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Abstract

Gene expression levels affect biological processes and play a key role in many diseases.

Characterizing expression profiles is useful for clinical research, and diagnostics and prog-

nostics of diseases. There are currently several high-quality databases that capture gene

expression information, obtained mostly from large-scale studies, such as microarray and

next-generation sequencing technologies, in the context of disease. The scientific literature

is another rich source of information on gene expression–disease relationships that not

only have been captured from large-scale studies but have also been observed in thou-

sands of small-scale studies. Expression information obtained from literature through man-

ual curation can extend expression databases. While many of the existing databases in-

clude information from literature, they are limited by the time-consuming nature of manual

curation and have difficulty keeping up with the explosion of publications in the biomedical

field. In this work, we describe an automated text-mining tool, Disease-Expression Relation

Extraction from Text (DEXTER) to extract information from literature on gene and

microRNA expression in the context of disease. One of the motivations in developing

DEXTER was to extend the BioXpress database, a cancer-focused gene expression data-

base that includes data derived from large-scale experiments and manual curation of publi-

cations. The literature-based portion of BioXpress lags behind significantly compared to

expression information obtained from large-scale studies and can benefit from our text-

mined results. We have conducted two different evaluations to measure the accuracy of

our text-mining tool and achieved average F-scores of 88.51 and 81.81% for the two evalua-

tions, respectively. Also, to demonstrate the ability to extract rich expression information in

different disease-related scenarios, we used DEXTER to extract information on differential
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expression information for 2024 genes in lung cancer, 115 glycosyltransferases in 62 can-

cers and 826 microRNA in 171 cancers. All extractions using DEXTER are integrated in the

literature-based portion of BioXpress.

Database URL: http://biotm.cis.udel.edu/DEXTER

Introduction

Genes contain the information needed to create proteins

and dictate cell function; however, it is the pattern of

gene expression that determines cell phenotype. Gene ex-

pression is highly dynamic and varies widely in different

tissues, environmental conditions and disease states.

Transcription is controlled by a complex interplay of acti-

vators, repressors and chromatin remodeling factors and

disruptions in the transcriptional program are well-

recognized as drivers of disease (1). Moreover, the critical

role played by miRNAs, small RNAs that post-

transcriptionally regulate the expression of their target

genes, has become increasingly apparent in recent years (2)

and abnormalities in miRNA expression have been associ-

ated with many diseases (3–8). Identifying genes and

miRNAs whose expression levels can guide disease diagno-

sis, assess prognosis or predict response to therapy is a key

aspect of precision medicine (9).

The development of microarray and next-generation

sequencing technologies has led to an abundance of

transcriptome-wide gene expression data. Much of this

data is publicly available through general repositories such

as Gene Expression Omnibus (GEO) (10) and Array

Express (11), as well as through more specialized resour-

ces, such as International Cancer Genome Consortium

(ICGC) (12) and the Cancer Genome Atlas (13) (TCGA:

http://cancergenome.nih.gov/), which focus on cancer

data, and Tissue-specific Gene Expression and Regulation

(TiGER) (14), which organizes gene expression data by tis-

sue type. High throughput mass-spectrometry (MS) is pro-

viding expression data at the protein level. This data is

captured in resources such as dbDEPC (15, 16) a database

containing over 4000 differentially expressed proteins in

20 cancers, obtained from 331 MS experiments. While

these datasets provide insights into the biological processes

and pathways that are affected by changes in the gene/

protein expression profile, they are notoriously noisy and

so are of limited utility for assessing the behavior of indi-

vidual genes or proteins.

The scientific literature is a rich source of information

on specific gene expression–disease relationships that have

been observed in thousands of small-scale studies. In gen-

eral, these results are only accessible through laborious

manual curation; however, automated text-mining tools

are beginning to lower the barriers to systematically cap-

turing this data. Several resources focus on manually cu-

rated data from publications on disease-related gene

and miRNA expression. DisGeNET (17, 18) is a compre-

hensive platform on human genotype–phenotype relation-

ships, which integrates data from expert curated databases

with information gathered through text-mining the scien-

tific literature. miR2Disease (19) is a manually curated

database that aims to provide a comprehensive resource for

microRNA dysregulation in various human diseases based

on published literature. OncomiRDB (20) is a database of

experimentally validated cancer-related microRNAs manu-

ally curated from literature. miRCancer (21) provides

microRNA expression profiles in various human cancers

that are extracted from the literature and further confirmed

by curators.

Finally, the BioXpress (22, 23) database was developed

to address the need for an integrated view of cancer gene

and miRNA expression data from a variety of studies, both

large and small-scale. BioXpress collects expression data

from publicly available sources such as TCGA (13) and

ICGC (12), and uses a standardized statistical method to

identify the significance of differential expression of genes

and microRNAs between tumor and adjacent non-tumor

samples from the same patient. In addition, BioXpress

reports differential expression of genes manually extracted

and curated from publications and Supplementary mate-

rial, which enables researchers and clinicians to easily com-

pare patients’ expression data with existing knowledge

from literature. While there is substantial expression infor-

mation obtained from large-scale studies in BioXpress

(18 626 genes and 710 microRNAs from 33 cancer types

and 667 patients), manually curated annotations based on

information from the literature (138 genes-PMID annota-

tions) lag behind significantly. Incorporation of automated

text-mining tools has the potential to streamline and accel-

erate the BioXpress curation process.

In this work, we describe an automated text-mining

tool, DEXTER to extract information on gene/microRNA

expression in the context of diseases. DEXTER extracts

the gene or miRNA, the associated disease, the expression

level (e.g. high or low), the experimental context (e.g. tis-

sue or cell line) and the conditions being compared.

DEXTER’s text-mined results can be used to extend
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expression databases such as BioXpress, miR2Disease and

dbDEMC (24, 25). However, for BioXpress additional

constraints needs to be considered as BioXpress reports

only differential expression of genes and microRNAs be-

tween tumor and normal (non-tumor) samples. Thus, given

BioXpress criteria, DEXTER’s extractions will be included

in its literature-based portion of the database in cases

where tumor and normal tissues are being compared.

One of the motivations in developing DEXTER was to

extend the BioXpress database. In fact, DEXTER has been

used for three use cases [lung cancer, glycosyltransferase

(GT) genes and microRNA related abstracts], with the

results having been integrated in literature-based portion

of BioXpress (https://hive.biochemistry.gwu.edu/bioxpress/

about). We ran DEXTER on 88 431, 27 516 and 28 067

abstracts for lung cancer, GT and microRNAs related

abstracts, respectively. Differential expression information

for 2024 genes, 115 GTs and 826 microRNAs was

extracted from lung cancer, GT and microRNA expression

databases, respectively.

We also conducted two different evaluations to measure

the efficacy of DEXTER. The first evaluation focuses not

only on the accuracy of Dexter but also the ability to en-

sure that the curation needs of BioXpress database are

met, i.e. detection of differentially expressed genes in can-

cer tissues as compared with normal. In this evaluation,

the system obtained a precision of 94% and recall of 84%.

The second evaluation focused on general extraction of ex-

pression data in diseases from text and is not limited to

BioXpress-specific sample comparison requirements. The

system achieved precision and recall scores of 90 and 75%,

respectively, in this evaluation.

