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A series of antibacterial and antifungal amino acid-derived compounds and their cobalt(II), copper(II), nickel(II), and zinc(II)
metal complexes have been synthesized and characterized by their elemental analyses, molar conductances, magnetic moments,
and IR, and electronic spectral measurements. Ligands (L1)–(L5) were derived by condensation of β-diketones with glycine, pheny-
lalanine, valine, and histidine and act as bidentate towards metal ions (cobalt, copper, nickel, and zinc) via the azomethine-N
and deprotonated-O of the respective amino acid. The stoichiometric reaction between the metal(II) ion and synthesized lig-
ands in molar ratio of M : L (1 : 1) resulted in the formation of the metal complexes of type [M(L)(H2O)4]Cl (where M =
Co(II), Cu(II), and Zn(II)) and of M : L (1 : 2) of type [M(L)2(H2O)2] (where M = Co(II), Cu(II), Ni(II), and Zn(II)). The
magnetic moment data suggested for the complexes to have an octahedral geometry around the central metal atom. The elec-
tronic spectral data also supported the same octahedral geometry of the complexes. Elemental analyses and NMR spectral data
of the ligands and their metal(II) complexes agree with their proposed structures. The synthesized ligands, along with their
metal(II) complexes, were screened for their in vitro antibacterial activity against four Gram-negative (Escherichia coli, Shigella
flexeneri, Pseudomonas aeruginosa, and Salmonella typhi) and two Gram-positive (Bacillus subtilis and Staphylococcus aureus) bac-
terial strains and for in vitro antifungal activity against Trichophyton longifusus, Candida albicans, Aspergillus flavus, Microsporum
canis, Fusarium solani, and Candida glaberata. The results of these studies show the metal(II) complexes to be more antibacte-
rial/antifungal against one or more species as compared to the uncomplexed ligands. The brine shrimp bioassay was also carried
out to study their in vitro cytotoxic properties. Five compounds, (3), (7), (10), (11), and (22), displayed potent cytotoxic ac-
tivity as LD50 = 8.974 × 10−4, 7.022 × 10−4, 8.839 × 10−4, 7.133 × 10−4, and 9.725 × 10−4 M/mL, respectively, against Artemia
salina.

Copyright © 2006 Zahid H. Chohan et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

INTRODUCTION

We have already drawn attention [1–5] to the strong rela-
tionship between metals or their complexes, and antibac-
terial [6–12], antitumour [13–15], and anticancer [16, 17]
activities. A number of in vivo studies have indicated [18–
20] that biologically active compounds become more bacte-
riostatic and carcinostatic upon chelation. Such interaction
of transition-metal ions with amino acids and peptides is
of immense biological importance [21–23]. It has been re-
ported [24–28] that metal complexes of amino acid Schiff
bases with transition metals possess anticarcinogenic activ-

ity. Various tumors tend to have poor blood supplies, and
therefore amino acids have been effectively used to direct ni-
trogen mustards into the cancer cells. For example, pheny-
lalanine mustard is used in controlling malignant myeloma
[29] and Burkett’s lymphoma [30], and similarly sarcolysine
[31] is used to treat wide range of tumors. Indeed, certain
tumors and cancer cells are unable to produce all the amino
acids synthesized by the normal cells. Therefore, these cells
require an external supply of such essential amino acids to
pass on to the cancer cells by the blood stream. In the recent
past, a number of studies have highlighted the use of acety-
lacetone in various significant applications [32–37]. In the
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Figure 1: Proposed structure of the ligands (L1)–(L5).

present studies, ligands (L1)–(L5) (Figure 1) were obtained
by the condensation reaction between amino acids (glycine,
phenylalanine, alanine, valine, or histidine) and acetylace-
tone with this hope that it may provide us valuable theo-
retical information for exploring metal-based bacteriostatic
and/or carcinostatic pharmaceuticals with high efficacy and
low toxicity. In this effort, we have also introduced an azome-
thine (−C=N) linkage with the concern that it may permit a
notable variety in the remarkable chemistry and behavior of
such compounds. The synthesized amino acid-derived com-
pounds (L1)–(L5) have been exposed to act as bidentate to-
wards divalent metal atoms solely through the azomethine-N
and carboxylato groups forming a stable 5-membered chelate
ring system. The metal(II) complexes, (1)–(40) of the types
[M(L)(H2O)4] and [M(L)2(H2O)2]Cl (where M = Co(II),
Cu(II), Ni(II), and Zn(II) and L = amino acid-derived lig-
ands (L1)–(L5)) were formed by a stoichiometric ratio of M :
L as (1 : 2) and (1 : 1), respectively. These two different sto-
ichiometric ratios of the ligand incorporated with the metal
ion were used in order to study the effect of the presence of
one or two ligands, respectively, on the biological activity. All
these compounds have been characterized by their IR, NMR,
molar conductance, magnetic moment, and elemental anal-
yses. The IR of the ligands and their corresponding metal(II)
complexes are in agreement with the proposed structures.
The magnetic moment and electronic spectral data suggest
for all the complexes to have an octahedral geometry. Ele-
mental analyses and NMR spectral data of the ligands and
their metal(II) complexes also agree with the structures as
anticipated. All these ligands along with their metal(II) com-
plexes were screened for their in vitro antibacterial activity
against four Gram-negative (E coli, S flexenari, P aeruginosa,
and S typhi) and two Gram-positive (B subtilis and S aureus)
bacterial strains and for in vitro antifungal activity against
T longifusus, C albicans, A flavus, M canis, F solani, and C
glaberata. These compounds have shown varied antibacterial
and antifungal activities against one or more bacterial/fungal
strains and this activity enhanced on coordination/chelation.
The reported compounds are not only good candidates as
antibacterial and antifungal agents, but also are a promis-
ing addition of new class of compounds as the metal-based
drugs.

