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Abstract The dysbiosis of gut microbiota is associated with the pathogenesis of human diseases.

However, observing shifts in the microbe abundance cannot fully reveal underlying perturbations.

Examining the relationship alterations (RAs) in the microbiome between health and disease statuses

provides additional hints about the pathogenesis of human diseases, but no methods were designed

to detect and quantify the RAs between different conditions directly. Here, we present profile

monitoring for microbial relationship alteration (PM2RA), an analysis framework to identify and

quantify the microbial RAs. The performance of PM2RA was evaluated with synthetic data, and

it showed higher specificity and sensitivity than the co-occurrence-based methods. Analyses of real

microbial datasets showed that PM2RA was robust for quantifying microbial RAs across different

datasets in several diseases. By applying PM2RA, we identified several novel or previously reported

microbes implicated in multiple diseases. PM2RA is now implemented as a web-based application

available at http://www.pm2ra-xingyinliulab.cn/.
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Introduction

The gut microbiome is considered as the second genome of
human body and is linked to many human diseases [1–3].

The central goal of human microbiome studies is to identify
microbes associated with diseases. The identified bacteria can
provide insights into disease etiology and be potential

biomarkers for disease diagnosis and prevention. Further-
more, they could be therapeutic targets if verified as causal fac-
tors for certain diseases.

The development of next-generation sequencing technolo-

gies enables culture-independent investigations of the human
microbiome’s role in health and disease via direct DNA
sequencing. Both 16S rRNA sequencing and metagenomic

sequencing have been used to study the human microbiome,
allowing the creation of a table for the differential abun-
dance analysis of microbes under various biological conditions

[4–6]. Differential abundances of certain microbes may con-
tribute toward conferring a specific trait in a given situation.
However, focusing on individual microbe alterations while

ignoring potential relationship alterations (RAs) limits reflec-
tion on the real perturbation of ecological networks under phe-
notype changes.

The human microbiome is a complex bacterial community

in which sub-communities are formed based on shared niche
specializations and specific interactions between individual
microbes. The mutual associations within the residing micro-

bial communities play an important role in the maintenance
of eubiosis [7–9]. Bacteria can interact with each other in
numerous ways, such as commensalism, mutualism, and com-

petition, which can have neutral, beneficial, and detrimental
effects on the microbes involved, respectively. Commensalism
refers to situations where some constituent microbes of an
ecosystem derive benefits from other members without helping

or harming them. Mutualism describes interactions that bene-
fit all organisms involved [8]. A bacterium might also directly
compete with another one for the same nutrition source,

thereby creating a competition [7,10]. These kinds of func-
tional relationships are referred to as profiles, which can be lin-
ear, polynomial, nonlinear, or a waveform [11]. The disruption

of these relationships can lead to disorders in the microbial
community structure, furthering dysbiosis.

Many studies have modeled microbiome profiles with a

linear correlation between two types of microbes [12–14],
and co-occurrence networks are constructed to describe the
whole microbial communities. Based on these co-occurrence
networks, alignment-based [15–18] or alignment-free [19–21]

methods have been proposed to visualize the RAs between
different conditions, such as health vs. disease. The
alignment-free network comparison methods aimed to quan-

tify the overall topological difference between networks, irre-
spective of node mappings between the networks and
without identifying any conserved edges or subgraphs. The

alignment-based methods aimed to find a mapping between
the nodes of two networks that preserves many edges and a
large subgraph between the networks. These strategies can
neither quantify the association changes in a specific group

of microbes nor pinpoint the exact nodes that contribute to
the community differences between two conditions.

Applying the concept of profile monitoring, which is widely

used to monitor the relationship consistency between variables
in the food-production, manufacturing, and healthcare indus-
tries [22], we developed an innovative analysis framework
called profile monitoring for microbial relationship alteration

(PM2RA) to detect and quantify the profile alterations within
microbial communities under various conditions. To our
knowledge, PM2RA is the first method to make direct compar-

isons of microbial associations between conditions without ini-
tially constructing co-occurrence networks. By testing both
synthetic and real datasets, we demonstrate that PM2RA is

high in sensitivity and specificity, and identifies both previously
identified and novel microbes involved in multiple diseases.
Moreover, PM2RA is robust in identifying important
microbes in datasets obtained from different cohorts and dif-

ferent sequencing strategies. A web-based implementation of
PM2RA is available at http://www.pm2ra-xingyinliulab.cn/.

