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Abstract

Concept learning have been studied widely in non-human animal species within or not an

ecological context. Here we tested whether cleaner fish Labroides dimidiatus, which show

generalised rule learning in an ecologically relevant context; they generalise that any preda-

tor may provide protection from being chased by other fish; can also learn a general concept

when presented with abstract cues. We tested for this ability in the matching-to-sample

task. In this task, a sample is shown first, and then the subject needs to choose the matching

sample over a simultaneously presented different one in order to obtain a food reward. We

used the most general form of the task, using each stimulus only once in a total of 200 trials.

As a group, the six subjects performed above chance, and four individuals eventually

reached learning criteria. However, individual performance was rather unstable, yielding

overall only 57% correct choices. These results add to the growing literature that ectotherms

show the ability of abstract concept learning, though the lack of stable high performance

may indicate quantitative performance differences to endotherms.

Introduction

Abstract concept learning show the ability to categorize/classify objects based on similar

shape, association or relation equities and then being able to transfer this knowledge to new

conditions/situations [1]. Four main different types of abstract concept learning are described,

differing in the way individuals have to discriminate between stimuli (reviewed in [2]). Dis-

crimination can be based on forming classes, such as chair or flower, known as perceptual con-

cept learning [3]; discrimination to form categories by associating stimuli to another, such as

an object with the word for that object, known as associative concept learning (reviewed in

[4]); discrimination via the relationship between or among stimuli, such as same/different,

known as the relational concept learning [5]; and finally the discrimination via analogy, i.e.

develop the relations between relations, such as a set of five same icons is similar to a set of five

same but different icons and dissimilar to a set of five different icons, known as the analogical

reasoning [6–8]. Overall, abstract concepts learning are represented by the relation of taught
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rules with training stimuli to novel stimuli. Because such cognitive flexibility is supposedly

more complex than standard reinforcement learning [9–12], it has attracted considerable

attention in animal cognition research [13].

As the ability to form abstract concepts is considered to be cognitively demanding, only

large-brained animal species, like primates, were initially taken into consideration [10, 14–17].

However, the ability to learn abstract concepts eventually turned out to be widespread in the

animal kingdom, like in primates, dolphins, seals, birds, rodents, octopus, mollusks, insects

and fish [2, 18–20]. Experiments on abstract concept learning test for the animals’ ability to

generalise. Generalisation requires the ability to conceptualise a new environmental input

based on available knowledge, i.e. relating a new situation with information acquired from pre-

vious experience [21]. A standard approach is to offer subjects in succession diverse pairs of

stimuli, where only one is rewarding. Each single combination can be learned by operant con-

ditioning, i.e. the subject associating its choice of stimulus with either a positive or a negative

reinforcement [22, 23]. However, if subjects are able to extract the general rule that “in any

pair of stimuli, one is rewarding while the other one is not”, they can solve any new stimulus

combination from the second trial onwards. This is because while the choice during the first

trial is necessarily random, a reward shows that the chosen stimulus is the correct one, while

no reward shows that the non-chosen stimulus must be the correct one [24]. Another com-

monly used task is the same/different discrimination where individuals have to discriminate if

two stimuli are the same or if they are different based on their physical pattern [25].

Yet another paradigm employed to determine the relational, i.e. same/different, concept

competence in animals is the matching-to-sample task (hereafter MTS) [26–30]. Subjects are

shown a stimulus (the sample), and then they can choose between simultaneously presented

matching and differing stimuli. Only the choice of the matching stimulus is rewarded. In the

simultaneous MTS, the sample stimulus is presented and then both, the matched and the non-

matched stimuli are presented beside it [31–36]. In the delayed MTS, the sample is removed

before the two choice stimuli are presented [36]. Crucially, the sample varies from trial to trial,

forcing subjects to comprehend the concept of ‘same’ and ‘different’ by relating the choice sti-

muli to the sample in order to succeed [1, 2]. Hitherto, two main experimental paradigms have

been used to test animals. In the most commonly used paradigm, subjects are confronted dur-

ing an initial learning phase repeatedly with the same two choice items but each is presented as

sample stimulus in a counterbalanced way [1, 15, 32, 36, 37]. Once subjects reach learning cri-

terion (often only after running hundreds of trials), a transfer test is conducted: two new sti-

muli are introduced and it is tested whether subjects reach learning criterion faster with the

new combination (evidence for transfer of acquired knowledge). In the other paradigm, exper-

imenters operate from the beginning with a larger number of samples and corresponding

pairs of stimuli [37].