EXPERIMENTAL

Material and methods

Solvents used were analytical grades; all metal(II) were used
as chloride salts. IR spectra were recorded on the Philips
Analytical PU 9800 FTIR spectrophotometer. NMR spec-
tra were recorded on Perkin-Elmer 283B spectrometer. UV-
visible spectra were obtained in DMF on a Hitachi U-2000
double-beam spectrophotometer. C, H, and N analyses, con-
ductance and magnetic measurements were carried out on
solid compounds using the respective instruments. Melting
points were recorded on a Gallenkamp apparatus and are
not corrected. The complexes were analyzed for their metal
contents by EDTA titration [38]. Antibacterial and antifun-
gal screening was done at HEJ Research Institute of Chem-
istry, International Center for Chemical Sciences, University
of Karachi, Pakistan.

Preparation of Schiff-bases (L1)–(L5)

Acetylacetone (20 mmol) in ethanol (10 mL) was added to
a stirred solution of the amino acid (20 mmol) in water
(30 mL). The mixture was refluxed for 4–6 hours during
which the color of the solution turned to yellow-orange. The
completion of reaction was monitored through TLC. After
completion of the reaction, it was cooled to afford a solid
product. The solid residue was filtered, washed with ethanol,
then with ether, and dried. Crystallization from a mixture of
ethanol-propanol (60 : 40) afforded the desired ligands. The
same method was applied for the preparation of all other lig-
ands by using the corresponding amino acids and/or acety-
lacetone, working in the same conditions with their respec-
tive molar ratio.

{[(3-Hydroxy-1-methylbutyl)-2-en-1-ylidene]
amino}acetic acid (L1)

Yield 52%; mp 294◦C; IR (KBr, cm−1): 3444 (OH), 3015
(C=C), 1700 (COOH), 1635 (azomethine, HC=N); 1H
NMR (DMSO-d6, δ, ppm): 1.85 (s, 6H, CH3), 2.83 (t, 2H,
CH2), 5.18 (t, 1H, CH), 6.94 (s, 1H, azomethine), 10.27 (s,
1H, OH), 11.29 (s, 1H, COOH). Anal. Calcd. for C7H11NO3

(157.0): C, 53.50; H, 7.01; N, 8.92. Found: C, 53.32; H, 7.41;
N, 8.86%. 1H NMR of Zn(II) complex (DMSO-d6, δ, ppm):
2.08 (s, 6H, CH3), 2.98 (t, 2H, CH2), 5.37 (t, 1H, CH), 7.48
(s, 1H, azomethine), 10.58 (s, 1H, OH), 11.36 (s, 4H, OH2).

{[2-(3-Hydroxy-1-methylbutyl)-2-en-1-ylidene]amino}-
3-phenylpropanoic acid (L2)

Yield 56%; mp 242◦C; IR (KBr, cm−1): 3444 (OH), 3049
(C=C), 1703 (COOH), 1635 (azomethine, C=N); 1H NMR
(DMSO-d6, δ, ppm): 1H NMR (DMSO-d6, δ, ppm): 1.75
(s, 6H, CH3), 2.53 (t, 2H, CH2), 3.18 (t, 1H, CH2), 3.73
(t, 2H, CH2), 6.67 (s, 1H, azomethine), 7.16–7.79 (m, 5H,
Ph), 10.27 (s, 1H, OH), 11.29 (s, 1H, COOH). Anal. Calcd.
for C14H19NO2 (233.0): C, 68.02; H, 6.88; N, 5.67. Found:
C, 68.33; H, 7.15; N, 5.83%. 1H NMR of Zn(II) complex
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(DMSO-d6, δ, ppm): 1.97 (s, 6H, CH3), 2.86 (t, 2H, CH2),
3.41 (t, 1H, CH2), 3.96 (t, 2H, CH2), 7.51 (s, 1H, azome-
thine), 7.36–7.93 (m, 5H, Ph), 10.58 (s, 1H, OH), 11.36 (s,
4H, OH2).

{[2-(3-Hydroxy-1-methylbutyl)-2-en-1-ylidene]amino}-
3-methylbutanoic acid (L3)

Yield 54%; mp 210◦C; IR (KBr, cm−1): 3444 (OH), 3049
(C=C), 1708 (COOH), 1635 (azomethine, C=N); 1H NMR
(DMSO-d6, δ, ppm): 1.88 (s, 12H, CH3), 3.16 (t, 1H, CH),
3.73 (t, 1H, CH), 5.52 (t, 1H, CH), 10.27 (s, 1H, OH),
11.29 (s, 1H, COOH). Anal. Calcd. for C10H17NO3 (199.0):
C, 60.30; H, 8.54; N, 7.04. Found: C, 60.64; H, 8.37; N,
7.46%. 1H NMR of Zn(II) complex (DMSO-d6, δ, ppm):
2.03 (s, 12H, CH3), 3.37 (t, 1H, CH), 3.96 (t, 1H, CH), 5.87
(t, 1H, CH), 10.56 (s, 1H, OH), 11.36 (s, 4H, OH2).

{[2-(3-Hydroxy-1-methylbutyl)-2-en-1-ylidene]amino}-
3-(imidazol-4-yl) propanoic acid (L4)

Yield 51%; mp 194◦C; IR (KBr, cm−1): 3444 (OH), 3045
(C=C), 1705 (COOH), 1635 (azomethine, C=N); 1H NMR
(DMSO-d6, δ, ppm): 1H NMR (DMSO-d6, δ, ppm): 1.75
(s, 6H, CH3), 3.36 (t, 1H, CH), 3.78 (s, 1H, CH), 7.96 (s,
1H, imidazol), 8.26 (d, 1H, imidazol), 10.27 (s, 1H, OH),
10.84 (s, 1H, NH), 11.29 (s, 1H, COOH). Anal. Calcd. for
C10H13N3O3 (223.0): C, 55.23; H, 7.11; N, 17.53. Found:
C, 55.53; H, 7.38; N, 17.26%; 1H NMR of Zn(II) complex
(DMSO-d6, δ, ppm): 2.07 (s, 6H, CH3), 3.58 (t, 1H, CH),
3.94 (s, 1H, CH), 8.25 (s, 1H, imidazol), 8.47 (dd, 1H, imi-
dazol), 10.58 (s, 1H, OH), 11.13 (s, 1H, NH), 11.36 (s, 4H,
OH2).