Method

PM2RA framework

The human microbiome is a complex bacterial community

where the relationships between microbes play important roles
in the maintenance of eubiosis (Figure 1A). Examining the
RAs in the microbiome between health and disease conditions
provides additional insights into the pathogenesis of human

diseases (Figure 1B). PM2RA is specifically designed to quan-
tify the RA(s) involving two or more microbes under different
conditions. The basic idea of PM2RA analysis is to project the

abundance data of two or more microbes under two conditions
into the same space via Hotelling’s T2 statistic, and compare
the difference in the distribution of T2 statistics to represent

the RAs between two conditions. We developed a new scoring
scheme called PM (profile monitoring) score to quantify the
RA of each sub-community under different conditions in five
steps (Figure 1C). The more the sub-community alters, the big-

ger the PM score is. Next, we built an RA network in which
edges denote the corresponding PM scores (Figure 1C). The
framework comprises the following steps.

Compose the sub-communities

In a microbiota profile, every two microbes and the interaction
between them are defined as a sub-community. PM2RA quan-

tifies all possible sub-community RAs and outputs the RA
network.

Calculate the T2 statistics

Hotelling’s T2 statistic is one of the most popular statistics for
monitoring the variables of a multivariate process [23]. This
statistic considers both the mean value and covariance matrix,

which makes it suitable for reducing two-dimensional (2D) or
high-dimensional (HD) microbial data into one-dimensional
data containing both abundance and relationship information.

The T2 statistic is the multivariate counterpart of the t statistic
and is widely used in multivariate processes for consistency
monitoring in both industry and biology [24,25]. It can be

viewed as the generalized distance between the observed vector
x and the mean vector l weighted by the inversion of the cov-

ariance matrix, x� lð Þ0R�1 x� lð Þ [26]. Since both l and R are

involved in the calculation, T2 statistic is sensitive to both rela-
tive abundance change and relationship change.

http://www.pm2ra-xingyinliulab.cn/


Figure 1 Overview of the PM2RA method

A. Dysbiosis of gut microbiota involves disturbed microbe relationships under human disease conditions. B. A relationship change can

involve two or more microbes in a 2D or HD level. C. The PM2RA methodology framework. First, compose the sub-communities each

consisting of two microbes. Second, calculate the T2 statistic for each sub-community. Third, estimate the empirical distribution of the T2

statistics. Fourth, calculate the non-overlapping area between distributions. Finally, calculate the PM score for each sub-community. D.

The PM2RA has developed with three methods: 1) 2D scanning for pairwise RAs among the microbial community between two

conditions, 2) HD calculation by which the PM score of any defined sub-community with two or more microbes could be calculated, and

3) module search based on the HD calculation. PM2RA, profile monitoring for microbial relationship alteration; 2D, two-dimensional;

HD, high-dimensional; PM, profile monitoring; RA, relationship alteration.

156 Genomics Proteomics Bioinformatics 19 (2021) 154–167



Liu Z et al / PM2RA: A Tool for Quantifying Microbial Relationship Alterations 157
Let S ¼ Sa;Sbf g denote the condition set in which microbe
RAs are interested, such as S ¼ Sa ¼ health;Sb ¼ diseasef g.
To guarantee symmetry, that is, the RAs observed from the

condition Sa to Sb are equal to those from the condition Sb

to Sa, four types of T2 statistics for each sub-community are
calculated as follows:

Ti;a;a
2 ¼ xi;a � Xað Þ0COVa

�1 xi;a � Xað Þ; i ¼ 1; 2; � � �Na

Ti;b;a
2 ¼ xi;b � Xað Þ0COVa

�1 xi;b � Xað Þ; i ¼ 1; 2; � � �Nb

Ti;a;b
2 ¼ xi;a � Xbð Þ0COVb

�1 xi;a � Xbð Þ; i ¼ 1; 2; � � �Na

Ti;b;b
2 ¼ xi;b � Xbð Þ0COVb

�1 xi;b � Xbð Þ; i ¼ 1; 2; � � �Nb

Xa,Xb and COVa,COVb are the mean relative abundance
vectors and the covariance matrices of microbes under condi-

tions Sa and Sb, respectively. xi;a and xi;b denote the relative

microbial abundance of the ith sample under Sa and Sb,

respectively.
In the pairwise RA analysis, the number of microbes is two,

and the sample size is usually much larger than that. In this
case, the possibility of strict collinearity between two

microbes is low, so we can assume that the covariance matrix is
nonsingular.
Estimate the empirical distribution of the T2statistics