Studies using the transfer task paradigm showed variation in the performance of the differ-

ent taxa tested, with several studies yielding positive results (bottlenose dolphins [38, 39], Cali-

fornia sea lions [40], capuchin monkeys [15, 33], chimpanzees ([36, 37]; cited by [41]), hens

[42], honeybees [43], pigeons [29, 32, 37, 44], and rats [31]; summarized in S1 Table). Different

senses were used in those diverse studies, such as olfaction, audition, and vision. Overall, only

a few studies have tested fish so far: goldfish [45, 46], Malawi cichlids [47], archerfish [35], and

zebrafish [36]. In those studies, all fish were tested with visual stimuli using either coloured

light or forms and shapes. Evidence for simultaneous MTS was found in goldfish [46] and zeb-

rafish [36], but neither in cichlids [47] nor in archerfish [35]. No fish species has yet been

tested in the second paradigm which uses a large number of different samples over successive

trials. This is unfortunate as the second paradigm is more indicative of generalised rule
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learning, as the transfer task paradigm may yield high performance with subjects being able to

‘learn-how-to-learn’ [44, 48] rather than using a general rule.

Given the mixed evidence for fishes regarding their capacity for conceptual learning in the

simultaneous MTS task, we tested cleaner fish Labroides dimidiatus, using different shapes and

colour 2D images as stimuli, where any stimulus was used only in one trial. Cleaner fish are a

suitable study species for an MTS task using abstract stimuli as there is evidence that they use

generalised rule learning in an ecologically relevant context [49]. The ecologically relevant con-

text is linked to conflicts between cleaners and ‘client’ reef fish that arise when cleaner feed on

client mucus rather than on client ectoparasites [50]. Clients sometimes respond to cleaners

eating mucus with aggressive chasing [51]. In such situations, cleaners may seek a passing-by

predatory client, which functions as a social tool as its mere proximity makes the punishing

individual stop its pursuit [52]. Within this context, Wismer et al. (2016) showed evidence for

generalised rule learning in controlled laboratory experiments. In these experiments, cleaners

were offered preferred and non-preferred food items on a Plexiglas plate. In response to clean-

ers eating a preferred item, the experimenter would start chasing the cleaner with the plate

(manoeuvring a lever attached to the plate). The chasing would push the cleaners in the direc-

tion of two laminated pictures at the end of the aquarium, one showing a predatory client and

one showing a harmless client. If the cleaner approached the picture of the predator, the pur-

suit with the plate stopped, while the pursuit continued if the cleaner moved towards the

image of the harmless client. Once individual cleaners showed a significant preference for the

predator picture, the two pictures were exchanged. In these follow-up tasks, cleaners reached

learning criteria significantly faster, which can interpreted as evidence for generalised rule

learning [49], albeit with the caveat that ‘learning to learn’ offers an alternative explanation.