{[2-(3-Hydroxy-1-methylbutyl)-2-en-1-
ylidene]amino}propanoic acid (L5)

Yield 53%; mp 160◦C; IR (KBr, cm−1): 3444 (OH), 3018
(C=C), 1700 (COOH), 1635 (azomethine, C=N); 1H NMR
(DMSO-d6, δ, ppm): 1.85 (s, 9H, CH3), 5.18 (t, 1H, CH),
5.34 (t, 1H, CH), 10.27 (s, 1H, OH), 11.29 (s, 1H, COOH).
Anal. Calcd. for C8H13NO3 (171.0): C, 47.76; H, 7.46; N,
20.90. Found: C, 47.57; H, 7.28; N, 20.77%. 1H NMR of
Zn(II) complex (DMSO-d6, δ, ppm): 2.12 (s, 9H, CH3), 5.41
(t, 1H, CH), 5.63 (t, 1H, CH), 10.58 (s, 1H, OH), 11.36 (s,
4H, OH2).

Preparation of metal(II) complexes

For the preparation of metal(II) complexes, a solution
(30 mL) of the corresponding ligand in hot methanol was
added to a stirred solution of metal(II) chloride in ethanol
(25 mL) having a required molar ratio of M : L (1 : 1 and
1 : 2). The mixture was refluxed for 3 hours and then cooled
to room temperature which solidified on cooling. The solid
thus obtained was filtered, washed with methanol/ethanol
and ether, and finally dried in air to afford the desired prod-
uct. Crystallization from aqueous/ethanol (40 : 60) gave the
expected metal complex.

BIOLOGICAL ACTIVITY

Antibacterial bioassay (in vitro)

All the synthesized ligands (L1)–(L5) and their correspond-
ing metal(II) complexes (1)–(20) were screened in vitro for
their antibacterial activity against four Gram-negative (E coli,
S flexenari, P aeruginosa, and S typhi) and two Gram-positive
(B subtilis and S aureus) bacterial strains using agar-well dif-
fusion method [39]. Two to eight hours old bacterial in-
oculums containing approximately 104–106 colony forming
units (CFU)/mL were used in these assays. The wells were
dug in the media with the help of a sterile metallic borer
with centers at least 24 mm. Recommended concentration
(100 μl) of the test sample (1 mg/mL in DMSO) was intro-
duced in the respective wells. Other wells supplemented with
DMSO and reference antibacterial drug, imipenum served as
negative and positive controls, respectively. The plates were
incubated immediately at 37◦C for 20 hours. Activity was de-
termined by measuring the diameter of zones showing com-
plete inhibition (mm). Growth inhibition was compared [40]
with the standard drug. In order to clarify any participating
role of DMSO in the biological screening, separate studies
were carried out with the solutions alone of DMSO and they
showed no activity against any bacterial strains.

Antifungal activity (in vitro)

Antifungal activities of all compounds were studied against
six fungal cultures, T longifusus, C albicans, A flavus, M canis,
F solani, and C glaberata. Sabouraud dextrose agar (Oxoid,
Hampshire, England) was seeded with 105 (cfu) mL−1 fungal
spore suspensions and was transferred to petri plates. Discs
soaked in 20 mL (10 μg/mL in DMSO) of all compounds
were placed at different positions on the agar surface. The
plates were incubated at 32◦C for seven days. The results were
recorded as zones of inhibition in mm and were compared
with standard drugs Miconazole and Amphotericin B.

Minimum inhibitory concentration (MIC)

Compounds containing antibacterial activity over 80% were
selected for minimum inhibitory concentration (MIC) stud-
ies (Table 5). The minimum inhibitory concentration was
determined using the disc diffusion technique [39] by pre-
paring discs containing 10, 25, 50, and 100 μg/mL of the com-
pounds and applying the protocol.

Cytotoxicity (in vitro)

Brine shrimp (Artemia salina leach) eggs were hatched in a
shallow rectangular plastic dish (22×32 cm), filled with arti-
ficial seawater, which was prepared [24] with commercial salt
mixture and double distilled water. An unequal partition was
made in the plastic dish with the help of a perforated device.
Approximately 50 mg of eggs were sprinkled into the large
compartment, which was darkened while the matter com-
partment was opened to ordinary light. After two days, nau-
plii were collected by a pipette from the lighted side. A sample
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of the test compound was prepared by dissolving 20 mg of
each compound in 2 mL of DMF. From this stock solutions,
500, 50, and 5 μg/mL were transferred to 9 vials (three for
each dilution were used for each test sample and LD50 is the
mean of three values) and one vial was kept as control hav-
ing 2 mL of DMF only. The solvent was allowed to evaporate
overnight. After two days, when shrimp larvae were ready,
1 mL of seawater and 10 shrimps were added to each vial (30
shrimps/dilution) and the volume was adjusted with seawa-
ter to 5 mL per vial. After 24 hours, the numbers of survivors
were counted. Data were analyzed by Finney computer pro-
gram to determine the LD50 values [41].

RESULT AND DISCUSSION

Physicochemical properties of obtained compounds

The ligands (L1)–(L5) were prepared by refluxing an appro-
priate amount of respective amino acid with the correspond-
ing acetylacetone in ethanol. The structures of the synthe-
sized ligands were established with the help of their IR, NMR,
and microanalytical data. All metal(II) complexes (1)–(40)
of these ligands were prepared by using the respective metal
salts as chloride with the corresponding ligands in two dif-
ferent molar ratios of metal : ligand as 1 : 2 and 1 : 1.
All these complexes are intensively colored air and moisture
stable amorphous solids which decompose without melting.
They are insoluble in common organic solvents and only sol-
uble in water, DMF, and DMSO. Molar conductance values
of the soluble complexes in DMF (10−3 M solution at 25◦C)
indicated that complexes having molar ratio of metal : ligand
as 1 : 2 have lower values (26–35 Ohm−1 cm−2 mol−1) in-
dicating that they are all nonelectrolytic in nature. How-
ever, the complexes having molar ratio of metal : ligand as
1 : 1 showed higher values (122–128 Ohm−1 cm−2 mol−1)
indicating them as electrolytic [42]. The elemental analy-
ses data (Table 1) agree well with the proposed formulae
for the ligands and also confirmed the [M(L)2(OH2)2]
(Figure 2(a)) and [M(L)(OH2)4]Cl (Figure 2(b)) composi-
tion of the metal(II) chelates. Efforts to grow good crystals
of the ligands and their metal chelates for X-ray diffraction
studies were unsuccessful due to their poor solubility in com-
mon organic solvents.