The probability density function is an informative, descriptive
tool and can reflect the mean, standard deviation, and other
statistical properties of the dataset. A straightforward way to

calculate alterations between two datasets is to compare their
probability density functions. The T2 statistic follows a scaled
chi-squared distribution under the assumption that samples

have a normal distribution, although this assumption is usually
violated in the microbiota abundance context. Researchers
believe that the normal distribution is not a good descriptor

of the microbiota sequencing data. Instead, zero-inflated neg-
ative binomial models are usually recommended for handling
excessive zeros in such data [27]. The T2 statistic of the microbe

community certainly does not follow the chi-squared distribu-
tion. Thus, PM2RA uses a kernel distribution to represent the
probability density of the T2 statistics derived for each sub-
community. The estimated kernel distribution produces a

non-parametric, smooth, continuous probability curve that
adapts itself to the data, rather than selecting a density with
a particular parametric form (e.g., a chi-squared distribution)

and estimating the parameters. More straightforwardly, the
kernel density estimation method imposes no parametric
assumptions on the underlying distribution function. In this

step, the kernel estimation method proposed by Scott [28] is

applied to Ti;a;a
2, Ti;b;a

2, Ti;a;b
2, and Ti;b;b

2. The estimated empir-

ical probability density functions are denoted as fa;a
2, fb;a

2, fa;b
2,

and fb;b
2, respectively. Outliers were removed from Ti;a;a

2,

Ti;b;a
2, Ti;a;b

2, and Ti;b;b
2 for a robust estimation.
Calculate the non-overlapping area between distributions

The non-overlapping area of two probability distribution func-

tions is used to describe the difference between two sets of T2

statistics.

The non-overlapping area of fa;a
2; fb;a

2 is

Db;a ¼
1; if mina;a > maxb;a; or minb;a > maxa;a

1� R xe
xo
min fb;a

2; fa;a
2

� �
; if mina;a < maxb;a; or minb;a < maxa;a

(

where

xo¼max mina;a;minb;a

� �
; xe¼min maxa;a;maxb;a

� �
maxb;a ¼ max Ti;b;a

2; i ¼ 1; 2; � � �Nb

� �
;

maxa;a;L ¼ max Ti;a;a
2; i ¼ 1; 2; � � �Na

� �
minb;a ¼ min Ti;b;a

2; i ¼ 1; 2; � � �Nb

� �
;

mina;a;L ¼ minfTi;a;a
2; i ¼ 1; 2; � � �Nag

The non-overlapping area of fa;b
2; fb;b

2 is

Da;b ¼
1; if minb;b > maxa;b; or mina;b > maxb;b

1� R xe
xo
min fa;b

2; fb;b
2

� �
; if minb;b < maxa;b; or mina;b < maxb;b

(

where

xo¼max minb;b;mina;b

� �
; xe¼min maxb;b;maxa;b

� �
maxb;b¼max Ti;b;b

2; i¼ 1;2; � � �Nb

� �
;

maxa;b¼max Ti;a;b
2; i¼ 1;2; � � �Na

� �
minb;b ¼min Ti;b;b

2; i¼ 1;2; � � �Nb

� �
;

mina;b¼minfTi;a;b
2; i¼ 1;2; � � �Nag

Calculate the PM score

The PM score is defined as max fDa;b;Db;ag. Compared to

other non-parametric distance measures, such as Kullback–
Leibler divergence, the PM score has several advantages.
The profile change measure is designed under symmetry.
The PM score has finite domain ranges from 0 to 1. A

Kolmogorov-Smirnov test is applied to the T2 statistics to
determine whether a statistically significant difference exists
between conditions.

PM2RA applications

The PM score of any defined sub-community that is referring

to two or more microbes can be calculated with PM2RA. We
proposed two main functions of PM2RA (Figure 1D).

Constructing the RA network via 2D scanning

Every two microbes constitute a sub-community. After
traversing all sub-communities, a weighted network is built
to visualize the overall RAs. In the RA network G=(V, E),

V is the set of nodes representing microbes and E is the set
of edges denoting the RAs between the two conditions. The
edge width and node size denote the PM score and topological
degree, respectively. In this pairwise network, hub microbes,

which have extensively altered associations between two com-
pared conditions, can be identified.
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Module search

In practice, the sub-communities with the largest RAs between

conditions are needed to guide microbial interventions for
many diseases. These sub-communities may consist of two to
more microbes as the interaction between microbes is not nec-

essarily dual. We are interested in non-redundant sub-
communities with maximum PM scores (named ‘‘modules”).
The modules with the largest RA between conditions are useful

to describe microbial interventions for many diseases. As we
can see, in a microbial community, the total number of

rational sub-communities
Pi¼p

i¼3C
i
p ¼ 2p � p p� 1ð Þ � p� 1 is

extremely large when the number of microbes, p, grows. A
greedy algorithm is designed to search sub-communities with
large PM scores as follows:

Step 1, profile changes for all sub-communities of exactly
two microbes are calculated. Step 2, N sub-communities with
the top PM scores and no overlapping microbes are selected

and marked as seed communities. Step 3, a new sub-
community set is created and able to be searched. New sub-
communities are generated by adding a new microbe to a seed

community, whose dimension is the dimension of the seed
community plus 1, and by combining two seed communities,
whose dimension is twice those of the original seed communi-

ties. Step 4, the PM scores of all sub-communities newly gen-
erated in step 3 are calculated. Step 5, all the calculated PM
scores resulting from steps 1 and 4 are ranked. Step 6, N
sub-communities with the top PM scores and no overlapping

microbes with each other are selected based on the data list
in step 5, and marked as new seed communities. Loop into
step 3 and start the iteration. Finally, when the iteration time

exceeds the pre-set threshold, or the results of two iterations
converge, searching is stopped and N microbe modules are
found.

PM2RA implementation

In thePM2RA framework,we considered several characteristics

of the microbiome sequencing data. In the microbiome data-
processing procedure, the most common strategy to manage
zero inflation is filtering out taxa with relatively low presence,
such as features present in less than 5%, 10%, or even 50% of

samples [29,30]. In our analysis pipeline, microbes detected in
less than 10%of samples were removed. Also, in the application
of the PM2RA web server and R script, users could set a self-

defined prevalence filter to remove microbes with inflated zeros.
A false discovery rate (FDR) of less than 0.05 was used as a cut-
off to filter significant RAs. The average computation time of

PM2RA for a dataset containing 100 features (No. of calcula-

tions: C2
100) is 30 min (R with parallel computing on CentOS

Linux release 7.6.1810 with E5-2680 v4, eight cores).
PM2RA performance evaluation

Several types of datasets were downloaded to evaluate the per-
formance of PM2RA. The 16S rRNA sequencing data for col-

orectal carcinoma (CRC), overweight, and obesity samples
were downloaded from MicrobiomeHD [31]. The metage-
nomic sequencing data for CRC were downloaded from the

published dataset [5]. The original dataset contained four
cohorts from China, Austria, the United States (US), and
France/Germany, respectively. Because samples in the US
dataset were collected more than 20 years ago and had no sig-
nificant RA being detected (Table S1), this dataset was

excluded from the following analysis. Two diabetes datasets
were downloaded from the published datasets [32].

The performance of PM2RA was compared with that of

other relevant methods using artificial datasets generated
based on the COMBO dataset [33]. This dataset contains oper-
ational taxonomic units (OTUs) from 100 samples. To evalu-

ate the false positive rate (FPR) of PM2RA, we randomly
separated samples into two groups with an even sample size
of 50, where it is assumed that the relationship between any
two OTUs does not change between the two groups. This pro-

cess was repeated 100 times to generate 100 matched artificial
case and control datasets. PM2RA and other methods were
applied to these datasets, and the FPRs were calculated and

compared. To evaluate the false negative rate (FNR) of
PM2RA, we interchanged the abundances of any two OTUs
each time (e.g., A and B), which were not detected to be cor-

related by both SparCC and SPIEC-EASI, to generate the case
datasets. It is assumed that the relationship between A/B and
other intact OTUs will change in such a synthetic case dataset,

which is defined as the ‘‘true positive”. The control
dataset is the intact one. PM2RA and other methods were
applied to these datasets, and the FNRs were calculated and
compared.

A two-step strategy was applied to all the synthetic data-
sets. First, the co-occurrence networks for each synthetic case
and control datasets were constructed using the SPIEC-EASI

and SparCC methods implemented in the R package Spie-
cEasi. The co-occurrence network was represented by a matrix
consisting of 1 (correlated) and 0 (not correlated). Second, the

case and control co-occurrence networks of each simulation
were compared to obtain the changed association pairs. After
these two steps, the sensitivity and specificity of these methods

were compared with those of PM2RA.
The RAs detected by PM2RA could be used as features to

discriminate between different conditions. We compared the
feature extraction performance by the area under curve

(AUC) between NetShift and PM2RA. The AUC was also cal-
culated by directly using the whole microbe abundance data
without feature extraction. This comparison was done by a

random forest (RF) model (R 3.5.1, randomForest package,
pROC package), and the one-sided P value of AUC was
assigned by bootstrapping (N = 2000).