The results fit the prediction that animals typically excel in tasks that are presented in an

ecologically relevant context [53, 54]. Solving ecologically relevant tasks may be achieved by

any animal species, while more abstract presentations supposedly warrant relatively large

brains that allow flexibility beyond concise situations [55–58]. We, therefore, wanted to test if

cleaner fish are capable of demonstrating the ability of concept learning even when the task

has no ecological relevance, i.e. in an abstract MTS paradigm. In order to avoid any ‘learn-

how-to-learn’ [44, 48] explanations as in the Wismer et al. (2016) study, and indeed all previ-

ous studies providing positive results on the MTS task, we opted against any repeated use of

stimuli. Studies using multiple sample stimuli suggest that if anything the use of more stimuli

(up to 76 in pigeons) may enhance generalised rule learning [32, 33, 59, 60]. Thus, in contrast

to previous studies on MTS, we ran no training trials prior to testing. Instead, each symbol was

used only once per fish. Under these circumstances, any performance above chance must be

based on the formation of a general concept. The experiment should answer the question of

whether cleaner fish show evidence for generalised rule learning only within a narrow ecolog-

ically relevant context or whether they can form concepts also in more abstract circumstances.

In the latter case, we would conclude that concept learning is a domain-general cognitive

capacity of cleaner fish.

Materials and methods

This study was conducted from April until May 2017 at the Gump research station on Moorea

(French Polynesia). Six cleaner fish (Labroides dimidiatus) between 7.5 and 8.6 cm were caught

with a barrier net (2m long, 1.5m high, mesh size 0.5cm) and using hand-nets in lagoons

around Moorea. Cleaners were accustomed to plastic aquaria of a size of 69 x 50 x 43 cm (S1

Fig), the water level at 34 cm, with a small PVC pipe as a shelter for at least 19 days before

experiments started. A pipe from the lagoon provided a continuous seawater flow.
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Acclimation and pre-training

After seven days in captivity, cleaners were first trained to feed small items of mashed prawn

off small dots painted on small Plexiglas plates (10 x 7 cm). For the experiment, they were

habituated to approach the experimental plate (20 x 20 cm) with a random training symbol in

the middle (symbol drawn on a white square piece of paper of dimension 3 x 3 cm), and when

they would touch or bite the training symbol they would receive a food reward, i.e. a piece of

mashed prawn, by inserting the reward plate (3 cm width). As a first training step, a food item

was placed directly on the training symbol itself. Once fish were comfortable to approach the

training symbol, the reward plate was used. Furthermore, subjects were familiarized with a

dashed see-through barrier placed 10 centimetres from the aquarium wall with a sliding door

inserted in the middle. The barrier created an “experimental” compartment into which the

plate was introduced and a “resting” compartment to which the cleaner was initially confined.

The door was opened once the experimental plate had been put into place (Fig 1). All cleaners

readily approached the experimental plate before the trials began. The time it took each indi-

vidual to be accustomed to the experimental setup and hence to start the experiment varied

between 11 and 17 days. Consequently, not all individuals had the same amount of training

days, and thus they did not start the experiment on the same day.

Fig 1. Exposition 1 (a) and 2 (b) of the experimental plate. i. Set up, ii. Fish view. We used eight different positions

around the central sample symbol as emplacements for the matched and the non-matched symbols (c).

https://doi.org/10.1371/journal.pone.0262351.g001
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Experimental procedure

Cleaners were tested in their home aquarium. Once the fish was in the “resting” area, we fixed

a GoPro camera using a clamp to clip it at the edge of the aquarium wall such that it filmed the

trial. After 60 seconds, we introduced the experimental plate with the “sample” symbol placed

in the middle of a 3x3 square matrix with 5 cm between symbols emplacement, for about 10

seconds (giving the fish time to look at the “sample” symbol; Fig 1A). The symbols varied in

shape, colour, and were of a dimension of 3x3 cm and were created for the purpose of this

study. The experimental plate, with hooks glued on the back, was hanged on the aquarium

wall avoiding hand movement that might interfere with the fish’s choice. The plate was then

removed to add the “match” and “non-match” symbols. To avoid the development of side bias,

these two symbols could be placed on any of the eight remaining squares (Fig 1C), with the

exact locations pre-determined to balance positions across trials. After 25–30 seconds, the

experimental plate was re-inserted with the three symbols (Fig 1B). The door was opened 3–5

seconds later so that the cleaner could make its choice. The fish had to be in physical contact