IR spectra

Diketones and related compounds such as acetylacetone
in the present studies are capable of exhibiting keto-enol
tautomerism and react with metal cations to form metal
complexes. The selected IR spectra of the ligands and its
metal(II) complexes along with their tentative assignments
are reported in “experimental” and in Table 2, respectively.
The IR spectra of all the ligands show [43] the absence of
bands at 3245 and 1745 cm−1 due to ν(HN2) group of amino
acids and ν(C=O) of acetylacetone. Instead, a new promi-
nent band at 1635 cm−1 due to azomethine ν(C=N) linkage
appeared in all the ligands indicating [44] that condensation
between ketone moiety of acetylacetone and that of amino

group of amino acid has taken place resulting into the for-
mation of the desired ligands (L1)–(L5). Also, the presence of
bands at 3015–3025 and 3444–3450 cm−1 due to ν(C=C) and
ν(OH) in the ligands clearly gave an evidence [43] of estab-
lishing keto-enol tautomeric system in which these ligands
behave as enol. Moreover, on comparison of the IR spectra
of the ligands with their metal(II) complexes showed [45] a
major shift to lower wave numbers by 15–20 cm−1 in azome-
thine ν(C=N) at 1610–1620 cm−1 suggesting involvement of
the azomethine-N with the metal(II) ion. Also, disappear-
ance of the stretching frequency at 1700–1708 cm−1 assigned
to ν(COOH) and appearance of new νas and νs modes of
the (−CO2) group at 1590 and 1385 cm−1, respectively, the
Δν value (205 cm−1) is consistent with carboxylate coordina-
tion with the metal atoms. These overall data suggest that the
azomethine-N and carboxylate-O groups are involved in co-
ordination with the metal(II) ion in complexes (1)–(40). In
the low-frequency region, spectra of the metal(II) complexes
(Table 1) exhibited [46] new bands which are not present in
the spectra of the ligands. These bands are located at 525 and
470 cm−1, which are attributed to ν(M−O) and ν(M−N).
The coordinated water in all the metal(II) complexes presents
different peaks at 990 cm−1 (rocking) and 760 cm−1 (wag-
ging), whereas none of these vibrations appear in the spectra
of uncoordinated ligands.

NMR spectra

The 1H NMR spectral data are reported along with the pos-
sible assignments in “experimental.” All the protons were
found as to be in their expected region [47]. The conclu-
sions drawn from these studies lend further support to the
mode of bonding discussed in their IR spectra. In the spec-
tra of diamagnetic Zn(II) complexes, coordination of the lig-
ands via azomethine-N and carboxylate-O was established by
downfield shifting of these signals in the Zn(II) complexes
due to the increased conjugation and coordination [48]. The
number of protons calculated from the integration curves
and those obtained from the values of the expected CHN
analyses agree with each other. It was observed that DMSO
did not have any coordinating effect neither on the spectra of
the ligands nor on its metal complexes.

Electronic spectra

The Co(II) complexes exhibited well-resolved bands at
17543–18018 cm−1 and a strong high-energy band at 21739–
22222 cm−1 (Table 2) and are assigned [49] to the transi-
tions 4T1g(F)→4T2g(F), 4T1g(F)→4T1g(P) for a high-spin oc-
tahedral geometry [50]. A high-intensity band at 28565–
29215 cm−1 was assigned to the metal to ligand charge trans-
fer. The magnetic susceptibility measurements (4.7–4.9 BM)
for the solid Co(II) complexes are also indicative of three
unpaired electrons per Co(II) ion suggesting [51] consis-
tency with their octahedral environment. The electronic
spectra of the Cu(II) complexes (Table 2) showed two low-
energy weak bands at 15151–15873 cm−1 and a strong high-
energy band at 30255–30420 cm−1. The low-energy band in
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Table 1: Physical and analytical data of the metal(II) complexes (1)–(40).

Number Metal chelate MP (◦C) Yield (%)
Calc (found) %

C H N

(1)
[Co(L1)2(H2O)2] [406.9]

336–338 71 41.28 (41.61) 5.90 (5.42) 6.88 (6.13)
C14H24CoN2O8

(2)
[Cu(L1)2(H2O)2] [411.5]

328–330 73 40.82 (40.44) 5.83 (5.52) 6.80 (6.45)
C14H24CuN2O8

(3)
[Ni(L1)2(H2O)2] [406.7]

330–332 70 41.31 (41.65) 5.90 (5.98) 6.88 (6.57)
C14H24NiN2O8

(4)
[Zn(L1)2(H2O)2] [411.4]

331–332 70 40.84 (40.63) 5.83 (5.62) 6.81 (6.96)
C14H24ZnN2O8

(5)
[Co(L2)2(H2O)2] [586.9]

378–380 72 57.25 (57.53) 6.13 (6.55) 4.77 (4.63)
C28H36CoN2O8

(6)
[Cu(L2)2(H2O)2] [563.5]

335–337 72 56.80 (56.66) 6.09 (6.37) 4.73 (4.58)
C28H36CuN2O8

(7)
[Ni(L2)2(H2O)2] [586.7]

338–340 73 57.27 (57.14) 6.14 (6.47) 4.77 (4.84)
C28H36NiN2O8

(8)
[Zn(L2)2(H2O)2] [591.4]

332–334 72 56.82 (56.98) 6.09 (5.84) 4.73 (4.65)
C28H36ZnN2O8

(9)
[Co(L3)2(H2O)2] [490.9]