Results

PM2RA identified key microbes involved in human diseases

CRC is a key example of the complex diseases associated with

the dysbiosis of gut microbiota. An RA network of 97 bacte-
rial genera and 607 significantly altered associations was built
(Figure 2A) for a published CRC dataset [31]. Thirtheen gen-

era with abundance changes were found to be involved in
the RA network. The hub genera with the five largest degrees
of topology were identified as Porphyromonas, Parvimonas,
Peptostreptococcus, Anaerostipes, and Dialister (Figure 2A).

Accumulating evidence has shown that Peptostreptococcus,
Porphyromonas, and Parvimonas are overrepresented in CRC
and promote the progression of oral cancer and other cancers



Figure 2 PM2RA detected common RAs in different CRC cohorts

A. The RA network for a CRC cohort (case = 120, control = 172). The node color represents the abundance difference between the case

and control samples: red for microbes overrepresented in the CRC samples, green for microbes overrepresented in the control, and gray

for microbes not differentially represented. The node size is proportional to the topological degree in the network, and the edge width is

proportional to the value of PM score. B. No abundance difference between CRC and control samples for Anaerostipes and Dialister. C.

Thirty-three common RAs across the three CRC cohorts from Austria (case = 46, control = 63), China (case = 73, control = 92), and

France/Germany (case = 88, control = 64). D. The common RA network among the three CRC cohorts. CRC, colorectal carcinoma.
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of the upper digestive tract [34,35]. Although the other two
hub genera, Anaerostipes and Dialister, showed no difference
in average abundance between the control and CRC groups

(Figure 2B), their associations with many other microbes were
significantly altered (Figure 2A, Figure S1). Anaerostipes spe-
cies (e.g., Anaerostipes butyraticus, Anaerostipes caccae, and
Anaerostipes hadrus) are butyrate-producing bacterial species
that play a key role in the maintenance of gut barrier
functions [36]. Dialister is reported to be overrepresented in

oral cancer [37]. Therefore, this result implicated that PM2RA
can help find bacteria that affect CRC progression more accu-
rately by searching for the RAs between microbes.
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The gut microbiome is highly dynamic and can be influ-
enced by cohort-specific noise. Thus, the results from differ-
ential abundance analysis may not be reproducible across

different populations [38]. To investigate the robustness of
PM2RA, we applied it to the metagenomic sequencing data
of CRC patients and control subjects from Austria, China,

and Franch/Germany cohorts [5] (Figure S2A–C).
Thirty-three common RAs were observed across the three
cohorts (Figure 2C). Consistent with the results obtained

from 16S rRNA sequencing data, Parvimonas micra was
identified as the top hub in the common RA network
(Figure 2D). For example, the associations involving Parvi-
monas micra were extensively altered in the CRC group

compared with the normal controls across the population.
However, when measured by differential abundance, only
three bacterial species were commonly detected in all three

cohorts (Figure S2D), indicating that PM2RA methodology
is robust in identifying RAs.

We further assessed the robustness of PM2RA by investi-

gating whether a common RA network can be observed in
related diseases. PM2RA was applied to three closely linked
metabolic disorders: overweight, obesity, and diabetes. No sig-

nificant RAs or differential microbes were identified in the
overweight cohort [normal: body mass index (BMI) < 25;
overweight: 25 < BMI < 30], indicating that BMI is not an
informative index to assess a person’s disease state as has been

previously reported [39]. In the obesity dataset (BMI > 30), an
RA network of 85 altered associations and 97 bacterial genera
was observed, with Roseburia having the most extensively

altered associations among all the genera (Figure 3A). More-
over, in diabetes cohorts A and B [40], there were 49 and 45
association changes involving Roseburia spp., respectively. In

diabetes cohort A, Roseburia intestinalis dominated the RA
network (Figure 3B), while in diabetes cohort B, Bifidobac-
terium longum was the top hub species (Figure 3C). The clinical

information showed comparable BMIs but indicated a lower
severity of dyslipidemia in diabetes cohort B. Studies have
reported that Bifidobacterium spp. have anti-obesogenic or
anti-diabetic potential [41]. The activated association changes

with Bifidobacterium longum in diabetes cohort B may, there-
fore, be one explanation for the observed difference in dyslipi-
demia. By combining the three datasets, common association

changes between Roseburia spp. and Ruminococcus spp. were
identified, as well as changes between Roseburia spp. and
Bilophila spp. (Figure 3D). Roseburia is a major butyrate-

producing genus, and the modification in Roseburia spp. may
affect various metabolic pathways [42]. In agreement with
the PM2RA analysis, animal experiments have demonstrated
that Roseburia spp. can regulate the host immune system and

reduce intestinal inflammation, which is also a marker of obe-
sity and metabolic dysfunctions [43,44].

