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Background: Lung cancer is the leading cause of cancer-related death worldwide, for which smoking is considered as the primary risk 
factor. The present study was conducted to determine whether genetic alterations induced by radon exposure are associated with the 
susceptible risk of lung cancer in never smokers.
Methods: To accurately identify mutations within individual tumors, next generation sequencing was conduct for 19 pairs of lung cancer 
tissue. The associations of germline and somatic variations with radon exposure were visualized using OncoPrint and heatmap graphs. 
Bioinformatic analysis was performed using various tools.
Results: Alterations in several genes were implicated in lung cancer resulting from exposure to radon indoors, namely those in epidermal 
growth factor receptor (EGFR), tumor protein p53 (TP53), NK2 homeobox 1 (NKX2.1), phosphatase and tensin homolog (PTEN), 
chromodomain helicase DNA binding protein 7 (CHD7), discoidin domain receptor tyrosine kinase 2 (DDR2), lysine methyltransferase 
2C (MLL3), chromodomain helicase DNA binding protein 5 (CHD5), FAT atypical cadherin 1 (FAT1), and dual specificity phosphatase 
27 (putative) (DUSP27).
Conclusions: While these genes might regulate the carcinogenic pathways of radioactivity, further analysis is needed to determine whether 
the genes are indeed completely responsible for causing lung cancer in never smokers exposed to residential radon.
(J Cancer Prev 2017;22:234-240)
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INTRODUCTION

Smoking has long been identified as a significant risk factor for 

lung cancers, and the global incidence and mortality rates of lung 

cancer continue to be correlated with tobacco smoking.1 

Meanwhile, however, approximately 25% of all lung cancer 

patients are lifelong never smokers and lung cancer in never 

smokers (LCINS) ranks as the seventh most common cause of 

cancer mortality worldwide.2 Affecting lung carcinogenesis in 

never smokers, environmental tobacco smoke at home, radon, 

outdoor air pollution, cooking oil fumes, coal fumes, and asbestos 

have been deemed to play important roles therein.1,3-6 

Recently, researchers outlined changes over the last 20 years in 

genes associated with lung cancer susceptibility.7 Among 

smokers, previous studies have revealed associations between 

the genes GSTM1, GSTT1, and GSTP1 and higher ORs for lung 

cancer.1,8,9 However, among never smokers a recent investigation 

found no significant association between single or combined 

genotypes of GSTM1, GSTT1, or GSTP1 and lung cancer risk.10 

Additionally, TP53 mutations have also been highlighted more 

frequently in lung carcinomas arising in smokers than in never 

smokers.11-13 Moreover, other recent articles found TP53 mutations 
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and methylation of the Ras association domain family 1A 

(RASSF1A) promoter to be more frequent in smokers with 

squamous cell lung cancer than in never smokers with adeno-

carcinoma.13,14

Radon is the second leading cause of LCINS.15,16 Feasibly, 

biologic mechanisms by which radon emissions might elevate the 

risk for LCINS include genetic alterations, upregulation or 

downregulation of cytokines, and production of proteins related 

to the cell cycle.16 Among these, genetic alterations of pathways 

involved in detoxification of environmental carcinogens have 

been shown to heighten lung cancer risk.15 Recent articles have 

demonstrated an increased frequency of cytogenetic damage in 

people with DNA-repair gene variations related with chronic 

exposure to radon and have indicated that ADPRT and NBS1 can 

be utilized as molecular genetic markers of increased radiosen-

sitivity to long-term exposure to high concentrations of radon.16,17 

Another study suggested that radon exposure in never smokers 

seems to be a risk factor for lung cancer and that LCINS subjects 

diagnosed at a younger age might have been exposed to higher 

indoor radon concentrations, indicating an accumulative effect 

for radon levels on lung cancer features.18 

While several studies have outlined the role of many candidate 

genetic polymorphisms in LCINS and their interactions with 

smoking status, the genetic variations important in susceptibility 

to residential radon exposure among never smokers are still 

unclear.15,16 Accordingly, this study was designed to identify 

genetic alterations induced by radon exposure and their potential 

associations with the susceptible risk for LCINS.

