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Understanding the onset of hot streaks across
artistic, cultural, and scientific careers

Lu Liu"234 Nima Dehmamy 123 Jillian Chown® 3, C. Lee Giles*® & Dashun Wang 123,684

Across a range of creative domains, individual careers are characterized by hot streaks, which
are bursts of high-impact works clustered together in close succession. Yet it remains unclear
if there are any regularities underlying the beginning of hot streaks. Here, we analyze career
histories of artists, film directors, and scientists, and develop deep learning and network
science methods to build high-dimensional representations of their creative outputs. We find
that across all three domains, individuals tend to explore diverse styles or topics before their
hot streak, but become notably more focused after the hot streak begins. Crucially, hot
streaks appear to be associated with neither exploration nor exploitation behavior in isolation,
but a particular sequence of exploration followed by exploitation, where the transition from
exploration to exploitation closely traces the onset of a hot streak. Overall, these results may
have implications for identifying and nurturing talents across a wide range of creative
domains.
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remarkable feature of creative careers is the existence of

hot streaks!~3. Despite the ubiquitous nature of hot

streaks across artistic, cultural, and scientific domains, it
remains unclear if there are any regularities underlying the
beginning of a hot streak. Understanding the origin of hot streaks
is not only crucial for our quantitative understanding of patterns
governing creative life cycles but it also has implications for the
identification and development of talent across a wide range of
settings®®. Deciphering what predicts hot streaks, however,
remains a challenge, partly due to the complex nature of creative
careers!©-17. The lack of systematic explanations for hot streaks,
combined with the randomness of when they occur within a
career!, paints an unpredictable, if incomplete, view of creativity
across a diverse range of domains.

Of the myriad forces that might affect career progression and
success, the strategies of exploration and exploitation have attrac-
ted enduring interests from a broad set of disciplines!4-16:18-22,
prompting us to examine their potential relationship with hot
streaks. Indeed, according to the literature, exploitation allows
individuals to build knowledge in a particular area and to refine
their capabilities in that area over time. This could be relevant for
understanding hot streaks since exploitation allows individuals to
“go deep” in a focal area to both establish expertise in that area and
foster a reputation related to that expertise!®19, Exploration, on the
other hand, engages individuals in experimentation and search
beyond their existing or prior areas of competency. Although
exploration is more risky and consequently associated with larger
variance in outcomes?, it may also increase one’s likelihood of
stumbling upon a groundbreaking idea through unanticipated
combinations of disparate sources?4. In contrast, exploitation, as a
conservative strategy, may stifle originality and, may over time,
limit an individual’s ability to consistently produce high-impact
work!4. Taken together, the benefits and downsides to these con-
trasting approaches raise a fundamental question: Are career hot
streaks reflective of exploration or exploitation behavior, or some
combination of the two?

To answer this question, we develop computational methods
using deep learning2>26 and network science?’-28 and apply them
to large-scale datasets tracing the career outputs of artists, film
directors, and scientists. Specifically, we build high-dimensional
representations of the artworks, films, and scientific publications
they produce (Supplementary Note 1), which capture abstract
concepts, styles, and topics represented therein, allowing us to
trace an individual’s career trajectory on the underlying creative
space (Supplementary Note 1). We further quantify the hot streak
within each career by the impact of works one produced!, mea-
sured by auction pricel»?%, IMDB ratings!30, and paper citations
in 10 years":!2, respectively. We then correlate the timing of hot
streaks with the creative trajectories for each individual, allowing
us to examine changes in the characteristics of the work one
produces around the beginning of a hot streak.

Results

To examine the art styles of each artist and their exploration and
exploitation dynamics, we collected over 800 K images of visual
arts from museum and gallery collections, covering the career
histories of 2128 artists’!32, Building on recent advances in
computer vision3>34, we use a transfer-learning approach? to
construct an embedding for artworks using deep neural networks
(Fig. 1a—c). We generate a 200-dimensional embedding of each
artwork (see “Methods” and Supplementary Note 1.1), and
identify art styles through clusters on the 200-dimensional
embedding space, allowing us to trace the evolution of art styles
over the course of their careers (Fig. 2a-d).