339–341 74 48.89 (48.73) 7.33 (7.62) 5.70 (5.53)
C20H36CoN2O8

(10)
[Cu(L3)2(H2O)2] [495.5]

344–346 73 48.43 (48.87) 7.26 (7.18) 5.65 (5.85)
C20H36CuN2O8

(11)
[Ni(L3)2(H2O)2] [490.7]

340–342 73 48.91 (48.76) 7.34 (7.58) 5.71 (5.43)
C20H36NiN2O8

(12)
[Zn(L3)2(H2O)2] [495.4]

337–339 72 48.45 (48.63) 7.27 (7.47) 5.65 (5.96)
C20H36ZnN2O8

(13)
[Co(L4)2(H2O)2] [566.9]

238–240 72 46.57 (46.66) 5.64 (5.53) 14.82 (14.72)
C22H32CoN6O8

(14)
[Cu(L4)2(H2O)2] [571.5]

230–232 70 46.19 (46.54) 5.60 (5.43) 14.70 (14.57)
C22H32CuN6O8

(15)
[Ni(L4)2(H2O)2] [566.7]

227–229 71 46.59 (46.62) 5.65 (5.57) 14.82 (14.66)
C22H32NiN6O8

(16)
[Zn(L4)2(H2O)2] [571.4]

225–227 72 46.20 (46.06) 5.60 (5.81) 14.70 (14.98)
C22H32ZnN6O8

(17)
[Co(L5)2(H2O)2] [434.9]

240–242 73 44.15 (44.48) 6.44 (6.16) 6.44 (6.82)
C16H28CoN2O8

(18)
[Cu(L5)2(H2O)2] [439.5]

244–246 72 43.68 (43.36) 6.37 (6.56) 6.37 (6.73)
C16H28CuN2O8

(19)
[Ni(L5)2(H2O)2] [434.7]

245–247 70 44.16 (44.44) 6.44 (6.38) 6.44 (6.16)
C16H28NiN2O8

(20)
[Zn(L5)2(H2O)2] [439.4]

236–238 69 43.70 (43.34) 6.37 (6.15) 6.37 (6.62)
C16H28ZnN2O8

(21)
[Co(L1)(H2O)4]Cl [322.4]

206–208 70 26.05 (26.37) 5.58 (5.41) 4.34 (4.13)
C7H18CoNO7Cl

(22)
[Cu(L1)(H2O)4]Cl [327.0]

216–218 71 25.68 (25.44) 5.50 (5.82) 4.28 (4.45)
C7H18CuNO7Cl

(23)
[Ni(L1)(H2O)4]Cl [322.2]

212–214 72 26.07 (26.38) 5.59 (5.88) 4.35 (4.54)
C7H18NiNO7Cl

(24)
[Zn(L1)(H2O)4]Cl [326.9]

202–204 70 25.70 (25.53) 5.51 (5.62) 4.28 (4.11)
C7H18ZnNO7Cl
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Table 1: Continued.

Number Metal chelate MP (◦C) Yield (%)
Calc (found) %

C H N

(25)
[Co(L2)(H2O)4]Cl [412.4]

218–220 73 40.73 (40.93) 5.82 (5.55) 3.39 (3.18)
C14H24CoNO7Cl

(26)
[Cu(L2)(H2O)4]Cl [417]

227–229 72 40.28 (40.46) 5.75 (5.64) 3.36 (3.67)
C14H24CuNO7Cl

(27)
[Ni(L2)(H2O)4]Cl [412.2]

220–222 73 40.76 (40.43) 5.82 (5.64) 3.40 (3.13)
C14H24NiNO7Cl

(28)
[Zn(L2)(H2O)4]Cl [416.9]

214–216 72 40.30 (40.48) 5.76 (5.40) 3.36 (3.58)
C14H24ZnNO7Cl

(29)
[Co(L3)(H2O)4]Cl [364.4]

230–232 70 32.93 (32.67) 6.59 (6.35) 3.84 (3.53)
C10H24CoNO7Cl

(30)
[Cu(L3)(H2O)4]Cl [369.0]

238–240 71 32.52 (32.84) 6.50 (6.18) 3.79 (3.88)
C10H24CuNO7Cl

(31)
[Ni(L3)(H2O)4]Cl [364.2]

240–242 72 32.95 (33.28) 6.59 (6.34) 3.84 (3.63)
C10H24NiNO7Cl

(32)
[Zn(L3)(H2O)4]Cl [368.9]

235–237 73 32.53 (32.43) 6.51 (6.87) 3.80 (3.96)
C10H24ZnNO7Cl

(33)
[Co(L4)(H2O)4]Cl [402.4]

233–235 73 32.80 (32.66) 5.47 (5.53) 10.44 (10.72)
C11H22CoN3O7Cl

(34)
[Cu(L4)(H2O)4]Cl [407.0]

235–237 74 32.43 (32.64) 5.40 (5.27) 10.32 (10.57)
C11H22CuN3O7Cl

(35)
[Ni(L4)(H2O)4]Cl [402.2]

220–222 73 32.82 (32.58) 5.47 (5.65) 10.44 (10.68)
C11H22NiN3O7Cl

(36)
[Zn(L4)(H2O)4]Cl [406.9]

238–240 72 32.44 (32.06) 5.41 (5.83) 10.32 (10.78)
C11H22ZnN3O7Cl

(37)
[Co(L5)(H2O)4]Cl [336.4]

244–246 73 28.53 (28.68) 5.94 (5.64) 4.16 (4.52)
C8H20CoNO7Cl

(38)
[Cu(L5)(H2O)4]Cl [341.0]

248–250 72 28.15 (28.36) 5.86 (5.56) 4.11 (4.43)
C8H20CuNO7Cl

(39)
[Ni(L5)(H2O)4]Cl [336.2]

244–246 73 28.56 (28.74) 5.95 (5.78) 4.16 (4.56)
C8H20NiNO7Cl

(40)
[Zn(L5)(H2O)4]Cl [340.9]

247–249 72 28.16 (28.48) 5.87 (5.65) 4.11 (4.42)
C8H20ZnNO7Cl

O O

CR

N

C

CH3

OH
CH3

OH2

M

OH2

N

CR

O O

C

H3C

CH3

OH

M = Co(II), Cu(II), Ni(II) or Zn(II)

(a)

H3C

C

OH2

OH2

M

OH2
OH2

O O

CR

N
CH3

OH

Cl

M = Co(II), Cu(II), Ni(II) or Zn(II)

(b)

Figure 2: Proposed structures of the metal(II) complexes (1)–(40).
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Table 2: Physical and spectral data of the metal(II) complexes (1)–(40).