MATERIALS AND METHODS
1. Ethics statement

We examined tumor tissue, normal tissue, and blood samples 

from 19 adults (1 male and 18 females) aged 41 to 80 years with 

lung cancer from 2015 to 2016. Peripheral blood from all patients 

was obtained from the Tumor Tissue Banking of Ajou University 

Medical Center, inclusion in which all participants provided 

written informed consent. All sample’s histological types were 

adenocarcinoma. This study was approved by the Institutional 

Review Board of the Ajou University Medical Center according to 

the Helsinki Declaration (AJIRB-BMR-KSP-15-409). 

2. Targeted next generation sequencing 

Sufficient and good quality DNA from peripheral blood, 

normal tissue, and tumor tissues were collected from the 19 

LCINS patients. DNA was extracted from peripheral blood 

leukocytes and the tissues using standard protocols. To extract 

DNA, the MaxwellⓇ 16 Tissue DNA Purification Kit (Promega, 

Madison, WI, USA) was used for tissue samples and the MaxwellⓇ 

16 LEV Blood DNA Kit (Promega) was used for blood samples. 

With 1 g of input gDNA, we applied the Agilent SureSelect Target 

Enrichment protocol for Illumina paired-end sequencing (ver. 

B.3, June 2, 2015); in this experiment, the SureSelect Human All 

Exon V5 probe was used to generate standard exome capture 

libraries. PicoGreen and agarose gel electrophoresis was used to 

evaluate the quantity and quality of DNA samples. Diluted in EB 

buffer, 1 g of DNA was sheared to 150 to 200 bp of target peak 

size using the Covaris LE220 focused-ultrasonicator (Covaris, 

Woburnm, MA, USA), according to the manufacturer’s 

recommendations. From the fragmented DNA, an ‘A’ was ligated 

to the 3’ end, and then Agilent adapters were ligated to the 

fragments. After the ligation, the adapter ligated library went 

through PCR amplification. For exome capture, 5 L of the 

SureSelect all exon capture library, hybridization buffers, 

blocking mixes, and RNase block were mixed with 250 ng of DNA 

library, according to the standard Agilent SureSelect Target 

Enrichment protocol. Then, by using the HiSeqTM 2000 platform 

(Illumina, San Diego, CA, USA), captured libraries were 

sequenced with 101 base pair reads.

3. Sequence data analysis

Sequence data were mapped to the human genome, with the 

reference sequence UCSC assembly hg19 (NCBI build 37.1), using 

BWA aligner (ver. 0.5.9rc1). The output Sam files were converted 

to Bam files and were sorted with SAMtools (ver. 0.1.18). PCR 

duplicate reads were removed using Picard tools (ver. 1.5.9) 

before base substitution detection. Based on the BAM file 

previously generated, variant calling was conducted by SAMtools, 

SAMtools mpileup, bcftools view, and vcfutils.pl. From vcf4 

format files, the varFilter was applied with the maximum depth 

option ‘−D’ set to 1,000: in this step, single nucleotide 

polymorphism (SNPs) and short indel candidates are detected at 

the nucleotide level. Variants were annotated by ANNOVAR (ver. 

November 2011) filtering with dbSNP version 135 and SNPs from 

the 1000 genome project. (Supplementary Table S1 and S2) 

Somatic variants were identified by VarScan (ver. 2.3.7). 

4. Measurement of indoor radon levels 

Between October 28, 2015 and May 30, 2016, indoor radon 

levels were measured at two sites in each of the study subjects’ 

households. Alpha-track detectors (Raduet Model RSV-8; Radosys 

Ltd., Budapest, Hungary) were used as a passive radon measuring 
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Figure 1. Distribution of germline variants in exon regions. SNV, 
single-nucleotide variant.