To examine the career histories of film directors, we collected
our second dataset capturing plot description and cast informa-
tion for each film recorded in the IMDB database (79 K films by
4337 directors; see Supplementary Note 1.2 for more detail). We
build a 200-dimensional representation of each film by combin-
ing its plot and cast information (Fig. 1d, e, see “Methods,” and
Supplementary Note 1.2), and identify the style of each film based
on clusters in the obtained embedding space, allowing us to
investigate the dynamics of styles for film directors (Fig. 2e-h).

In the third setting, we analyze the career histories of
20,040 scientists by combining publication and citation datasets
from the Web of Science and Google Scholar»12, tracing the
dynamics of research topics as reflected in the publication history
of each career. We use a method developed recently by Zeng
et al.1%, which identifies research topics within a career by finding
communities in a weighted co-citing network of all publications
by the individual (Figs. 1f and 2i-1). To ensure that the results
obtained for scientific careers are consistent with the embedding
methods used to analyze the careers of artists and directors, we
also applied a node embedding method to the co-citing network
to identify research topics, and repeated our analyses, finding that
the conclusions remain the same (Supplementary Note 1.3).

To quantify the exploration and exploitation behaviors reflec-
ted in each individual’s career across the three domains, we
measure the style or topic entropy for the work one produces,
defined as H = —3_"", p,logp,, where p, is the frequency in
which one devotes to an art style or topic i and m is the number
of unique styles or topics. On one extreme, a pure exploitation
strategy means that an individual’s work is contained within only
one style or topic (H =0); on the other extreme, H = logn
corresponds to the case of pure exploration, where n is the
number of works one produced in the period, indicating that an
individual’s attention is evenly divided across a distribution of
styles or topics (p; = 1/n). For convenience, we normalize the
entropy measure to obtain the rescaled entropy H = H/logn.
Figure 2 illustrates three notable careers as examples for identi-
fying art styles, topics, and their entropies calculated using the
methodologies described above as well as in “Methods.”

To test whether hot streaks are associated with exploration or
exploitation, we measure the distribution of entropy P(H) for
works produced before and during a hot streak (Fig. 3a—c). To
gauge the expected magnitude of H around a hot streak, we
further construct a null model for each career by randomly
designating the time at which the hot streak begins!. We calculate
the average entropy (H) measured in real careers before
(Fig. 3d-f) and after the onset of the hot streak (Fig. 3g-i), and
compare them with random careers, measured by the distribution
of entropy, P({H)), for 1000 realizations of the randomized
careers. Figure 3d-i shows three primary findings. First, before a
hot streak, (H) is systematically larger than expected (z-scores
>2), indicating that individuals tend to diversify the topics they
work on before a hot streak begins, consistent with an exploration
strategy in the period leading up to hot streak. Second, following
the onset of the hot streak, (H) measured in real careers becomes
significantly smaller than expected (z-score <—2), suggesting that
individuals become substantially more focused on what they work
on, reflecting an exploitation strategy during hot streak. Third,
despite the differences in the three types of careers we study and
the methodologies to examine their career outputs, the observed
associations between exploration, exploitation, and hot streaks
appear universal across all three domains we studied.

To systematically examine the temporal changes in entropy, we
align careers based on when their hot streak begins and measure
the dynamics of H around the hot streak (Fig. 3j-1). We find that
compared with randomized careers, H measured in real careers is
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systematically elevated before a hot streak begins, but drops
precipitously below expectation during the hot streak. We further
compare directly the entropy distribution P(H) before and after
the hot streak begins, finding that, across all three domains, H
during a hot streak is systematically smaller than before
(Fig. 3m-o0, Kolmogorov-Smirnov (KS) test, p value <0.001); this
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pattern is absent when we repeat the same measurement for
randomized careers (Fig. 3p-r).