with a symbol (either by giving tactile stimulation with its pelvic fins or by touching it with the

mouth) so that we considered that a choice had been made. Only if the choice was the match-

ing symbol, the cleaner received a small piece of mashed prawn as a food reward on the intro-

duced reward plate. When it had finished eating, we gently removed both the rewarding and

the experimental plate. If the “non-match” symbol was chosen, no reward plate was introduced

but instead, the experimental plate was quickly removed. We completed one trial with each

fish before we conducted the next round of trials. As a result, the intertrial interval (ITI) was

about twenty minutes for each fish. Each individual fish was exposed to a maximum of 200 tri-

als, each one presenting two new symbols, so that the fish was confronted with a maximum of

400 different symbols. The same set of 400 symbols was used for all fish but combinations,

locations, and function (“match” and “not-match” symbols) were randomised (see S2 Fig for

the first 20 symbols used, the rest of the symbols utilized can be found on 10.6084/m9.

figshare.13522100).

Ten trials were conducted per individual per day. As long as cleaners did not reach the con-

firmation criteria (explained in the next paragraph), they were continuing in the experiment

until the completion of 200 trials, i.e. 20 experimental days. On a few occasions, fish did not

make a proper choice, i.e. they randomly touched both symbols with their body by swimming

over them without stopping, and swimming back and forth in the aquarium until the 60s trial

was timed out. These trials were discarded but not replaced. As a consequence, few individual

daily data sets contained only nine data points. We directly recorded the individuals’ choices

(correct/incorrect) but all trials were also video recorded and can be requested. Fish were fed

for five minutes 20 minutes prior to the start of the experiment. As it stands cleaner fish eat

regularly over eleven hours per day, and hence are likely hungry in the morning after 13 hours

of fasting. Feeding them prior to the experiment aimed at reducing the probability that they

make random choices because of high hunger levels. During the trials, cleaners did not obtain

much food (ten small prawn items max if all choices had been correct). Therefore, when the

experiment was finished for the day, the food plate was introduced for about two hours so that

subjects could obtain the caloric needs for the day.

Learning and confirmation criterion

An individual was considered to have learned the task if it performed significantly above

chance levels (based on a sign test table/ binomial tests) in either one session (9 or 10 out of 10

trials correct), two successive sessions (twice at least 8 out of 10 trials correct) or three consecu-

tive sessions (three times at least 7 out of 10 trials correct). All these learning criteria yield a
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p< 0.05 that performance was due to chance. In order to be conservative, we exposed any indi-

vidual that reached a learning criterion to another 10 trials and only considered the individual

to have succeeded if it chose correctly at least 7 out of 10 trials. Failure to achieve at least 7 out

of 10 correct choices meant that the individual continued the simultaneous MTS experiment.

Statistical analyses

Apart from the individual learning criteria, we also asked whether our six cleaners as a group

performed above chance levels, i.e.> 50%. We ran a fit Bayesian Generalized Linear Mixed-

Effects Models with the statistical program Rstudio © (R Version 1.3.1093, © 2009–2019 RStu-

dio, PBC) [61] using the package ‘lme4’ [62] and ‘blme’ [63]. The individuals’ choice was set as

a binary response variable. In order to verify whether the session had an effect in our model,

we set it as a fixed-effect variable. The individual was set as the random-effect variable (both at

intercept and at slope level with respect to trial) of the ‘bglmer’ model. All data and the R-

scripts to reproduce the analyses are available on 10.6084/m9.figshare.13522100.

Ethics approval

Our research study adheres to the ASAB/ABS Guidelines for the Use of Animals in Research.

The study was approved by the French Polynesian authorities responsible of the program ‘Dél-

égation à la Recherche’ and by the Gump Research Station where the study was conducted in

accordance with their rules and regulations for animal research. We acknowledge that catching

is a stressful event for the fish. Afterwards, the fishes adapt well to captive conditions and lose

their shyness towards human experimenters. The cognitive experiments can be seen as beha-

vioural enrichment. All fish were released at their site of capture.