Taken together, the consistent results obtained in datasets

using different sequencing strategies and different cohorts indi-
cate the robustness of PM2RA in identifying RA networks in
various diseases.

HD PM2RA analysis complements to 2D scanning

Associations between microbes are not necessarily structured

in a paired way, and multiple microbes can form closely inter-
acting sub-communities. The ability of PM2RA to quantify
RAs involving multiple microbes makes it applicable to identi-
fying RAs in such communities. We, therefore, tested the per-
formance of PM2RA in HD microbial communities in the

datasets mentioned above. By applying the greedy algorithm,
HD RAs (FDR < 0.05, PM score > 0.6) were identified in
all datasets except for the obesity and overweight datasets

(Table S2). Most modules contained more than two microbes,
indicating potential associations among multiple bacteria. Fur-
thermore, many HD RAs contained microbe pairs that were

not significantly altered at the 2D level (Figure 4A and B),
illustrating the great ability of PM2RA to detect weak change
signals in HD microbial communities under different condi-
tions, which have usually been ignored by 2D scanning

(Figure 4C). These results suggested that PM2RA is a
promising method to quantify 2D and HD microbial RAs.

PM2RA outperforms other methods in the RA network inference

In a traditional workflow (Figure 5A, left panel), the microbial
co-occurrence networks are constructed from the pairwise cor-

relation, inverse covariance, or other statistics based on the
microbial abundances in the case and control samples, respec-
tively. The networks are then further compared by alignment-

based or alignment-free methods. There are three drawbacks
inherent in this pipeline. First, it is based on the pairwise cor-
relation network, but it is unclear whether the correlation is a
proper measure of association. Second, the association of

microbiota is not necessarily dual. For example, multiple bac-
teria could form a tight community with weaker associations
between any two members within it. Thus, the pairwise rela-

tionship analysis might ignore some functional associations
consisting of multiple microbes. Third, this comparison can
neither quantify the association changes between conditions

nor quantify the degree of association changes. But rather,
as shown in Figure 5A (right panel), PM2RA directly com-
pares the RA(s) among two or more microbes between condi-

tions, does not need to build a co-occurrence network like that
of the traditional methods, and quantifies the RA as a PM
score.

To evaluate the performance of PM2RA with realistic syn-

thetic microbiome data, we generated the artificial datasets
based on a real microbiome dataset (see the Method section
for details). PM2RA and the other two methods, which

were widely used to infer co-occurrence networks (i.e.,
SPIEC-EASI [45] and SparCC [46]), were applied to these
datasets. The average FPR of PM2RA was significantly lower

than those of the co-occurrence-based methods [PM2RA:
0.1%; SPIEC-EASI (mb-based): 2.1%; SPIEC-EASI (glasso-
based): 2.0%; SparCC: 7.3%] (Figure 5B; Table S3), indicating
its high specificity. Additionally, PM2RA showed a signifi-

cantly lower FNR than the co-occurrence-based strategies
[PM2RA: 33.5%; SPIEC-EASI (mb-based): 87.6%;
SPIEC-EASI (glasso-based): 87.3%; SparCC: 82.1%]

(Figure 5C; Table S4). The FNR of PM2RA is dumbbell-
shaped (Figure 5C), suggesting that it is affected by the effec-
tiveness of the case datasets, and is sensitive to the correlations

missed by SPIEC-EASI and SparCC (see the Discussion sec-
tion for details).

The compositional data is widely used in microbiome data

analysis. However, it has been proposed that it could produce
superior results in correlation analysis [47]. Therefore, to test



Figure 3 PM2RA detected common RAs in multiple metabolic diseases

A. The RA network for obesity (case = 193, control = 451). B. and C. The RA networks for diabetes cohorts A (case = 57, control = 79)

and B (case = 99, control = 99), respectively. D. The common RAs observed in obesity and diabetes datasets. The gray bars between

Roseburia (colored as a pink module) and Ruminococus (colored as a green module) and between Roseburia and Bilophila (colored as a

purple module) represent the common association changes observed across the obesity and diabetes datasets at the genus level. The red,

green, and blue lines between species represent the association changes observed in diabetes cohort A, B, and both, respectively.
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Figure 4 The HD PM2RA analysis is complementary to 2D scanning

A. and B. Examples of HD RAs. The lines between microbes represent the RAs detected with 2D scanning, and the PM score denotes the

RA value for the module consisting of the presented microbes. C. The distribution of the T2 statistics for 2D scanning (Erysipelotrichaceae

incertae sedis and Dialister) and HD module shown in (B) in the case and control samples. The non-overlapping area (PM score) is larger

in the HD module.
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the effect of compositional data on PM2RA performance, a

centered-log-ratio (clr) transformation [47] was applied to the
abovementioned artificial datasets. A similar FPR
(P = 0.11) was observed when applying PM2RA to the com-

positional and clr-transformed data (Figure 5B). However, the
FNR of PM2RA on the compositional data was significantly
lower than that of the clr-transformed data (33.5% vs.