Materials and methods

In the subsequent sections, we will describe our approach

to developing the DEXTER system. First we will introduce

the types of expression information that are commonly

found in the literature and discuss the ones we consider to

be relevant for this task. Next, we formally describe the

task and the different types of information that we extract.

Finally, we present our system architecture and provide

details of the extraction process.

Types of expression information

Among the myriad statements in the literature regarding

gene expression in disease, we have observed three broad

categories:

Type A: In the first category are sentences that provide

direct evidence of a gene’s expression in two differing sce-

narios, at least one of which involves a disease. These

sentences are typically comparative; i.e. the expression of

the gene is contrasted between the two scenarios (Example

1). Such sentences are common in the biomedical literature

because experiments are frequently designed to compare

two different samples or conditions. In a subset of these

cases, the compared groups are cancerous and normal tis-

sues; these are the sentences of interest to BioXpress.

Example 1: Expression of Shp2 protein was signifi-

cantly upregulated in Oral Squamous Cell Carcinoma

(OSCC) tissues compared with the normal

tissues. . . .[PMID: 24439919]

Type B: In the second category are sentences that indi-

cate the expression level of a gene in a disease state, but

without an explicit comparison. In Example 2, expression

of miR-155 is reported to be high in a disease sample

(‘pancreatic cancer tissues’) without any explicit mention

of a baseline.

Example 2: miR-155 expression was high in pancreatic

cancer tissues. [PMID: 23817566]

Type C: In the third category are sentences that state

the connection between a gene’s expression level and vari-

ous disease-related concepts such as disease outcomes (e.g.

‘poor survival’) or disease processes (e.g. ‘metastasis’, ‘can-

cer cell proliferation’). Example 3 represents such a case.

While such sentences are frequently found in the literature

and inform us about the consequences of a gene’s expres-

sion, they do not address the association between the

gene’s expression and the disease. For instance, from

Example 3, we do not know whether C1GALT1 over-

expression is typically observed in breast cancer; all we

know is that when C1GALT1 is over-expressed in breast

cancer, cell growth, migration and invasion are enhanced.

Moreover, it is possible in these cases that the gene’s ex-

pression is being experimentally manipulated and is not a

natural property of the disease cells at all. Therefore, we

do not extract information from such sentences.

Example 3: Over-expression of C1GALT1 enhanced

breast cancer cell growth, migration and invasion

in vitro as well as tumor growth in vivo. [PMID:

25762620]

Task definition

Based on the discussion above, we focused on information

extraction from Type A and Type B sentences. For both

types, DEXTER extracts the expressed gene/microRNA,

the expression level, and the associated disease. For Type

A sentences, where the expression is contrasted under two

scenarios, it also extracts the compared scenarios. If one of

the compared scenarios is normal tissues (e.g. Example 1),

the results are flagged as being relevant to BioXpress.
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Information extracted from Type A sentences describing

other compared scenarios (e.g. in Example 4, high vs. low

grade tumors) and Type B sentences is also saved as it is of

potential interest to researchers, clinicians and curators of

other disease resources such as dbDEMC.

Example 4: expression levels of miR-454-3p were

higher in high grade gliomas than in low grade gliomas.

[PMID: 25190548]

To summarize, given a text, our tool, DEXTER, extracts:

a. Expressed Gene/microRNA: the differentially expressed

gene (normalized to NCBI Gene ID)/microRNA.

b. Associated Disease: the disease associated with the sam-

ple where the gene is expressed. The disease is normal-

ized to a Disease Ontology ID (26) (DOID).

c. Expression Level: the level of expression, normalized to

either ‘High’ or ‘Low’.

d. Disease Sample: the sample (e.g. tissue, cell, cell line etc.)

mentioned in the sentence, where the gene is expressed.

e. Compared Sample: A second sample, which is used as a

contrast to the sample in (d). This information is avail-

able in Type A, but not Type B, sentences.

Consider the sentence in Example 1. From this sentence

we will extract the following:

a. Shp2 (NCBI Gene ID: 5781), (b) OSCC (DOID:

0050866), (c) upregulated (High), (d) OSCC tissues

and (e) normal tissues.

Note, that one of the motivations in developing DEXTER

was to extend the literature-based portion of BioXpress.

Since DEXTER can capture information in scenarios

beyond BioXpress’s guidelines, we have to consider addi-

tional restrictions before DEXTER’s output can be integrated

in BioXpress. For instance, the compared sample (e) is useful

to determine inclusion in BioXpress, as BioXpress guidelines

require comparison with normal or control samples. Thus,

based on the information in (e), we determine that Example 1

will meet the guidelines of BioXpress, whereas Example 4

does not, since the compared sample is ‘normal tissues’ in

Example 1 and ‘low grade gliomas’ in Example 4.

The disease sample (d) is the phrase used in text that

mentions where the gene is expressed. For example, the

disease sample is ‘OSCC tissues’ in Example 1 and ‘high

grade gliomas’ in Example 4. As seen in these two exam-

ples, the disease sample (d) allows us to often infer the as-

sociated disease (b), which is normalized using DOID.

System architecture

The different steps of the DEXTER system are depicted in

Figure 1. In the first step (text processing module in

Figure 1), the title and text of a Medline abstract are split

into sentences and tokenized. These sentences are then

parsed to obtain syntactic dependencies between words

and phrases. Since we treat this task as a relation extrac-

tion (RE) task, the RE module is applied, where two types

of relations are extracted that correspond to Type A and

Type B information. This RE phase relies on the syntactic

dependencies identified in the previous step.

The output from the text processing component is also

input to the entity detection and typing component. This

component detects gene names, disease terms and phrases

that mention expression information. Thus, the noun

phrases (NPs) that have been identified by the parser can

be checked to ascertain whether they are one of these entity

types. After the RE step, we need to verify that the argu-

ments are of the expected type. For example, the argument

corresponding to compared scenario must be a disease or

disease sample. Thus, we can filter out relations based on

their argument’s type information. After filtering, addi-

tional processing may be necessary to extract some infor-

mation. For instance, the disease information may not be

stated in the sentence and might need to be extracted from

elsewhere in the abstract. DEXTER is developed mainly

using Python and Java programming languages. Details of

each step of the system architecture are described in the

subsequent subsections.

Text processing

Preprocessing

In this preprocessing step, we tokenize and split the text,

typically a Medline abstract, into sentences using the

Stanford CoreNLP toolkit (27). After sentence splitting,

we check whether a sentence contains certain words, the

so-called trigger words for Type A and Type B relations (as

described below). Sentences that do not contain trigger

words are not processed further. A full list of trigger words

that we use for expression and comparative relations can

be found in the Supplementary File S1.

Syntactic processing

The RE task is often defined as the identification of

predicate-argument structures. We use a common ap-

proach to extract predicate–argument relations based on

parsing. We further convert the syntactic parse tree into de-

pendencies, in order to obtain an output that is closer to

the predicate–argument relations. A standard dependency

graph (SDG) (28) provides a representation of grammatical

relations between words in a sentence. In Figure 2, an SDG

using Universal Dependency notation for the sentence

‘MicroRNA-224 is frequently over-expressed in colorectal

cancers’ is shown. One of the dependency triplets
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represented is nsubjpass (MicroRNA-224, over-expressed),

where the relation is nsubjpass (nominal subject passive)

and the governor and dependent of the relation are ‘over-

expressed’ and ‘MicroRNA-224’, respectively.

