForestSRC” for 

dimension reduction (ntree = 1000). The top 10 

significant genes were selected for multivariate cox 

regression analysis. The prognosis model was 

established with “Risk scores = * ( )coef Exp genes .” 

On the basis of the clinical features and risk scores, a 

nomogram was established for predicting the OS of 

patients with ccRCC and evaluated using calibration 

plots.  

 

Pathway enrichment analysis 

 

GSVA analysis was performed by the GSVA package 

in R software, a gene set enrichment method estimating 

the variation of pathway activity across different 

samples in an unsupervised manner [36]. GSEA was 

conducted [37] with the following parameters to 

evaluate the biological characteristics: “collapse data set 

to gene symbols” was false; the number of permutations 

was 1000; the “Collapse/Remap to gene symbols” was 

No_Collapse; the cut-off criteria was FDR <0.25 and 

nominal P-value <0.05; and the metric for ranking 

genes was Signal2Noise. The high expression group 

was regarded as the experimental group, and the low 

expression group was set as a reference group. 

"h2.all.v7.2.symbol.gmt (Hallmarks)" gene set database 

was selected for enrichment analysis. 

http://string-db.org/
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Immune infiltration analysis 

 

ssGSEA package was used to quantify the content of 

immune cells in TCGA samples. Its advantage is the 

high degree of freedom in quantification. Information 

for the maker genes in 24 immune cells was obtained 

from Bindea et al. [38]. 

 

Cell lines and qPCR 

 

Tissues and informed consent were obtained from 

Pathology Tissue Bank of Jiangsu Province Hospital. 

Human kidney cancer cell lines (OSRC-2, SW839, Caki-

1, and A498) and normal HK-2 cells were obtained from 

iCell (Shanghai, China). Total RNA was isolated using 

Trizol (Invitrogen, USA). PrimeScript RT Master Mix 

(Takara, JPN) was used for cDNA synthesis. qPCR was 

performed using an SYBR Green assay for the analysis of 

ENAM mRNA expression following the manufacturer’ s 

instructions (Applied Biosystems, USA). The primers 

used were as follows: ENAM, forward: 5′-GGCTT 

CTTGGTAATTCTGTTGCT-3′; ENAM, reverse: 5′-

ATGTGGGCCGTTCATAAAGTT-3′; GAPDH, forward: 

5′-AC CACAGTCCATGCCATCAC-3′; GAPDH, and 

reverse: 5′-TCCACCACCCTG TTGCTGTA-3′. 

 

Protein extraction and western blot 
 

Total proteins were extracted from kidney cancer tissues 

with Western and IP lysis buffer (Beyotime, P0013; 

Beijing, China). Protein concentration was measured 

using the BCA reagent kit (Pierce, 23227, USA). The 

proteins were resolved by 8%–12% SDS-PAGE and then 

blotted onto polyvinylidene fluoride (PVDF) membranes, 

which were then blocked in TBS/0.1% Tween-20 

(TBST) containing 5% skimmed milk powder for 1 h at 

room temperature. Primary ENAM, Bax, Bcl-2, cleaved-

casp3, and GAPDH antibodies were diluted with 1:300 

(AtaGenix, Wuhan, China) and 1:2000 (AtaGenix, 

Wuhan, China) prior to incubation for 2 h at room 

temperature. The secondary antibody [anti-rabbit or 

anti-mouse IgG (H+L) biotinylated antibody (CST, 

USA)] was incubated for 2 h at room temperature (RT). 

 

Vectors transfection 

 

ENAM cDNA fragments were prepared using the 

EcoRV/Xhol double-enzyme digestion method. The 

cDNA sequences of ENMA were cloned into the 

pcDNA3.1 vectors to generate overexpressed ENAM 

(OE-ENAM). 
 

MTT assay 
 

Cells were seeded into a 96-well plate at the concentration 

of 2×103 cells/well in triplicate and then treated with 100 

μl of 0.5 mg/ml sterile MTT for 4 h (37° C, 5% CO2; 24 

h, 48 h, and 72 h). The medium was then removed, and 

150 μl of dimethyl sulfoxide was added. Cell viability was 

determined by MTT assay. 