43.4%; P = 3.852E–08) (Figure 5C). Taken together, the anal-
ysis showed that the compositional data were preferred in
PM2RA to the clr-transformed data.

NetShift is a co-occurrence-based method developed to
quantify rewiring and community changes in microbial associa-
tion networks between health and disease states [48]. It was
designed to produce a score that identifies important microbial
taxa that serve as ‘‘drivers” from the first state to the second.

NetShift was applied to the datasets of CRC (Figure S3A–D)
andmetabolism disorders (Figure S4A–D) as mentioned above.
Two common driver species were identified across the three

CRC cohorts from Austria, China, and France/Germany (Fig-
ure S3E), that is Butyrivibrio proteoclasticus and Streptococcus
pyogenes. However, the previously identified microbes involved

in the disease, such as Bacteroides fragilis, Fusobacterium
nucleatum, Porphyromonasa saccharolytica, Parvimonas micra,
Prevotella intermedia,Alistipes finegoldii, andThermanaerovibrio

acidaminovorans [5], were not captured. On the other hand, five
out of the seven previously identified species were commonly
detected across three CRC datasets by PM2RA (Figure 2D).
More than 40% of the NetShift-identified drivers were shared



Figure 5 Comparisons between PM2RA and the co-occurrence-based methods

A. The difference and advantage of PM2RA comparing to traditional co-occurrence-based methods. B. and C. Comparison of the FPRs

(B) and FNRs (C) of different methods in detecting RAs. PM2RA indicates PM2RA applied to compositional data; PM2RA(clr) indicates

PM2RA applied to centered-log-ratio transformed data; SPIEC-EASI(mb) indicates SPIEC-EASI with the neighborhood selection

method mb; SPIEC-EASI(gl) indicates SPIEC-EASI with the covariance selection method glasso. The difference was compared between

PM2RA and other methods using the Mann–Whitney U test. *, P < 0.05; **, P < 0.01; ***, P < 0.001; NS, not significant. FPR, false

positive rate; FNR, false negative rate.

Liu Z et al / PM2RA: A Tool for Quantifying Microbial Relationship Alterations 163



164 Genomics Proteomics Bioinformatics 19 (2021) 154–167
by the obesity and overweight samples (Figure S4E), and four
drivers were shared by the two diabetes datasets (Figure S4F),
i.e., Alistipes shahii, Anaerotruncus colihominis, Eubacterium

hallii, and Eubacterium ventriosum. However, few of these
drivers are associated with metabolism disorders. For example,
the oft-reported species, Ruminococcus. spp. and Roseburia.

spp., were detected by PM2RA (Figure 3D) but not recognized
as drivers by NetShift.

PM2RA is a good feature extraction tool in distinguishing case

and control samples

To test whether the microbial relationship represented in

PM2RA (by Hotelling’s T2 statistics) captured important
Figure 6 The RF model of PM2RA distinguished case and control sa

p and P denote the P values for comparison between Hotelling’s T2 sta

abundance of drivers detected by NetShift (RF-N), respectively. RF,
information that distinguished case samples from control sam-
ples, we generated RF models using multiple types of inputs
from the abovementioned datasets: the total microbe

abundance (RF-A), microbe abundance of drivers detected
by NetShift (RF-N), and the Hotelling’s T2 statistics of
paired microbes (RF-P). The RF-P model achieved higher

AUC values on the ROC curves than the RF-A model in
two of the seven datasets (Figure 6). In the comparison of
RF-P and RF-N models, significantly higher AUC values were

observed in the six of the seven datasets (Figure 6), indicating
that the RA revealed more information than the abundance
shift of drivers identified by the co-occurrence-based method
in the pathogenesis of these diseases. Besides, the hub microbes

in the RA network were highly overlapped with the microbes
mples

tistics (RF-P) with total microbe abundance (RF-A) and microbe

random forest.