We use the Charniak–Johnson parser (29, 30) with

David McClosky’s adaptation to the biomedical domain

(31) to obtain constituency parse trees for each sentence.

Next, we use the Stanford conversion tool (27, 28) to con-

vert the parse tree to into the syntactic dependency graph.

We use the ‘CCProcessed’ option, which collapses and

propagates dependencies allowing for an appropriate treat-

ment of sentences that involve conjunctions. Note that

‘CCProcessed’ is helpful as dependencies involving preposi-

tion, conjuncts, as well as referent of relative clauses are

‘collapsed’ to get direct dependencies between context

words.

Our approach to extracting information is based on de-

fining patterns on the syntactic dependencies obtained af-

ter parsing. These patterns are written in Semgrex, which

is a part of the Stanford NLP Toolkit. Semgrex allows us

to specify the patterns as regular expressions based on lem-

mas, part-of-speech tags and dependency labels, which will

automatically match with the dependency structure.

Text in biomedical literature is often complex and dense

with information. While syntactic parsing provides an abil-

ity to abstract away from some textual variations, there

are some syntactic variations that provide different

dependency structures (active, passive and nominalized).

However, these variations are systematic and have been

captured in various linguistic theories as well as grammati-

cal frameworks [e.g. tree families of lexicalized tree-

adjoining grammars (LTAG)] (32, 33). In developing our

patterns, we account for such syntactic variations, moti-

vated by principles used in extended dependency graph

(EDG) (34) and iXtractR (35).

Relation extraction

As discussed earlier, we are interested in extracting infor-

mation from sentences with and without explicit compari-

sons between groups (Type A and Type B, respectively).

The following two subsections discuss the processing of

the two different types of sentence.

Relations for Type A: comparison constructions

Recall that expression in disease samples for Type A infor-

mation are present in comparative sentences, where the ex-

pression of a gene/microRNA is compared under two or

more scenarios. The range of comparisons in biomedical

literature is varied and extensive and obviously not limited

to differential expression. In a previous work (36), we had

developed a system that identifies and extracts information

Figure 1. System pipeline overview.

Figure 2. Example SDG.
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(components) from comparisons in general. While we refer

to our earlier work for details of extraction of the compari-

son components, we briefly discuss the components of

comparison here and how it relates to our task.

Components of comparison. Consider the sentence in

Example 5, which compares a gene expression level in can-

cerous vs. non-cancerous tissues. Compared aspect (CA) is

the aspect on which comparison between the two entities is

being made. In this sentence, the CA is given by the phrase

‘The expression of GPC5 gene’. The compared scenarios

will be referred to as compared entities (CEs) and are typi-

cally of the same type. In this example, the entities being

compared are ‘lung cancer tissues’ and ‘adjacent noncancer-

ous issues’. Additionally, there are two parts in comparative

sentences that indicate the comparison. The first is the pres-

ence of a word that indicates the scale of the comparison

and the other separates the two CEs. The former is often a

comparative adjective or adverb (such as ‘higher’, ‘lower’,

‘better’ etc.), while the latter can be expressed with phrases

or words (such as ‘than’, ‘compared with’, ‘versus’ etc.).

We will refer to the comparative word indicating the

scale as the scale indicator (SI) and the latter, separating

the entities, as the entity separator (ES). In Example 5,

these are given by ‘lower’ and ‘than’, respectively.

Although the ES is useful for identifying the two entities

and hence useful in our processing, we do not extract it as

an argument and instead only extract the CA, the two CEs

and the SI.

Example 5: The expression of GPC5 geneCA was

lowerSI in lung cancer tissuesCE thanES in adjacent non-

cancerous tissuesCE.

Comparison sentences are written in a variety of textual

and syntactic forms. Despite the variations, our previously

developed method (36) effectively extracts the components

of these comparisons by defining patterns based on syntactic

dependencies, thereby abstracting away from the variations.

Example 6 consists of seven sentences that illustrate some of

the variety in comparative sentences in the literature; the

components of the comparisons, extracted by our system,

are shown in Table 1. In the first three sentences, the SI is

the main predicate of the sentence. The SI in the first two

sentences is a comparative adjective, whereas in the third

sentence the SI is a verb. Regardless, in all three sentences

the CA is the subject of the main predicate.

In contrast, in the next two sentences (4 and 5), the SI is

not the main predicate but is instead a noun modifier,

modifying the CA. However, as with the first three senten-

ces, the subject of the main predicate (and of the sentence)

provides the CA.

Thus far, we have observed that the CA appears as the

subject of the main predicate and that the SI acts as the

main predicate of the sentence or is attached as a modifier

of the CA NP. One of the CEs appears after the main pred-

icate and is syntactically attached to the predicate via the

use of the preposition ‘in’. The second CE is found later

and separated by the ES.

The sixth and seventh sentences are different because

the comparison structure starts with an ES phrase that

includes the second CE. Other than this difference, the

sixth sentence meets the conditions discussed above regard-

ing the CA, the first CE and the SI. However, in the seventh

sentence, one of the CE (‘patients with CLL’) is the subject

of the main predicate. The CA (‘expression level of PTEN

mRNA’) is the object of the predicate, with the SI (‘lower’)

attached to the as a noun modifier.

All comparison patterns are listed in the Supplementary

File S1.

Example 6:

1. Plasma miR-187 was significantly higher in OSCC

patients than in normal individuals.

2. miR-181a expression was lower in HepG2 cells com-

pared to Hep3B cells.

3. miR-95 levels were increased in human prostate cancer

specimens compared with normal tissues.

Table 1. Components extracted from Type A sentences (Example 6)

Sentence # Scale indicator Compared aspect Compared entity 1 Compared entity 2

(SI) (CA) (CE1) (CE2)

1 Higher Plasma miR-187 OSCC patients Normal individuals

2 Lower miR-181a expression HepG2 cells Hep3B cells

3 Higher miR-210 expression Metastatic tumors Primary tumors

4 Increased miR-95 levels Human prostate cancer specimens Normal tissues

5 Increased TP expression Ovarian cancers Normal ovaries

6 Decreased FOXD3 expression HGG tissues Normal brain tissues

7 Lower Expression level of PTEN mRNA Patients with CLL Controls
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4. Higher miR-210 expression was found in metastatic

tumors compared to primary tumors.

5. Increased TP expression was observed in ovarian can-

cers than in normal ovaries.

6. In comparison to normal brain tissues, FOXD3 expres-

sion was significantly decreased in HGG tissues at both

mRNA and protein levels.

7. Compared to controls, patients with CLL presented a

lower expression level of PTEN mRNA (P < 0.001).

Extracting components from Type A (comparative)

sentences. While we refer the reader to (36) for a full de-

scription of our system, we briefly describe the extraction

process below and provide an example.

Recall that our approach to extracting components

from comparative sentences is based on defining patterns,

with Semgrex, on the syntactic dependencies obtained after

parsing. We use dependency edges from SI and ES words

to extract the CA and the CEs. An example of such a com-

parison pattern is described below.