Number Color BM (μeff) IR ( cm−1) λmax ( cm−1)

(1) Dark brown 4.4
3444 (OH), 3020 (OH2),

17543, 21739, 292901610 (C=N), 1385 (C−O),

525 (M−O), 470 (M−N)

(2) Light blue 1.7
3450 (OH), 3025 (OH2),

15151, 302351620 (C=N), 1335 (C−O),

440 (M−N), 520 (M−O)

(3) Dull green 3.1
3445 (OH), 3015 (OH2),

12897, 16528,
24390, 302151615 (C=N), 1335 (C−O),

430 (M−N), 535 (M−O)

(4) Off-white Dia
3448 (OH), 3025 (OH2),

284451610 (C=N), 1335 (C−O),

435 (M−N), 545 (M−O)

(5) Dark brown 4.2
3444 (OH), 3025 (OH2),

18018, 22222, 295651615 (C=N), 1335 (C−O),

425 (M−O), 390 (M−N)

(6) Dark blue 1.7
3444 (OH), 3015 (OH2),

15873, 303801615 (C=N), 1335 (C−O),

425 (M−O), 390 (M−N)

(7) Dark green 3.1
3448 (OH), 3020 (OH2),

13333, 16667,
25000, 303651620 (C=N), 1335 (C−O),

425 (M−O), 390 (M−N)

(8) Cream Dia
3445 (OH), 3020 (OH2),

286801620 (C=N), 1335 (C−O),

425 (M−O), 390 (M−N)

(9) Brown 4.5
3448 (OH), 3025 (OH2),

17750, 21535, 293101610 (C=N), 1335 (C−O),

425 (M−O), 390 (M−N)

(10) Bluish green 1.8
3450 (OH), 3015 (OH2),

15470, 303551615 (C=N), 1335 (C−O),

425 (M−O), 390 (M−N)

(11) Dark green 3.3
3444 (OH), 3015 (OH2),

12975, 16585,
24685, 303101610 (C=N), 1335 (C−O),

425 (M−O), 390 (M−N)

(12) Pale yellow Dia
3450 (OH), 3020 (OH2),

285251615 (C=N), 1335 (C−O),

425 (M−O), 390 (M−N)

(13) Tea pink 4.3
3445 (OH), 3015 (OH2),

17850, 21950, 294101610 (C=N), 1335 (C−O),

425 (M−O), 390 (M−N)

(14) Green 1.9
3448 (OH), 3025 (OH2),

15510, 302901615 (C=N), 1335 (C−O),

425 (M−O), 390 (M−N)

(15) Sea green 3.2
3445 (OH), 3025 (OH2),

13230, 16660,
24880, 303601620 (C=N), 1335 (C−O),

425 (M−O), 390 (M−N)
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Table 2: Continued.

Number Color BM (μeff) IR ( cm−1) λmax ( cm−1)

(16) Off-white Dia
3444 (OH), 3020 (OH2),

303601615 (C=N), 1335 (C−O),

425 (M−O), 390 (M−N)

(17) Dark brown 4.5
3450 (OH), 3015 (OH2),

17985, 22125, 294901620 (C=N), 1335 (C−O),

425 (M−O), 390 (M−N)

(18) Blue 1.8
3450 (OH), 3020 (OH2),

15750, 303601620 (C=N), 1335 (C−O),

425 (M−O), 390 (M−N)

(19) Dark green 3.4
3444 (OH), 3020 (OH2),

13215, 16575,
24910, 303551610 (C=N), 1335 (C−O),

425 (M−O), 390 (M−N)

(20) Cream Dia
3445 (OH), 3020 (OH2),

286101620 (C=N), 1335 (C−O),

425 (M−O), 390 (M−N)

(21) Dark blue 4.2
3450 (OH), 3025 (OH2),

18010, 21745, 292901615 (C=N), 1335 (C−O),

425 (M−O), 390 (M−N)

(22) Green 1.7
3450 (OH), 3015 (OH2),

15545, 302351610 (C=N), 1335 (C−O),

440 (M−N), 520 (M−O)

(23) Dirty green 3.1
3450 (OH), 3015 (OH2),

12897, 16580,
24490, 302151615 (C=N), 1335 (C−O),

430 (M−N), 535 (M−O)

(24) Off-white Dia
3450 (OH), 3025 (OH2),

284451620 (C=N), 1335 (C−O),

435 (M−N), 545 (M−O)

(25) Dark blue 4.4
3448 (OH), 3020 (OH2),

17500, 22124, 295651615 (C=N), 1335 (C−O),

425 (M−O), 390 (M−N)

(26) Dirty green 1.7
3450 (OH), 3025 (OH2),

15795, 303801615 (C=N), 1335 (C−O),

425 (M−O), 390 (M−N)

(27) Sea green 3.1
3448 (OH), 3015 (OH2),

13233, 16590,
25000, 303651615 (C=N), 1335 (C−O),

425 (M−O), 390 (M−N)

(28) Pale yellow Dia
3450 (OH), 3020 (OH2),

286801620 (C=N), 1335 (C−O),

425 (M−O), 390 (M−N)

(29) Royal blue 4.5
3450 (OH), 3025 (OH2),

17750, 21995, 293101610 (C=N), 1335 (C−O),

425 (M−O), 390 (M−N)

(30) Green 1.8
3448 (OH), 3015 (OH2),

15490, 303551620 (C=N), 1335 (C−O),

425 (M−O), 390 (M−N)
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Table 2: Continued.