The exploitation behavior during hot streaks appears con-
sistent with several famous examples, including painter Jackson
Pollock’s “drip period” (1946-1950) (Fig. 2d), director Peter

Jackson’s “The Lord of the Rings trilogy” (Fig. 2h), and the career
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Fig. 1 Quantifying individual creative trajectories using high-dimensional representation techniques. a The architecture of the deep neural network to
build high-dimensional representation of artworks. We connect a pre-trained VGGNet with three fully connected layers and fine-tune the model with art
style labels. The blue box indicates the convolutional layer and the yellow box the max pooling layer. The green bar shows the top styles predicted by the
model for the input image (Image reproduced under Creative Commons Attribution 3.0 Unported license). We construct the high-dimensional
representation of artworks by combining the output from the first and third convolutional layer (blue arrows) and the second fully connected layer (red
arrow). b An illustration of the 64 filters in the first convolutional layer. We highlight the first filter, the original image, and the output after the image
passing through the filter. The red box represents the size of the filter (3 x 3 pixel box). € The activation of four layers in VGGNet and the saliency map of
the post-impressionism class. The saliency map visualizes the important pixels for predicting the post-impressionism. Layers close to the input

capture low-level features, such as brush strokes, whereas the layers close to the output capture high-level features such as the shape of objects. d Word
embedding for film plots. Target words are encoded as a binary vector and passed to the neural network. We use the hidden layer to represent the
embedding of words and plots. e Node embedding for the co-casting network. We apply DeepWalk to the co-casting network of 79 K films, to capture the
co-occurrence of nodes from the trajectories of random walkers. We use the hidden layer of the model to represent the cast information. We concatenate
the word embedding from plots and the node embedding from casts to construct a 200-dimensional vector to represent each film. f An illustration of the
co-citing network among papers published by a scientist. Two papers are connected if they have at least one common reference, with link weight
measuring the total number of references they share. Following prior work'®, we apply a community detection algorithm to the co-citing network and

identify the topic of each paper as the community it belongs to.

of scientist John Fenn, whose hot streak arrived late in his career,
but the work he produced during that period on electrospray
ionization eventually won him the chemistry Nobel in 2002
(Fig. 21). These examples raise an intriguing question: can the
exploitation behavior by itself predict career hot streaks? To test
this, we identify episodes of exploitation in each career by tracing
the dynamics of H across our three domains. We calculate the
probability of initiating a hot streak with the onset of an
exploitation episode, and compare it with the baseline probability
measured in randomized careers (Fig. 3s-u). We find that when
exploitation occurs by itself, not preceded by exploration, the
chance that such episodes coincide with a hot streak is sig-
nificantly lower than expected, not higher, across all three
domains. These results indicate that exploitation by itself may not
guarantee hot streaks, further suggesting the importance of prior
exploration. Indeed, reexaminations of the careers of Jackson
Pollock, Peter Jackson, and John Fenn reveal a phase of unusual
exploration of new and diverse art styles, types of films, and
research topics, respectively, for the period leading up to their hot
streaks (Fig. 2¢c, g, k). This observation raises the question of
whether exploration that precedes a hot streak is instead the
crucial ingredient, prompting us to calculate the probability of
initiating a hot streak following an exploration episode alone.
However, we find that when the episode of exploration is not
followed by exploitation, the chance for such exploration to
coincide with a hot streak again reduces significantly. By contrast,
exploration followed by exploitation appears consistently asso-
ciated with a significant lift in the probability of initiating a hot
streak: this configuration consistently outperforms the baseline
across all three domains (20.5%, 13.8%, and 19.2% over the
baseline for artists, directors, and scientists, respectively), and
represents the only positive lift among all combinations of the
two creative strategies (Fig. 3s-u). Figure S46 further examines
the exploration, exploitation, and normal phases, and explores all
potential sequences of any two of the three phases (nine in total),
reaching the same conclusions.

Taken together, these results suggest that neither exploration nor
exploitation alone is associated with the hot streak dynamics; rather,
it is the shift from exploration to exploitation that closely traces the
onset of a hot streak. One plausible explanation is that exploration,
as a risky, variance-enhancing strategy, increases one’s chances to
stumble upon new, potentially groundbreaking ideas; the sub-
sequent exploitation behavior allows the individual to focus,
develop knowledge and capabilities in that focal area, and build out
their discoveries further. Importantly, our findings suggest that both
ingredients of exploration and exploitation seem necessary. This
supports the notion that not all explorations are fruitful, and that

exploitation in the absence of promising new ideas may not be as
productive. On the other hand, the sequence of exploration fol-
lowed by exploitation may facilitate the emergence of high-impact
work by incorporating new insights into a focused agenda. The
positioning of exploration before exploitation may therefore serve to
expand an individual’s creative possibilities.