Figure 3 shows the dependency graph of a comparison

sentence, where the SI (‘higher’), comparative adjective

(JJR) serves as the main predicate of the sentence. Notice

we normally expect the subject for the SI for such cases to

be the CA. Thus, we follow the nsubj edge from the JJR

(‘higher’) to get the head of the CA (‘miR-187’). We follow

all outgoing edges from the CA head to extract the CA NP

(‘Plasma miR-187’). As discussed earlier, one of the CE

will be attached to the SI by the preposition ‘in’ in such

cases. Thus, we use the nmod: in edges from JJR to extract

the CEs (‘OSCC patients’ and ‘normal individuals’). We

further verify that the extracted CEs are separated by an

ES (‘than’).

Relation extraction for Type B

Type B sentences indicate the expression level of an entity

(e.g. gene) in some disease sample, without explicitly

contrasting it with another state. Importantly, an expres-

sion level for the entity, not just the entity itself, is men-

tioned. Hence we are interested in the (i) Expressed

Aspect (EA): the entity being expressed, (ii) Expressed

Location (EL): the biological context of the expressed en-

tity, which can be disease samples, cells, tissues etc. and

(iii) Level Indicator (LI): a phrase indicating the level of

expression.

Several Type B sentences are shown in Example 7,

depicting possible syntactic and textual variations. We

show the output of our relations extraction system

for these sentences in Table 2. In the first three sentences,

the LI is the main predicate of the sentence, given by a

verb, comparative adjective and adjective, respectively.

Regardless of the type of LI, in these cases the subject of

the main predicate provides us with the EA.

In contrast, in the next two sentences (4 and 5), the

main predicate of the sentence is headed by verbs such as

‘found’, ‘detected’, ‘noted’, ‘observed’ etc. In these cases,

the LI is attached as a noun modifier, modifying the EA.

But as with the first three sentences, the subject of the main

predicate gives the EA. The EL in all these sentences (1–5)

appears after the main predicate and is syntactically at-

tached to the predicate via the preposition ‘in’. In the sixth

sentence, the subject of the main predicate (‘found’) is ‘we’

and not the EA phrase. In such cases, where the subject are

words such as ‘we’, ‘authors’, ‘study’ etc., the object of the

predicate provides us with the EA and the EL is attached to

the EA via the preposition ‘in’. As in seen sentences 4 and

Figure 3. Comparison SDG example.

Table 2. Components extracted from Type B sentences (Example 7)

Sentence # Level indicator Expressed aspect Expression location Implicit

comparison(LI) (EA) (EL)

1 Over-expressed GALNT2 OSCC Yes

2 Higher IGF1R expression levels Right adrenocortical tumor Yes

3 Low Levels of miR-373 expression Pancreatic cancer cell lines No

4 Higher Higher level of BRF2 expression NSCLC tissues Yes

5 High TRIM32 expression levels Gastric cancer tissues No

6 High Expression levels of FKBP51 Melanoma cells No
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5, the LI (‘high’) in this case is also attached to the EA as a

noun modifier.

Example 7:

1. GALNT2 is frequently over-expressed in OSCC, espe-

cially in the carcinoma cells at the invasive front.

[PMID: 24582885]

2. IGF1R expression levels were higher in the right adre-

nocortical tumor. [PMID: 21468523]

3. The levels of miR-373 expression were low in pancre-

atic cancer cell lines. [PMID: 24748127]

4. Higher level of BRF2 expression was found in NSCLC

tissues. [PMID: 24523874]

5. High TRIM32 expression levels were detected in gastric

cancer tissues. [PMID: 28521418]

6. We found high expression levels of FKBP51 in mela-

noma cells. [15571967]

Note that certain LI words and phrases, such as ‘over/

under-expressed’, ‘increased’, ‘decreased’ and ‘elevated’

indicate implicit comparison to an unstated baseline.

For example, in Sentence 7.1 the use of predicate

‘overexpressed’ does not make sense if the expression level

(‘high’) is not in reference to some baseline. Thus, we note

an ‘Implicit Comparison’ flag (last column in Table 2) in ad-

dition to EA, EL, LI arguments based on the type of the LI

phrase. The relevance of this flag is further discussed in the

section ‘Determining compared entity type’.

Extracting components from Type B sentences. Note that

as discussed earlier there are two classes of predicates

that trigger such Type B relations. The first class contains

the LI, (e.g. ‘overexpressed in’, ‘under-expressed in’,

‘upregulated in’ and ‘increased in’). The second class

includes words or multi-word triggers like: ‘is found in’, ‘is

detected in’, ‘is increased in’ etc.; in these cases, the LI

modifies the EA. Our patterns to extract the arguments of

Type B relations are based on these two types of predicate

classes. Consider the dependency graph shown in Figure 4a

for Sentence 7.1. Here the LI is the main predicate of the

sentence. Since the EA is the subject of the LI in these cases,

we follow the nsubjpass edge from the predicate (LI) to ob-

tain the EA (‘GALNT2’). We follow the nmod: in edge to

extract the EL (‘oral squamous cell carcinoma’). An exam-

ple dependency graph, where the LI is not the main predi-

cate of the sentence is shown in Figure 4b. Here the main

predicate is ‘found’ and similar to 4a nsubj and nmod: in

edges are used to extract the EA and EL. The LI (‘high’)

modifies the EA in these cases and hence we follow the

amod edge from the head of the EA to obtain the LI. A

complete list of patterns and triggers can be found in the

Supplementary File S1.

Entity detection and phrase typing

Since we are interested in extracting expression informa-

tion in the context of disease, the arguments/components

of our relations should satisfy certain type constraints. For

example, in a comparison construction, the CA must of

type gene expression. Further, our task requires the extrac-

tion of the expressed gene, expression level and the associ-

ated disease. Therefore, we need to determine the type of

the argument phrases. In this phase, which takes parsed

sentences as input from the text processing module, we

look at NPs and determine if they contain terms that refer

to entities of type gene/miRNA, expression, or disease/dis-

ease-sample.

Note that in this phase we only tag all the genes,

microRNAs and diseases, expression and disease-sample

phrases in text; details about how the particular expressed

gene and the associated disease is extracted will be de-

scribed in the section ‘Argument filtering and extraction’.

Gene (we do not distinguish between genes and proteins in

this phase) mentions are detected using PubTator (37), a

publicly available tool that assists biocuration by tagging

various biological entities. We downloaded and used the

pre-computed annotations from PubTator, which contains

Figure 4. (a) Type B SDG Example 1. (b) Type B SDG Example 2.
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gene mentions in abstracts normalized to NCBI Gene IDs.

For microRNA detection, we use regular expressions that

capture the ways in which they are mentioned in text (e.g.

miR-1, microRNA1, miRNA-1 etc.). In developing the reg-

ular expressions, we have used the well-established naming

convention as described in miRBase (38), including the

detection of prefixes denoting species or suffixes as in miR-

1a, miR-1-5p and hsa-miR-1-3p. To determine whether a

phrase is of type ‘Expression’, we check the head noun of

the phrase against a list of expression triggers such as

‘expression’, ‘level’, ‘over-expression’ etc. Note, the gene

whose expression is defined by such an Expression phrase

will either be in the same NP phrase indicating the

Expression phrase or attached to it through a prepositional

phrase. In both cases, the expressed gene will modify the

Expression phrase such as in ‘X expression’ or ‘Expression

of X’, where X is a name of a gene.