Number Color BM (μeff) IR ( cm−1) λmax ( cm−1)

(31) Dull green 3.3
3448 (OH), 3020 (OH2),

12995, 16655,
24685, 303101620 (C=N), 1335 (C−O),

425 (M−O), 390 (M−N)

(32) Yellow Dia
3450 (OH), 3025 (OH2),

285251615 (C=N), 1335 (C−O),

425 (M−O), 390 (M−N)

(33) Purple blue 4.3
3450 (OH), 3025 (OH2),

17855, 21925, 294101610 (C=N), 1335 (C−O),

425 (M−O), 390 (M−N)

(34) Bluish green 1.9
3448 (OH), 3015 (OH2),

15515, 302901620 (C=N), 1335 (C−O),

425 (M−O), 390 (M−N)

(35) Dirty green 3.2
3450 (OH), 3020 (OH2),

13130, 16565,
24880, 303601620 (C=N), 1335 (C−O),

425 (M−O), 390 (M−N)

(36) Pale yellow Dia
3450 (OH), 3025 (OH2),

303601615 (C=N), 1335 (C−O),

425 (M−O), 390 (M−N)

(37) Dark brown 4.5
3448 (OH), 3015 (OH2),

17985, 22125, 294901615 (C=N), 1335 (C−O),

425 (M−O), 390 (M−N)

(38) Green 1.8
3450 (OH), 3020 (OH2),

15750, 303601620 (C=N), 1335 (C−O),

425 (M−O), 390 (M−N)

(39) Light green 3.4
3448 (OH), 3020 (OH2),

13215, 16570,
24910, 303551610 (C=N), 1335 (C−O),

425 (M−O), 390 (M−N)

(40) Cream Dia
3450 (OH), 3015 (OH2),

286101620 (C=N), 1335 (C−O),

425 (M−O), 390 (M−N)

this position typically is expected for an octahedral con-
figuration and may be assigned to 10 Dq corresponding
to the transition 2Eg→2T2g [49]. The strong high-energy
band, in turn, is assigned to metal → ligand charge trans-
fer. Also, the magnetic moment values (1.9–2.2 BM) for the
copper(II) are indicative of antiferromagnetic spin-spin in-
teraction through molecular association. Hence, the cop-
per(II) complexes appear to be in the octahedral geometry
with d2

x–d2
y ground state [51]. The electronic spectra of the

Ni(II) complexes showed d-d bands in the regions 24390–
25000, 16528–16667, and 12987–13333 cm−1. These are as-
signed to the spin-allowed transitions 3A2g(F)→3T2g(F),
3A2g(F)→3T1g(F), and 3A2g(F)→3T1g(P), respectively, consis-
tent with their well-defined octahedral configuration. The
band at 29815–30335 cm−1 was assigned to metal → ligand
charge transfer. The magnetic measurements (3.0–3.3 BM)
showed two unpaired electrons per Ni(II) ion suggesting [52]

also an octahedral geometry for the Ni(II) complexes. The
electronic spectra of the Zn(II) complexes exhibited only a
high-intensity band at 28 350–29 145 cm−1 and are assigned
[49] to a ligand-metal charge transfer.

Biological activity

The antibacterial activity results presented in Table 3 show
that the newly synthesized compounds (L1)–(L5) and their
metal(II) complexes (1)–(40) possess biological activity.
These new derivatives obtained by condensation of the
amino group of amino acid with salicylaldehyde were
screened for their antibacterial activity against E coli, B subtil-
lis, S flexenari, S aureus, P aeruginosa, and S typhi and for an-
tifungal activity (Table 4) against T longifusus, C albicans, A
flavus, M canis, F solani, and C glaberata. These results exhib-
ited markedly an enhancement in activity on coordination
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Table 3: Results of antibacterial bioassay (concentration used
1 mg/mL of DMSO). (a) E coli, (b) S flexenari, (c) P aeruginosa, (d)
S typhi, (e) S aureus, (f) B subtilis 10 <: weak; > 10: moderate; > 16:
significant.

Bacteria

Gram-negative Gram-positive

(a) (b) (c) (d) (e) (f)

C
om

po
u

n
d

(z
on

e
of

in
h

ib
it

io
n

)

L1 12 07 13 11 16 15

L2 14 07 14 14 15 16

L3 14 08 12 15 16 17

L4 13 05 14 14 17 14

L5 12 07 15 15 17 15

1 16 10 16 16 18 17

2 15 11 15 17 18 18

3 15 10 17 18 18 18

4 16 12 22 18 19 19

5 15 10 17 18 19 18

6 15 10 16 17 19 17

7 16 11 17 18 20 18

8 16 11 18 19 21 19

9 17 10 17 17 18 18

10 16 10 18 16 19 19

11 17 11 16 17 19 18

12 19 12 17 24 20 19

13 16 10 16 19 19 18

14 16 11 17 17 17 18

15 17 10 18 18 18 17

16 18 11 17 20 20 20

17 14 09 17 17 18 18

18 17 10 18 18 19 19

19 19 09 16 18 19 19

20 25 10 19 18 20 21

21 12 07 13 12 15 17

22 11 06 14 13 16 18

23 12 06 12 12 17 16

24 15 09 16 14 18 24

25 12 08 14 13 16 16

26 12 07 15 12 15 17

27 14 08 14 12 17 19

28 15 09 16 14 18 19

29 11 08 12 12 14 15

30 12 07 12 11 16 16

31 13 07 14 13 15 16

32 14 10 15 15 17 18

33 13 08 14 14 16 17

34 14 09 13 15 15 16

35 12 07 14 15 16 17

36 14 11 16 17 17 18

37 11 09 15 14 15 18

38 12 08 15 15 16 16

39 13 09 14 16 17 17

40 15 10 16 17 26 19
∗SD 30 27 26 27 30 28

∗SD: standard drug (Imipenem).

Table 4: Results of antifungal bioassay (concentration used
200 μg/mL). (a) T longifucus, (b) C albicans, (c) A flavus, (d) M ca-
nis, (e) F solani, (f) C glaberata.