Table 1. Characteristics of the study populations (n=19)

Variable Value

Age (yr) 64.31 ± 11.18
Sex (male/female) 1/18
Radon dose (Bq·m-3) 61.47 ± 43.25

Maximum level 163.6
Minimum level 22.75

Values are presented as Mean ± SD or number only.

device. The average concentration of radon in the indoor air was 

calculated from two points within the household. The measu-

rement points were selected from the living room and a bedroom, 

spaces where residents of a household primarily spend most of 

their time. The measuring devices were positioned away from 

household electrical appliances, windows, and sealed drawers. 

The measurement period was 3 months.

5. Statistical analysis

Analysis was performed for patient characteristics between 

mutation positive and negative patient groups, and the 

percentage of mutation carriers in tumor tissue was compared 

with that of normal control tissue. VCF files from the SAMtools 

variant calling pipeline were merged to one vcf file, which was 

sorted by allele frequencies in the 1000 Genomes Project, and 

then, we filtered out variants with values of more than 0.5 to 

exclude effects from common SNPs.

RESULTS 
1. Study population 

Fifty-seven tissue and blood sample pairs from 19 individual 

patients were submitted for sequencing from May 2016 to July 

2016. There were a total of 18 females and 1 male (Table 1). All 

tumors were diagnosed as non-small cell lung cancer; the vast 

majority were adenocarcinoma or poorly differentiated carcinoma.

2. Germline mutations 

The tumor tissue, normal tissue, and blood sample pairs were 

successfully sequenced. Applying SAMtools, we identified 3,120 

single-nucleotide variants (SNVs) in total DNA regions (data not 

shown) and 760 variants in exon regions (Fig. 1). We then plotted 

the distribution of minor allele frequencies across all identified 

variants. The minor allele frequencies demonstrated a clear 

bi-modal distribution, peaking at 0.5 and 1, a distribution 

expected for germline variants. Then, we selected 10 patients 

with common variants in exon regions, from which 49 variants in 

37 genes were identified: CHD5, RPS6KA1, DDR2, and PIK3C2B 

exhibited nonsynonymous SNVs, while FAT4 and FAT1 showed 

both nonsynonymous and synonymous SNVs (Fig. 2). 

3. Somatic mutations

In the 10 sample pairs with common variants, we discovered 

several genes with a median of two variants (range of 0 to 4) per 

sample. We also identified 68 somatic mutations in 38 genes, 

including unreported variants for lung cancer DNA. Six genes 

(EGFR, TP53, NKX2.1, PTEN, CHD7, and PRB1) were mutated in at 

least two independent lung cancer patients; variants were most 

commonly noted in EGFR (37.0%), TP53 (21.0%), and PTEN 

(16.0%) (Fig. 3). In the 10 pairs, we analyzed genetic variations for 

both germline and somatic mutations, and 37 drive genes 

exhibited at least one or more variations (data not shown). 

DISCUSSION

Although the genes responsible for radon-induced LCINS are 

unclear, screening for germline and somatic mutations in known 

tumor suppressor genes might provide more insights on 

predicting susceptibility to lung cancer. Herein, a customized 

panel was designed to capture all exons of 37 cancer susceptive 

genes related to LCINS. Using next-generation sequencing, we 

identified 68 variants in 10 of 19 LCINS patients. Remarkably, 

several germline mutations matched between sample pairs from 

the 10 LCINS patients, including mutations in CHD5, RPS6KA1, 
EGFR, MLL3, and RPTOR and deletions in SMARCA2, DACH1, and 

MAP3K9. 