To detect diseases, we also use PubTator (37), where

disease mentions are normalized to MEDIC IDs (39).

These IDs are mapped to DOIDs using the table provided

by Disease Ontology (DO) (26), which maps MEDIC IDs

to DOIDs. The choice of normalizing diseases to DOIDs

was made to allow easy integration to BioXpress, which

only uses DOIDs. Note, that the arguments of our relation

can be a disease (as detected by PubTator) or contain a dis-

ease with its head word matching certain disease-sample

triggers such as ‘tissues’, ‘cells’, ‘patients’, ‘samples’,

‘tumors’ etc. A full list of expression and disease-sample

triggers can be found in the Supplementary File S2.

Argument filtering and extraction

There are two primary steps in this phase: (i) verify if the

arguments found by the RE modules meet the type con-

straints and filter accordingly and (ii) extract the final rela-

tion that can be put into a database.

As shown in Figure 1, input to the RE module is a

parsed sentence, which is also input to the entity and

phrase typing module. A primary reason for this design is

that we use a separately developed general purpose system

for extracting comparisons. In this step, we check that the

arguments from the RE module are of the right type, where

the typing info has been determined by the typing module.

Consider the comparison case: we verify that the phrase

identified as the CA is of type expression and that the two

CEs are of type disease/disease-sample. Similarly, we verify

the type constraints for Type B: i.e. the EA is of type gene

or gene-expression and the EL is of type disease-sample.

Next we discuss how to extract all the relevant informa-

tion to populate a database. We first discuss the extraction

of the gene and level and later discuss the extraction of the

disease. The gene and level are always extracted from the

sentence whereas the disease might be extracted from some

other part of the abstract or its title.

Expressed gene and expression level extraction

Recall the CA and EA arguments of Type A and Type B

are NP of type ‘expression’ or sometimes the gene itself.

Thus these NPs will either directly contain the name of the

gene we are capturing or the gene name will be attached to

the expression phrase as a modifier. We use the gene/

miRNA mentions detected in entity detection and typing

module described in the section ‘Entity detection and

phrase typing’ to extract the particular expressed gene/

microRNA from the compared/EA arguments.

In addition to extracting the expressed gene, we also

need to note the level of expression (high or low). As stated

earlier the phrases, the expression level can be the predi-

cate of the extracted relations (e.g. X higher in Y than Z, X

over-expressed in Y) or attached to the compared/EA

phrases as noun modifiers (e.g. lower expression of X was

found in Y). These phrases are already captured by our RE

system as SI or LI arguments for Type A and Type B rela-

tions, respectively. They are then normalized to high or

low by matching them against a list of triggers. We use

triggers such as ‘over-expressed’, ‘high’, ‘increased’ etc. to

assign high expression level and triggers such as ‘under-

expressed’, ‘low’, ‘decreased’ etc. to assign low. A full list

of these triggers is listed in the Supplementary File S2.

Extracting the disease

In most cases, the disease is mentioned in the NPs corre-

sponding to the CE or EL arguments of the Type A/B rela-

tions or attached to it by a prepositional phrase. Thus,

while determining the associated disease, we check if a dis-

ease detected by PubTator (described in the section

‘Relation extraction’) is mentioned in one of the CEs or in

the EL argument. In some cases, the arguments of the rela-

tions might only contain generic disease phrases such as

‘tumor’, ‘cancer’, ‘disease’ or population phrases such

‘patients’, ‘men’ etc. (as in the CEs in Example 6). In these

cases, we assume that the referred disease can be inferred

from context and the associated disease is extracted from

elsewhere in the same abstract.

Inferring disease from context. Based on a preliminary

study, we have noticed there are certain locations where

the associated disease is stated. In some cases, title/first/

conclusion sentences might contain the referred disease.

These are locations where the authors tend to conclude or

describe the nature of the work conducted. So any disease

mentioned in these places are likely to be the disease stud-

ied in the presented work. For example, consider the sen-

tence in Example 8. The CE argument extracted from this
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sentence is a generic disease phrase ‘cancer tissues’. The

disease being referred to here is gastric cancer, which is

mentioned in several places in the abstract including the title.

Example 8: Conversely, the expression of miR-143 and

-195 in cancer tissues was significantly lower compared

to that in normal tissues. [PMID: 24649051]

Alternately, the disease and the samples that were stud-

ied are described in the ‘methods’ part of the abstract, where

descriptions of the investigational aims of the study or its

setup are described. We have developed certain patterns to

identify such sentences, which are described below.

Sentences that discuss the investigational aims of

the paper contain certain investigation triggers, such

as ‘investigated’, ‘examined’, ‘analyzed’, ‘evaluated’,

‘studied’, ‘compared’ etc. The presence of such triggers is

not sufficient to detect such study/investigation sentences.

We need to further verify that the investigation trigger has

an appropriate agent. The agent (subject of the sentence)

could be the authors of the paper, indicated by words, such

as ‘we’ or ‘authors’ (Example 9a). Alternatively, the agent

could be the reason for the investigation, indicated by

words, such as ‘aim’, ‘objective’ or ‘purpose’ (Example

9b). Finally, the investigation trigger could be in the pas-

sive form with an optional agent as in Example 9c.

Example 9a: So the authors investigated the expression

of TP in bladder cancer.

Example 9b: The purpose of this study was to investi-

gate whether polyphenols from apples modulate expres-

sion of genes related to colon cancer prevention in pre-

neoplastic cells derived from colon adenoma (LT97).

Example 9c: BACKGROUND: The association between

5-fluorouracil (5-FU)-related enzyme activity and the

sensitivity of bladder urothelial carcinoma (BUC) to

5-FU were investigated, and methods to improve 5-FU

sensitivity were analyzed.

Disease names can also be found in sentences describing

the experimental set-up. These sentences contain certain

analyzed trigger words such as ‘tested’, ‘enrolled’,

‘collected’, ‘analyzed’, ‘measured’, ‘explored’, ‘assessed’

etc. The patterns for detection of such sentences are similar

to that of investigation sentences. The difference is that the

theme of these words (i.e. who was enrolled/tested) will be

patients or samples and will typically mention the disease

being studied. We have noticed that most of the analyzed

trigger constructs are in passive form and thus we look for

the nusbjpass edge, which provides us with the theme

(Examples 10a and 10b). The subject NP (underlined in

the examples below) indicates the sample being tested/

studied (theme) in the experiment. We look for a number,

which often indicates how many patients/samples were

tested, in the sample argument to further verify the detec-

tion of experiment setup sentences.

Example 10a: METHODS: A total of 140 patients with

colorectal cancer and 280 cancer-free frequency-

matched controls from a follow-up cohort population

established in 1989, were enrolled.

Example 10b: Sera from 9 patients with chronic hepati-

tis B and 32 patients with hepatitis B virus (HBV)-re-

lated HCC were tested for AFP-L3 level using the gly-

can microarray.