Results

Four out of the six cleaners eventually reached the learning criterion. Two of these four clean-

ers also reached the confirmation criterion in the next session, while the other two failed and

never reached the learning criterion again until the completion of the 200 trials (Fig 2). Of the

Fig 2. Simultaneous matching-to-sample experiment. The percentage when the matched symbol was chosen is

represented as function of the session number (1 session = 10 trials; n = 6). The red dashed horizontal line indicates

chance expectation (50% correct choices).

https://doi.org/10.1371/journal.pone.0262351.g002
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two successful cleaners, one completed the task in 40 trials (including the confirmation ses-

sion), while the other one needed in total 180 trials.

Combining individual performances, cleaners succeeded significantly above chance as a

group (estimate = 0.18, std. error = 0.07, z-value = 2.51, p = 0.01; Fig 2). The effect size is small

(n = 6, mean = 57.08%). Individual mean performance varied between 48.5% and 75%

(Table 1). This latter high value was due to the individual reaching criterion within only 40 tri-

als. Even without that individual, cleaners still performed above chance as a group (esti-

mate = 0.15, std. error = 0.07, z-value = 2, p = 0.046). Nevertheless, we note that overall mean

performance (57%) was only slightly above chance level, and there was no significant improve-

ment with experience as the factor ‘session’ was not significant (estimate = - 0.0002, std.

error = 0.01, z-value = - 0.01, p = 0.99).

Discussion

We had asked to what extent cleaner wrasses, Labroides dimidiatus, were able to learn an

abstract general rule without experiments that allow the acquisition of intermediate steps,

using the MTS task. According to our results, cleaners have the potential to learn an abstract

rule as they performed above chance as a group. Four out of six cleaners eventually reached

learning criteria that were set such that individuals performed better than expected by chance

([64]; described in [65, 66]), and two of these cleaners even passed a more conservative crite-

rion. However, the cleaners’ performance was also not consistent, with two individuals return-

ing to chance levels after reaching the initial criterion. This contrasts with other experiments

in which cleaners generally continued to perform well in sessions after reaching learning crite-

ria ([67]; Salwiczek et al., unpublished data). It also contrasts with the cleaners’ consistent abil-

ity to use generalised rule learning in an ecologically relevant task [49]. Taken together, as a

species, cleaners expressed at best some limited understanding, with only a minority perform-

ing above chance. Single individuals excelling at specific tasks is a widespread phenomenon in

cognitive studies [68–71], highlighting the importance to understand intraspecific variation in

cognitive performance [72].

To the best of our knowledge, the procedure that we used, i.e. the simultaneous MTS task

in its most general form, was never tested before in non-human animals. Most previous studies

started with a training phase that consisted of using two stimuli that alternated as matched and

non-matched symbols, referred to as the ‘standard MTS paradigm’. When an individual

reached learning criterion, another set of stimuli known as the transfer stimuli was presented.

This transfer task was introduced to rule out the possibility that subjects had learned two con-

figurations rather than the rule ‘match to sample’. If individuals had learned the rule, the num-

ber of trials needed to reach criterion with those second transfer stimuli should decrease

compared to the training stimuli. While this approach yielded many positive results (S1

Table), some authors proposed the alternative explanation that subjects potentially merely

learned how to learn rather than understand the concept [2, 18, 20, 44, 48]. There is some evi-

dence that the general version may be more challenging than the standard version of the MTS

task. Training pigeons with 76 trials per day, Wright et al. (1988) exposed two subjects to the

standard version (2 stimuli alternating roles) and 2 subjects to 76 fixed pairs of stimuli (that

Table 1. Mean percentage of correct choice (= success) and standard deviation of each individual throughout all sessions tested.