Organism

(a) (b) (c) (d) (e) (f)

C
om

po
u

n
d

(z
on

e
of

in
h

ib
it

io
n

)

L1 16 00 15 10 00 18
L2 00 07 00 00 15 00
L3 17 00 00 00 00 00
L4 20 00 00 15 00 20
L5 00 00 00 00 00 00
1 17 00 18 15 00 20
2 18 00 20 14 00 18
3 20 00 19 12 00 19
4 22 00 20 21 00 22
5 00 10 00 00 17 00
6 10 17 00 00 18 17
7 00 15 00 00 18 00
8 00 18 00 00 20 00
9 19 00 00 00 00 00

10 20 00 17 00 00 00
11 22 00 00 00 00 00
12 24 00 00 00 00 00
13 22 00 00 00 00 00
14 24 20 00 25 20 20
15 23 00 00 00 00 00
16 25 00 18 30 00 00
17 00 00 00 00 00 00
18 00 00 00 00 00 00
19 00 00 00 00 00 00
20 00 00 00 00 00 00
21 00 00 00 19 00 00
22 00 00 00 00 00 00
23 00 18 00 00 00 00
24 20 00 00 00 24 18
25 00 17 17 17 17 00
26 00 00 15 00 00 17
27 00 00 00 00 15 00
28 00 00 00 00 00 00
29 00 00 00 00 00 00
30 00 00 00 00 00 00
31 00 00 00 00 00 00
32 00 20 00 19 00 00
33 00 20 20 20 20 20
34 00 00 00 00 00 20
35 00 00 19 00 00 00
36 00 00 00 00 00 00
37 00 00 00 00 00 00
38 00 00 00 00 00 00
39 00 00 00 00 00 00
40 00 00 19 00 00 20
∗SD A B C D E F

∗SD = standard drugs MIC μg/mL; A = Miconazole (70 μg/mL: 1.6822
× 10−7 M), B = Miconazole (110.8 μg/mL: 2.6626× 10−7 M), C = Am-
photericin B (20 μg/mL: 2.1642×10−8 M), D=Miconazole (98.4 μg/mL:
2.3647× 10−7 M), E = Miconazole (73.25 μg/mL: 1.7603× 10−7 M), F =
Miconazole (110.8 μg/mL: 2.66266× 10−7 M).
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Table 5: Results of minimum inhibitory concentration (M/mL) of the selected compounds (4), (12), (20), (24), and (40) against selected
bacteria.

Number 4 12 20 24 40
Gram-negative
E coli — — 5.690× 10−8 — —
P aeruginosa 1.215× 10−7 — — — —
S typhi — 5.046× 10−8 — — —
Gram-positive
S aureus — — — — 2.933× 10−8

B subtilis — — — 7.648× 10−8 —

Table 6: Brine shrimp bioassay data of the ligands (L1)–(L5) and
their metal(II) complexes (1)–(40).

Compound LD50 (M/mL)
L1 6.369× 10−3

L2 4.292× 10−3

L3 5.025× 10−3

L4 4.484× 10−3

L5 5.848× 10−3

1 2.458× 10−3

2 2.430× 10−3

3 8.975× 10−4

4 2.431× 10−3

5 1.704× 10−3

6 1.691× 10−3

7 7.022× 10−4

8 1.691× 10−3

9 2.037× 10−3

10 8.839× 10−4

11 7.133× 10−4

12 2.018× 10−3

13 1.764× 10−3

14 1.750× 10−3

15 1.765× 10−3

16 1.750× 10−3

17 2.299× 10−3

18 2.275× 10−3

19 2.300× 10−3

20 2.276× 10−3

21 3.102× 10−3

22 9.725× 10−4

23 3.104× 10−3

24 3.059× 10−3

25 2.425× 10−3

26 2.398× 10−3

27 2.426× 10−3

28 2.399× 10−3

29 2.744× 10−3

30 2.710× 10−3

31 1.112× 10−3

32 2.711× 10−3

33 2.485× 10−3

34 2.457× 10−3

35 2.486× 10−3

36 2.458× 10−3

37 2.973× 10−3

38 1.246× 10−3

39 2.974× 10−3

40 2.933× 10−3

with the metal ions against one or more testing bacterial
strains. This enhancement in the activity is rationalized on
the basis of the structures of, (L1)–(L5) by possessing an ad-
ditional azomethine (C=N) linkage which imports in eluci-
dating the mechanism of transamination and resamination
reactions in biological system [53, 54]. It has also been sug-
gested [55–65] that the ligands with nitrogen and oxygen
donor systems might inhibit enzyme production, since the
enzymes which require these groups for their activity appear
to be especially more susceptible to deactivation by the metal
ions upon chelation. Chelation reduces the polarity [55–65]
of the metal ion mainly because of the partial sharing of its
positive charge with the donor groups and possibly the π-
electron delocalization within the whole chelate ring system
thus formed during coordination. This process of chelation
thus increases the lipophilic nature of the central metal atom,
which in turn favors its permeation through the lipoid layer
of the membrane. This in turn is responsible for increasing
the hydrophobic character and liposolubility of the molecule
in crossing cell membrane of the microorganism, and hence
enhances the biological utilization ratio and activity of the
testing drug/compound.

Cytotoxic bioassay

All the synthesized compounds were screened for their cyto-
toxicity (brine shrimp bioassay) using the protocol of Meyer
et al [66]. From the data recorded in Table 6, it is evident that
only five compounds (3), (7), (10), (11), and (22) displayed
potent cytotoxic activity as LD50 = 8.974× 10−4, 7.022 ×
10−4, 8.839×10−4, 7.133×10−4, and 9.725×10−4 M/mL, re-
spectively, against Artemia salina while all other compounds
were almost inactive for this assay.

CONCLUSION

The synthesized amino acid-derived compounds showed an-
tibacterial/antifungal properties. In comparison, the cobalt
(II), copper(II), nickel(II), and zinc(II) metal complexes of
these compounds showed more activity against one or more
bacterial/fungal strains, thus introducing a novel class of
metal-based bactericidal and fungicidal agents.
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