Determining compared entity type

The CEs extracted from comparison constructions in Type

A sentences should be a disease-sample such as disease cell,

tissue, cell line, tumor, patients etc. Since BioXpress data-

base guidelines require expression data that includes direct

evidence of gene expression differences between tumor and

adjacent non-tumor tissues (control), we differentiate be-

tween comparison to Control and Not-Control by adding

a frame-of-reference flag. If one of CEs’ NP contain words

such as ‘control’, ‘normal’, ‘healthy’, ‘adjacent’ etc. as a

noun modifier, we detect the frame-of-reference as Control

(Example 11) indicating the differential expression in dis-

ease vs. normal. If no such phrase is detected in the CEs,

we set the flag to Not-Control as in Example 12, where the

comparison is between two disease subtypes (‘T1 bladder

carcinoma’ and ‘Ta carcinomas’).

Example 11: Higher TP expression was observed in

ovarian cancers than in normal ovaries. [PMID:

15628771]

Example 12: ‘. . . .the expression of PDECGF in T1 blad-

der carcinoma was twofold higher than that in Ta

carcinomas.’ [PMID: 9070497]

Note differential expression between tumor and

normal can also be conveyed through certain predicate

triggers of Type B relations such as ‘over/under-expressed’,

‘increased’, ‘decreased’, ‘elevated’ and ‘reduced’

(‘overexpressed’ as in Figure 4a). In addition to indicating

high/low expression of the gene in cancer cells, these sen-

tences also suggest an implicit comparison to control. The

use of predicate ‘overexpressed’ used to detect high level of

expression in the disease state does not make sense unless

it is reference to some baseline. In such cases, we assume

the comparison reference is normal (non-disease state) and

the assign the frame-of-reference flag Control_Implicit.

On the other hand, predicate triggers such as ‘high’, ‘low’

etc., indicates expression information but does not neces-

sarily imply differential expression. In such cases, we as-

sign none as the frame-of-reference as in Example 13.
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Example 13: Expression of GCS was high in estrogen

receptor (ER)-positive and HER-2 negative samples.

[PMID: 24456584]

Results

One of our motivations for designing DEXTER was to as-

sist with curation of the BioXpress database. This section

first discusses three use cases intended to extend the

literature-based portion of the BioXpress database. In ad-

dition, we discuss the results of running DEXTER on a

large set of PubMed abstracts related to cancer. Next we

consider evaluation of DEXTER using standard measures

of precision and recall. Our first evaluation focuses on

results relevant to BioXpress and thus we only consider

cases that compare gene expression in a cancer sample to a

normal baseline. We also conducted a second evaluation in

order to test DEXTER’s ability to extract expression data

in diseases from text without the limitations imposed by

BioXpress guidelines. Both evaluations are based on com-

paring DEXTER’s output with manually annotated data

sets. The datasets were annotated by co-authors who are

domain experts and did not participate in the design and

implementation of the DEXTER system. The first evalua-

tion used annotations by two researchers who are involved

in the BioXpress database design. The second evaluation

was based on annotations from a researcher who has con-

siderable experience in biological curation and annotation.

Use cases

Recall that one of the motivations for developing

DEXTER was to extend the literature-based portion of the

BioXpress database. DEXTER output is appropriate for

BioXpress if: (i) the disease is cancer (as determined by

DO) and (ii) there is an explicit/implicit comparison of ex-

pression in cancer samples to normal samples. The results

of this section show that DEXTER can be scaled up to pro-

cess and extract expression information from a large set of

abstracts. We discuss the processing of three large sets of

abstracts covering different use cases for inclusion in

BioXpress. The processed text-mined results for these three

sets have been integrated into the BioXpress database

(https://hive.biochemistry.gwu.edu/bioxpress/about).

To address the use case in which a researcher wants to

study a particular disease, we processed a set of abstracts

related to lung cancer. Second, we focused on a set of

abstracts related to a group of genes, namely GTs, which

are a set of enzymes that play an important role in major

post-translational modification in cellular development.

Alteration to glycan structures or glycosylation status can

play an important role in the development of neoplastic

character in the proliferation cells. The last set of abstracts

was selected to demonstrate that our method scales up to al-

low a comprehensive study, in this case for researchers inter-

ested in the role of microRNA’s in cancer. The substantial

amount of data that we extracted for these three use case

scenarios indicates that there is a wealth of information in

the literature that DEXTER can extract. The selection meth-

odology of the abstracts and some of the key characteristics

of the three datasets developed are discussed below.

Use case 1: lung cancer

For our first set of abstracts, we focused on a specific can-

cer. Because of the OncoMX project (https://hive.biochem

istry.gwu.edu/bioxpress; OncoMX website, which based

on BioXpress is under development), which relies on

BioXpress, we selected ‘lung cancer’ as the cancer of inter-

est. We used DO to get all lung cancer terms, i.e. all terms

in the DO hierarchy with lung cancer as root, which

resulted in 47 DO cancer terms. We used synonyms pro-

vided for each lung cancer term by DO, resulting in a set of

terms related to lung cancer. We queried PubMed with this

list of terms (i.e. ‘lung cancer’ OR ‘lung carcinoma’ OR

‘non-small cell carcinoma’ . . .) to retrieve all lung cancer-

related abstracts, which yielded 151, 618 abstracts. Next

we selected only those abstracts that contain certain expres-

sion words/phrases such as ‘expression’, ‘level’ etc., which

reduced the number of abstracts to 88 431 abstracts.

We ran DEXTER on these abstracts and selected only

those results where the extracted cancer was one of the 47

lung cancer DOIDs. Table 3 (row 1) lists some of the key

characteristics of lung cancer expression dataset. Note that

the number of abstracts processed (88 431) by DEXTER

reflects the number of abstracts that mentioned both lung

cancer and the word expression (and a few more alter-

nates) somewhere in the abstract. So in a large number of

cases, the two were unrelated and might be several senten-

ces apart. Even among the cases they appear in the same

sentence, DEXTER is only concerned with mentions of dif-

ferential expression in disease samples as compared to

non-disease sample. We extracted Type A information

from 742 abstracts and Type B information from 1448

abstracts. Total of 642 and 1383 genes were extracted

from Type A and Type B expression information, respec-

tively. Figure 5 depicts the top 10 genes extracted with the

most literature evidence (number of abstracts, blue bars),

in addition to the number of different lung cancer terms

that were associated with each gene (orange bars). For ex-

ample, differential expression for the top gene, epidermal

growth factor receptor (EGFR) was extracted from 62

abstracts and was found be to expressed in ‘non-small lung

carcinoma’, ‘lung cancer’, ‘lung oat cell carcinoma’, ‘lung

small cell carcinoma’ and ‘lung adenocarcinoma’.
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Use Case 2: glycosyltransferases (GT) genes

For the second set of abstracts, we focused on expression

information about a set of genes, GTs. GTs are responsible

for attaching, extending, bifurcating and pruning glycans

on proteins (40, 41). Dysfunction or deregulation of GTs

may impact glycan profiles and lead to disease, including

several types of cancer (42–44). For this project, GTs were

defined as a set of 279 enzymes with one or several of

the following: relevant annotations by gene ontology (GO)

or UniProtKB/Swiss-Prot; GT classification by CAZY

database; inclusion in the GT panel developed by the

Consortium of Functional Glycomics; inclusion of appro-

priate domains reported by InterPro and Pfam.