Bouchon Chip Georges Leon Merlyn Titi

Mean % success 48.5% 56.3% 52.61% 75% 54.08% 56%

Standard deviation 17.3 13.5 14.6 5.8 18.9 19.8

https://doi.org/10.1371/journal.pone.0262351.t001
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would be used again over consecutive days, alternating roles as well). The two pigeons exposed

to the standard version reached criteria after > 1000 trials, while it took the other two

pigeons > 27000 trials. On the other hand, the latter performed very well in transfer trials

while the former did not. Given that small differences in experimental design may cause major

differences in performance, we consider it important that more studies will use our design on

a variety of species belonging to different major vertebrate clades. In return, future research on

cleaner fish should use the transfer task paradigm for the sake of obtaining data that are com-

parable to existing studies on MTS.

The fact that we obtained overall performance slightly above chance levels despite using

new stimuli at every trial, as well as the significant performance of two individuals, favours the

interpretation that cleaner wrasse are indeed capable of abstract concept learning [73, 74]. How-

ever, we note that the fish did not improve as a function of session their performance from the

first 100 trials to the second 100 trials, which would be expected if they learned the task. One

possibility is that the increment of the number of stimuli used during the experiment increased

the information load that the fish were exposed to [73]. The constant use of new stimuli may

have caused an overload of information, which increased the cognitive difficulty of the task and

prevented a continued improvement of performance over the trials. It has been documented

before that more information does not necessarily lead to better performance [74, 75]. Alterna-

tively, cleaners might have a small perception bias that causes them to slightly favour the symbol

that they see twice. To rule out that potential explanation, future experiments should reward the

symbol that is the ‘Oddity from sample’ [76]. If cleaners perform above chance level in this

opposite reward scheme, perception biases could be ruled out as an explanation for cleaner per-

formance. The available literature suggests that choosing the odd option is simpler than choos-

ing the matching option [76, 77], even more in the delayed version of the task [78–80].

Until now, positive evidence for abstract rule learning by fishes in the MTS task was

restricted to goldfish [45, 46] and zebrafish [36], the proper controls conducted with a negative

reinforcer (electric shock) [46]. In contrast, archerfish [35] and a cichlid (Pseudotropheus sp.)

failed at MTS tasks [47]. The current study with cleaner fish thus provides some additional evi-

dence that fish (at least some individuals) can learn an abstract concept. We cannot propose

an explanation for the positive results for goldfish and cleaners and the negative results for the

other two species. The key idea of the MTS task is that it tests for abstract concept learning in a

context that lacks ecological relevance. Neither goldfish nor cleaners appear to have particu-

larly large brains compared to other fish species (Allen et Kuiter, 1999; Cuvier et Valenciennes,

1839; Fowler et Bean, 1928; Lacépède, 1801; Randall, 1981; Bleeker, 1855; all cited in [81, 82]).

At least for cleaner fish there is evidence that they are able to use generalized rule learning in

an ecologically relevant context [49, 52].

Conclusions

Cleaner wrasses, L. dimidiatus, can solve a MTS task but individual performance is not consis-

tent, at least in the general version we used. We cannot compare their performance to other

species because of the new design. In future studies, it would be interesting to compare the

standard design (training with limited set of stimuli prior to continuously novel stimuli) with

our design (continuously novel stimuli only) in a diversity of species, including cleaners. Com-

pared to the data showing that pigeons require many thousands of trials with novel stimuli

until they learned the task, the performance of cleaners within the 200 trials presented here

was rather good. Thus, generalised rule learning in cleaners does not seem to be restricted to

ecologically relevant contexts, indicating that abstract concept learning is a general cognitive

tool present in this species.
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Supporting information

S1 Fig. Experimental aquarium design. The “resting” area is on the left where the fish is wait-

ing behind a see-through grid barrier with a door in the middle. On the right is the “experi-

mental” compartment where the experimental plate is displayed during the trial.

(TIF)

S2 Fig. Representation of the twenty first symbols used in the matching-to-sample task.

The symbols were drawn on a 3 x 3cm white paper sheet.

(TIF)

S1 Table. Main results of MTS studies.

(PDF)
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