Liu Z et al / PM2RA: A Tool for Quantifying Microbial Relationship Alterations 165
with the highest importance scores in the RF-A model (Figures
S5 and S6). In the 16S rRNA CRC dataset, the top three
hub microbes (i.e., Porphyromonas, Parvimonas, and

Peptostreptococcus) (Figure 2A) were ranked as three of the
top four important features in the RF-A model (Figure S5A).
Parvimonas micra, the most notable hub microbe commonly

detected in multiple CRC datasets (Figure 2D), was among the
top five most important species in three CRC cohorts from
Austria, China, and France/Germany (Figure S5B–D). The

Roseburia and Bilophila species, which were commonly detected
in obesity and diabetes cohorts by PM2RA (Figure 3D), were
identified by the RF-A model as top features (Figure S6A–C).
However, the Ruminococcus species identified by PM2RA was

not recognized as a top feature in the RF-A model, which may
represent the additional information captured by PM2RA that
contributed to its higher classification power. These results sug-

gested that the Hotelling’s T2 statistic transformation in
PM2RA not only preserves the most important feature that dis-
tinguishes health and disease statues but also provides extra

information underlying the pathogenesis of human diseases.

Discussion

Microbial association analysis is an important complement to
the differential abundance analysis in the study of gut micro-
biota dysbiosis in diseases. In the current study, we developed

an innovative analysis method to detect and quantify micro-
bial RAs. PM2RA measures the RAs of microbial sub-
communities, without initially constructing a co-occurrence

network for each condition. We demonstrated that PM2RA
has higher sensitivity and specificity than the traditional co-
occurrence-based methods. The RF analysis revealed that the

microbial RA represented by PM2RA distinguishes disease
and health statuses more robustly than the abundance shift
of driver microbes identified by co-occurrence-based methods.
Furthermore, the applications of PM2RA in several disease

datasets demonstrate the robustness of PM2RA.
In our applications, PM2RA showed biological-

reproducible results in datasets with sample size ranging from

tens to hundreds. However, since PM2RA calculates RAs based
on the projection distributions, the larger the sample size, the
more precise the distribution estimation.We recommend apply-

ing it to datasets with more than 30 samples for each of the com-
pared conditions. It is hard to define the true positive RA when
evaluating the sensitivity of PM2RA, due to the lack of statisti-

cal methods to define and quantify RAs. We used SPIEC-EASI
and SparCC to define ‘‘uncorrelated” microbes and inter-
changed the abundances of any two uncorrelated microbes to
generate the case datasets. However, some types of correlations

can still be neglected, thus rendering the exchange not fully effec-
tive. Therefore, the results might have shown an underestimated
sensitivity. The FNR of PM2RA is dumbbell-shaped (Fig-

ure 5C), suggesting that the FNR of PM2RA is affected by the
effectiveness of the case datasets. A low FNR will be observed
when the exchangedOTUs are independent of each other; other-

wise, PM2RA recognizes the relationships between them and
most other species as similar, resulting in a high FNR. These
results also indicated that PM2RA is sensitive to the correlations
missed by SparCC and SPIEC-EASI.

The abundance of microbial OTUs from amplicon-based
datasets is usually compositional, where counts are normalized
to the total number of counts in the sample. Applying tradi-
tional correlation analysis to such data may produce spurious
results [47]. Because PM2RA detects RAs without construct-

ing co-occurrence networks, the influence of compositional
data on its results is small. Therefore, a comparable specificity
was observed when applying PM2RA to the compositional

data and clr-transformed data of the synthetic datasets. How-
ever, the sensitivity of PM2RA with the clr-transformed data
was significantly lower than that with the compositional data.

This result might be due to the alteration of the abundance
baseline caused by transformation and the subsequent impact
on the relationships inherited by the raw abundance data.

Notably, we considered no environmental factors that

could lead to possible overdispersion of the microbiome data
in PM2RA. Since the purpose of PM2RA is to compare rela-
tionships of microbes between two conditions, generally, given

the experimental designs of most of the case-control studies,
the samples sequenced in each condition were similar in other
factors, such as distributions of age and gender and environ-

mental factors, except for the designed factor. Therefore, in
the detection of RAs, the effects of other factors on the differ-
ential correlation between two conditions were ignored. Math-

ematically, we simply removed the outliers when calculating
the PM scores. However, considering the overdispersion
caused by the environmental factors that might be ignored
or not well-balanced in the experimental designs may be a

way to improve the performance of PM2RA further.
In conclusion, PM2RA is a novel method for identifying

and directly quantifying RAs in microbial communities. It cir-

cumvents the drawbacks of the co-occurrence-based methods.
Applying PM2RA to multiple human diseases reveals biologi-
cally significant results. The ability of PM2RA to detect

community-level dysbiosis may make PM2RA a useful tool
for exploring the functional alterations of microbes as a whole
in a variety of diseases or biological conditions, to provide

additional hints about the pathogenesis of human diseases.
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