We searched the precompiled PubTator gene database,

which associates gene mentions in abstracts with their corre-

sponding NCBI Gene IDs, for the 279 GTs and found 49,

915 relevant abstracts. As in the lung cancer set, we only se-

lected those abstracts that contained expression words/

phrases. Additionally, we only selected those abstracts that

contained a cancer mention by selecting those abstracts that

have a disease mention (as detected by PubTator) and whose

MESH ID can be mapped any of the 2100 cancer DOID

terms [cancer DOID terms are all nodes in the DO hierarchy

with cancer (DOID:162) as root], using the DOID mapping

file. These filtering steps yielded 27 516 abstracts on which

we ran DEXTER and extracted BioXpress relevant informa-

tion where the expressed gene was a GT.

Table 3 (row 2) lists some of the key characteristics of

GT expression dataset. From these 27 516 abstracts, we

extracted Type A information from 90 abstracts and Type

B from 180 abstracts. Total of 45 genes (in 34 cancers) and

73 (in 52 cancers) genes were extracted from Type A and

Type B expression information, respectively. Figure 6

shows the top 10 GTs by number of abstracts (blue bars)

and the number of cancer-related terms associated with

them (orange bars). For example, differential expression

for the top GTs, nicotinamide phosphoribosyltransferase

(NAMPT) was extracted from 30 abstracts and was found

be to expressed in 20 cancers, such as ‘stomach cancer’,

‘breast cancer’, ‘endometrial cancer’, ‘b-cell lymphoma’

and ‘papillary thyroid carcinoma’.

Use Case 3: microRNAs

For the third dataset, we processed all microRNA-related

abstracts. We selected microRNAs as they transcriptionally

regulate the expression of their target genes, and abnor-

malities in microRNA expression have been associated

with many diseases. To select the microRNA abstracts,

we used the PubMed query ‘microRNA[TIAB] OR

miRNA[TIAB] OR miR[TIAB]’, which returned 64 995

Table 3. Large-scale processing results

# abstracts processed # of abstracts extracted # of entries # of expressed genes

Type A Type B Type A Type B Type A Type B

Lung cancer set 88 431 742 1 448 985 2019 642 1383

Glycosyltransferases set 27 516 90 180 106 236 42 73

microRNA set 28 067 1650 3575 2522 6437 477 721

Figure 5. Top 10 genes whose expression is associated with lung cancer types in the literature.
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abstracts. We followed the same filtering process as de-

scribed in Use Case 2 for GTs genes, which reduced the

number of abstracts to 28 067. We ran DEXTER on these

abstracts and Table 3 (row 3) lists some of the key charac-

teristics of microRNA expression dataset.

We extracted Type A information from 1 650 abstracts

and Type B information from 3 575 abstracts. Total of

477 microRNAs (in 114 cancers) and 721 microRNAs (in

157 cancers) were extracted from Type A and Type B ex-

pression information, respectively. Figure 7 shows the top

10 extracted microRNAs with the most literature evidence

(number of abstracts), and the number of cancers associ-

ated with each. For example, differential expression for the

top microRNA, miR-21, was extracted from 338 abstracts

and was found be to expressed in 80 different cancers,

such as ‘breast cancer’, ‘hepatocellular carcinoma’,

‘colorectal cancer’, ‘stomach lymphoma’, ‘non-small cell

lung carcinoma’ and ‘glioblastoma multiforme’.

Large-scale processing

To illustrate the robustness and scalability of our tool,

DEXTER was applied on a large set of PubMed abstracts

related to cancer. To select cancer-related abstracts, we

used the PubMed query ‘cancer OR cancers OR carcinoma

OR carcinomas OR neoplasm OR neoplasms’, which

returned 3 717 745 abstracts (as of March 2018). Next we

selected only those abstracts that contain certain expres-

sion words/phrases, which reduced the number of abstracts

to 1 750 928. We ran DEXTER on these abstracts and

extracted differential expression information in cancer

compared to normal, which resulted in 24 416 unique

gene-cancer type pairs.

We developed a preliminary website for interactive

query of DEXTER’s text-mined results on cancer-related

abstracts. The interface currently accepts PubMed-like

queries as input, thus supporting queries like a gene name,

or a disease name or any biological concept. For example,

Figure 6. Top 10 GTs whose expression is associated with cancer types in the literature.

Figure 7. Top 10 microRNAs whose expression is associated with cancer types in the literature.
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a user interested in the gene ‘egfr’ and the disease ‘lung

cancer’ can submit a query such as ‘egfr’ AND ‘lung can-

cer’. The system then submits the query to PubMed, which

returns all the PMIDs satisfying the query. The system dis-

plays the results from these PMIDs that have been previ-

ously processed by DEXTER. Because this list of PMIDs

were returned by PubMed for the given query, the results

may also contain results for genes other than ‘egfr’ and/or

for other cancers. For this reason, the interface allows

for filtering the results using drop-down menus. The inter-

face is available at the URL: http://biotm.cis.udel.edu/

DEXTER. Figure 8 provides a screenshot of the interface

after submitting the query ‘egfr’ AND ‘lung cancer’.

Note that DEXTER’s focus is on extracting differential

expression data in disease. But a clinical researcher could be

interested in not only differential expression but also the im-

pact (i.e. Type C) of expression level of a gene on disease as-

pect (e.g. ‘overall survival’) or process (e.g. ‘cell migration’).

Even though Type C statements are outside the scope of

DEXTER, we do extract them and have made them avail-

able for users of DEXTER. For this reason, for each search

query in DEXTER’s interface, we also provide a download

link to Type C statements that we collect for that query.

BioXpress-based evaluation

Experimental setup

For this evaluation we selected 100 abstracts related to

GTs and 100 abstracts related to microRNAs. To meet the

needs of BioXpress, we need to extract gene/microRNA ex-

pression information where cancer is compared, explicitly

or implicitly, with control. Therefore, our system identifies

Type A sentences, where the one of the CEs has a modifier

phrase suggesting it is a control sample (frame-of-reference

flag Control) and Type B sentences, where there is an im-

plicit comparison to control (frame-of-reference flag

Control_Implicit). Since BioXpress is concerned only with

expression information in the context of cancer and not

other diseases, the abstracts in this evaluation set were se-

lected if they contained some term likely to indicate cancer

(e.g. tumor, malignant, cancer, carcinoma etc.).

To select the microRNA abstracts, we first used the

PubMed query ‘microRNA[TIAB] OR miRNA[TIAB] OR

miR[TIAB]’, which returned >60 000 abstracts. We fur-

ther filtered and selected only those abstracts that men-

tion a disease as detected by PubTator. Next we select

only those abstracts, which contain certain expression

words/phrases such as ‘expression’, ‘level’ etc., which

reduces the number of abstracts to 28 067 abstracts. For

selecting GT abstracts, instead of the using a PubMed

query as with microRNAs, we identified the abstracts

mentioning any of the GTs using the PubTator gene data-

base. Then, as before, we selected a subset of abstracts

that contained the expression words/phrases and a disease

mention, which yielded 10 278 abstracts. Finally, we ran-

domly selected 200 abstracts from these two sets with an

equal number from each set.