 

Clonogenic assay 

 

The cancer cell lines were transfected with the above 

vectors for 24 h. The cells were plated into 30 mm cell 

culture dishes containing 10% FBS and cultured for 14 

days. The medium was changed every 3 days. The cells 

were fixed with 15% formaldehyde for 15 min and stained 

with 0.1% crystal violet for 20 min prior to counting. 

 

Statistical analysis 
 

Software R v3.6.1, SPSS v23, and ImageJ were used for 

all the analyses. All statistical tests were two-sided. P-

value <0.05 was considered statistically significant. All 

experiments were performed at least three times. 

Average linkage method and Pearson correlation 

analysis were applied in the WGCNA analysis. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. The flowchart of the whole study. 



 

www.aging-us.com 7050 AGING 

 
 

Supplementary Figure 2. Logistic regressive analysis including ENAM and clinical features on patient survival. 
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Supplementary Table 
 

Supplementary Table 1. The top 20 significant pathways of GSVA analysis (ENAM). 

Term logFC P.Value adj.P.Val 

Top 10 up-regulated pathway 

REACTOME_BRANCHED_CHAIN_AMINO_ACID_CATABOLISM 0.42 1.10E-34 5.05E-32 

GO_BRANCHED_CHAIN_AMINO_ACID_METABOLIC_PROCESS 0.41 7.24E-35 3.98E-32 

KEGG_VALINE_LEUCINE_AND_ISOLEUCINE_DEGRADATION 0.39 5.27E-29 5.80E-27 

REACTOME_PEROXISOMAL_LIPID_METABOLISM 0.36 1.24E-29 1.59E-27 

KEGG_PROPANOATE_METABOLISM 0.35 4.81E-27 3.44E-25 

KEGG_FATTY_ACID_METABOLISM 0.35 2.66E-29 3.12E-27 

REACTOME_DEFECTS_IN_VITAMIN_AND_COFACTOR_METABOLISM 0.34 9.02E-28 7.29E-26 

REACTOME_CITRIC_ACID_CYCLE_TCA_CYCLE 0.32 3.48E-18 6.13E-17 

REACTOME_CLASS_I_PEROXISOMAL_MEMBRANE_PROTEIN_IMPORT 0.32 1.57E-28 1.57E-26 

GO_ACETYL_COA_BIOSYNTHETIC_PROCESS 0.32 4.85E-24 2.26E-22 

Top 10 down-regulated pathway 

KEGG_RIBOSOME -0.36 3.93E-16 4.89E-15 

REACTOME_EUKARYOTIC_TRANSLATION_ELONGATION -0.35 7.78E-16 9.07E-15 

REACTOME_RESPONSE_OF_EIF2AK4_GCN2_TO_AMINO_ACID_DEFICIENCY -0.35 4.09E-17 5.99E-16 

GO_CYTOSOLIC_LARGE_RIBOSOMAL_SUBUNIT -0.35 3.80E-15 4.05E-14 

GO_CYTOSOLIC_RIBOSOME -0.32 8.21E-15 8.45E-14 

GO_CYTOSOLIC_SMALL_RIBOSOMAL_SUBUNIT -0.32 3.77E-15 4.03E-14 

REACTOME_SRP_DEPENDENT_COTRANSLATIONAL_PROTEIN_TARGETING_

TO_MEMBRANE 
-0.32 2.08E-15 2.29E-14 

GO_COTRANSLATIONAL_PROTEIN_TARGETING_TO_MEMBRANE -0.31 1.24E-14 1.24E-13 

REACTOME_SELENOAMINO_ACID_METABOLISM -0.31 1.11E-14 1.12E-13 

REACTOME_EUKARYOTIC_TRANSLATION_INITIATION -0.30 2.62E-14 2.50E-13 

 