Studies suggest that impaired DNA repair capacity for 

double-strand breaks (DSBs) may confer inherent susceptibility 

to lung cancer in smokers. DSBs encompass the most noxious 

forms of DNA damage and, if not appropriately repaired, can 

provoke cell death or conversion to malignancy.19 Capable of 
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Figure 2. Germline alterations in 10 sample pairs.

generating DSBs in DNA, alpha particles radiated by radon and 

radon daughters can directly invade genomic DNA.20,21 Moreover, 

reactive oxygen species in the lungs arising from continuous 

radon exposure may bring about oxidative stress, resulting in 

pulmonary inflammation, tissue damage, and ultimately to 

chronic lung diseases, including chronic obstructive pulmonary 

disease, pulmonary fibrosis, and lung cancer.22-27 Genetic poly-

morphisms in genes important to DSBs repair and/or detoxi-

fication of environmental carcinogens, such as radon, can regulate 

lung cancer risk. Animal models have demonstrated that several 

gene polymorphisms may work together to increase an indivi-

dual’s risk for lung cancer.15 Ruano-Ravina et al.15 showed that 

deletions in GSTM1 and GSTT1 elevate the risk of lung cancer in 

subjects exposed to radon and suggested that these genes might 
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Figure 3. Somatic alterations in 19 patients.
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control the carcinogenic pathway associated with alpha radiation. 

However, we did not find these genetic features in Korean LCINS 

exposed to high radon levels. Meanwhile, among former uranium 

miners, an association between genetic variations in the haplo-

type block of SIRT1 and the risk for squamous cell carcinoma was 

described.19 Also, 16 genes involved in non-homologous end 

joining DNA repair, such as PRKDC, as well as histone acetylation 

and deacetylation, were identified.19 Again, however, we were 

unable to identify mutations in genes involved in DNA repair 

among the LCINS patients in the present study; this is likely 

because we included never smoking patients with non-small cell 

lung cancer exposed to high levels of indoor radon at their 

residence. 

Among the cytokines and chemokines produced by tenacious 

pulmonary inflammation in response to constant radon expo-

sure, interleukin-6 (IL-6) has been found to play an essential role 

in enhancing cancer development in in vitro and in vivo models 

of lung carcinogenesis. Leng et al.28 revealed an association 

between four IL-6 promoter variants that influence binding of 

transcription factors and lung squamous cell carcinoma in former 

uranium miners exposed to high levels of radon. However, no 

variations in genes involved in cytokines and chemokines were 

discovered in our study. 

Recently, carcinogenic exposure has been shown to play a part 

in the mutation of TP53 (p53) in human cancers among workers 

exposed to occupational carcinogens.29 Similar to previous 

studies, we noted somatic alterations in TP53. We presume that 

our findings may provide insight into how genetic variants within 

TP53 can influence the function of tumor suppressors, such as 

p53. 

In clinical practice, application of predictive biomarkers has 

enabled the selection of lung cancer patients for treatment with 

tyrosine-kinase inhibitors. For appropriate tyrosine kinase inhibitor 

(TKI) treatment, mutations in EGFR must be determined.30-33 

Interestingly, we also highlighted variants in EGFR as common 

among LCINS patients. Further studies seeking to verify this 

association in LCINS are warranted.

A few limitations should be considered when interpreting the 

results of this study. First despite this study should be defined as 

an exploratory study, the sample size is extremely small. Second, 

genes were not found to differ according accumulated levels of 

indoor radon exposure. Residents in radon-prone areas are 

actually exposed to much larger amounts of radon than residents 

in areas with lower radon levels, if one were to consider 

accumulated levels of indoor and/or outdoor radon. As well, 

patients with lung cancer who resided in radon-prone areas might 

have an advantage in the evaluation of dose-response relation-

ships between indoor radon levels and lung cancer risk, because 

the radon exposure range is wider than that in areas with lower 

radon levels.34 Third, we evaluated capture-based targeted DNA 

sequencing as a new approach for testing a broad spectrum of 

point mutations (SNVs) and short insertion-deletions (indels) 

possibly related to LCINS. However, there were no references 

with which to compare the noted genetic alterations induced by 

radon exposure and the risk of lung cancer in Korean never 

smokers. 

Further studies are warranted to examine the associations 

between residential radon concentrations and LCINS.
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