Annotators marked the selected abstracts as relevant or

not-relevant based on whether they met the criteria for in-

clusion in the BioXpress database. Only 90 of the 200

abstracts were annotated as relevant. When an abstract

was annotated as relevant, the annotators also identified

Figure 8. DEXTER web interface’s search results for the query ‘egfr AND lung cancer’.
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the associated disease, differentially expressed gene/

microRNA and expression level.

Results

We ran DEXTER on the evaluation set and only considered

output appropriate for BioXpress (i.e. differential

expression comparing control and cancer samples). An in-

stance was considered to be a true positive (TP) only when

every individual component (expressed gene/microRNA, ex-

pression level and associated cancer) of DEXTER’s output

matched the corresponding components in the annotation.

Thus, an instance can be marked as false positive (FP) or

false negative (FN) even if just one of the components (e.g.

disease) of DEXTER’s output did not match the annotation.

Table 4 shows the TP, FN, FP and precision (P), recall (R)

and F-score (F) measures. The performance on the

microRNA- and GT-related abstracts were almost the same.

Second evaluation

Experimental setup

The first evaluation only considered cases where gene

expression was compared between cancer and normal sam-

ples. Therefore, we conducted a second evaluation in order

to test more general applications of our text-mining tool.

We randomly selected 100 abstracts (divided equally

among genes and microRNAs) as an evaluation set follow-

ing the same procedure for abstract selection used in the

first evaluation. This time the set of gene-related abstracts

was not limited to GT genes but considered any gene. As

before, the annotator marked all the expression informa-

tion: expressed gene/microRNA, expression level and asso-

ciated disease, which resulted in 169 annotated instances.

In addition, if the annotator believed it was explicit com-

parison of expression level between two different scenar-

ios, then the annotator also marked the two CEs.

Results

We ran DEXTER on the evaluation set and compared

the output with the annotations. Similar to in the first eval-

uation, an instance was considered to be TP only when ev-

ery component of DEXTER’s output, including the CEs

matched corresponding component in the annotation.

Table 5 shows the TP, FN, FP and P, R and F measures for

the second evaluation.

Error analysis

We conducted an error analysis with the goal of improving

our system. We noticed errors were due to mis-parsing,

errors in disease detection, presence of anaphora or lack of

patterns. An example of the last type is shown in Example

14. We were unable to capture this case as a Type A rela-

tion, because in this case the comparison spans two sepa-

rate clauses. Because our current set of patterns relies

entirely on parsing, it is not possible for the existing system

to capture comparisons (hence Type A relations) where the

two CEs appear in different clauses.

Example 14: Normal human colon cells express low levels

of LEF1 and high levels of miR26b; however, human co-

lon cancer cells have decreased miR26b expression and in-

creased LEF1 expression. [PMID: 24785257]

Another type of error involved cases missed due to in-

sufficient triggers. For example, consider the sentence

(Example 15), which appears in an abstract used for the

second evaluation. The implicit comparison in this sen-

tence was missed by DEXTER because it does not use

words like ‘after’ or ‘following’ as ES. Notice the compari-

son here is before and after an event, typically a treatment

course. This example requires adding new triggers for ES,

such as ‘after’, and ‘following’. Note that while the preci-

sion is roughly the same in both evaluations, the recall is

lower in the second evaluation. We believe this might be

due to the stricter guidelines adopted in the first evaluation

and more errors encountered due to a greater variety of

sentence structures in the second evaluation.

Example 15: Plasma concentrations of miR-208 in-

creased significantly (P < 0.0001) after isoproterenol-

induced myocardial injury and showed a similar time

course to the concentration of cTnI, a classic biomarker

of myocardial injury. [PMID: 19696117]

Another class of false negatives involved sentences

where we were unable to infer the CA/entity from context

(elsewhere in the abstract). These include cases where

either the CA/CE is not mentioned in the sentence (as in

Example 16a) or mentioned as anaphora and requires

anaphora/reference resolution (as in Example 16b).

For instance, in Example 16a, we failed to extract the Type

A relation, since the CEs (‘PNI tumors’,

‘non-PNI-tumors’) were mentioned in a previous sentence.

In Example 16b, we correctly extracted the Type A

Table 4. BioXpress-based evaluation results

True

positive

False

positive

False

negative

Precision Recall F-score

77 5 15 93.90 83.69 88.51

Table 5. Second evaluation results

True

positive

False

positive

False

negative

Precision Recall F-score

126 13 43 90.06 74.56 81.81
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relation from the sentence, but were unable to extract the

microRNAs (‘miR-192, miR-194, and miR-215’) being re-

ferred to in the CA argument (‘same microRNA’).

Example 16a: The most differently expressed

microRNA was miR-224. [PMID: 18459106]

Example 16b: The same microRNAs were detected

at high levels in normal colon tissue but were severely

reduced in many colon cancer samples. [PMID:

19074875]

Conclusion

In this paper, we have described DEXTER, a text-mining

tool for extraction of gene and microRNA expression in

disease samples. We have considered two types of senten-

ces indicative of such expression information with

(Type A) or without (Type B) an explicit comparison.

From comparative (Type A) sentences we also extract the

scenarios in which the expression of the gene/microRNA

is contrasted (e.g. disease vs. control). This is particularly

useful in capturing the classes of differential expression

analyses relevant to the processes of neoplastic transfor-

mation and progression such as expression in cancer vs.

respective normal tissue, high grade vs. low grade samples,

metastasis vs. primary cancer etc. Our approach is based

on RE, which relies on syntactic dependencies and general

linguistic principles to handle different syntactic variations

in text.

We have conducted two different evaluations to measure

the efficacy of our text-mining tool. The first evaluation fo-

cused on differential gene/microRNA expression in cancer

vs. normal samples; the second was more general, covering

any description of differential gene/microRNA expression in

the context of disease. The system achieved average F-scores

of 88.51 and 81.81% for the first and second evaluation, re-

spectively. We performed error analysis and the system will

be improved to avoid such errors and other errors that we

may find based on feedback from users. The tool currently

works only on abstracts and not on full length articles. While

the RE module might be applicable to full-text articles, since

sometimes we might go beyond the current sentence to detect

the disease, some changes might be required to extend this

disease inference for full text. In the future, we plan to extend

DEXTER to mine from full length articles.

DEXTER’s text-mined results can be used to streamline

and accelerate curation of expression databases such as

miR2Disease, dbDEMC. DEXTER’s results have already

being integrated in BioXpress and in the future DEXTER’s

extraction will be included directly in the literature-based

portion of BioXpress as and when new sets are processed.

These results can be obtained from the BioXpress download

page. DEXTER’s text-mined will be tagged with a verified

flag when a BioXpress curator manually verifies the output.

To show the scalability of DEXTER and the amount of

information that can be extracted by DEXTER, we have

also considered three use cases and processed all Medline

abstracts for three use cases (lung cancer, 279 GTs genes

and all microRNAs) and developed different expression

databases containing direct evidence of gene expression

differences between tumor and adjacent non-tumor tissues.

In addition to access via BioXpress, DEXTER’s results (in-

cluding these three use cases) are available at link men-

tioned below (http://biotm.cis.udel.edu/DEXTER). We

anticipate that DEXTER results will also be of interest to

researchers interested in a variety of questions relating to

gene and microRNA expression in the context of disease.

Supplementary data

Supplementary data are available at Database Online.
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