We test the robustness of our results across several dimensions.
We split our samples of artists, directors, and scientists based on the
timing of their hot streaks (Supplementary Note 3.1), the indivi-
dual’s level of impact (Supplementary Note 3.2), and different fields
of studies (Supplementary Note 3.3), and repeat our analyses in each
subsample, arriving at consistent conclusions. We further control for
individual fixed effects in their exploration—exploitation dynamics
(Supplementary Note 3.4), and find that artists, directors, and sci-
entists predictably deviate from their typical creative behaviors
around the beginning of a hot streak: individuals who tend to exploit
become more exploratory before a hot streak begins, whereas indi-
viduals who tend to explore become particularly focused during
their hot streak (Supplementary Note 3.4). We further use regression
analysis to fit the relationship between hot streaks and the
exploration—exploitation transition by controlling for the impact of
an individual’s work, their career stage, and other individual char-
acteristics, and find that our conclusions remain the same (Sup-
plementary Note 3.5). For scientists who experience two hot streaks,
we perform our measurements for the first and second hot streak
separately (Supplementary Note 3.6), and find that the
exploration—exploitation dynamics hold true in both cases. For those
having hot streaks at the beginning of their careers, while by con-
struction we cannot observe their prior behaviors, we find that they
consistently engage in exploitation during their hot streaks (Sup-
plementary Note 3.7). We further verify that these results are robust
to using different community detection algorithms such as
Infomap?® (Supplementary Note 3.8) and different ways of aggre-
gating data over time (Supplementary Note 3.9). We also replaced
our entropy measure to quantify the exploration-exploitation
dynamics by the Simpson diversity measure (1 — Z;p?) (Supple-
mentary Note 3.10), the number of styles or topics (Supplementary
Note 3.11), the fraction of works in the most popular style or topic
(Supplementary Note 3.12), and probability of switching topics
(Supplementary Note 3.13), and repeat all our analyses, finding
again the same conclusions.

To understand the potential forces that might facilitate the shift
from exploration to exploitation, we further examine the orga-
nization of innovative activity. Motivated by the literature on
science teams®37:38, here we focus on scientific careers only,
asking whether there are detectable changes in collaboration
patterns around the exploration-exploitation transition. We find
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Fig. 2 Creative trajectories and hot-streak dynamics: three exemplary careers. a, e, i We fit the hot-streak model to careers of a Jackson Pollock, e Peter
Jackson and i John B. Fenn. The hot-streak model! assumes that the impact of works produced in a career (log price for artworks, IMDB rating for films and
logC,, for papers) is drawn from two normal distributions (T; and T';), where T, captures the typical performance and T, captures the performance during
hot streak. The red line denotes the hot-streak model. t, and t, marks the beginning and the end of hot streak. To avoid mixing across the two periods, we
measure the entropy of styles or topics for works produced before and during hot streak by excluding those produced during the year of the transition. b-d
We project the 200-dimensional representation of artworks produced by Jackson Pollock to a 3D t-SNE embedding space. Different styles are shown in
different colors, and nodes with larger sizes denote those produced during hot streak. For Jackson Pollock, his hot streak is well aligned with the famous
"“drip period” (1946-1950). The entropy of works produced during this period is substantially lower than typical (H = 0.25 vs H = 0.43), suggesting an
intensive focus on one particular style (d). This exploitation behavior contrasts the work he produced in the period leading up to hot streak, which was
characterized by an unusual exploration of new and diverse styles (H = 0.59) (c). f-h We project the films vectors produced by Peter Jackson to a t-SNE
embedding space. Peter Jackson's hot streak covers “The Lord of the Rings” trilogy (H = 0.31) (h). Before his hot streak, however, Jackson worked on
diverse types of films including biography and horror-comedy (H = 0.59) (g). j-1 For the career of John Fenn, we study the co-citing network of his papers.
Before his hot streak, Fenn worked on numerous different topics from excitation on hot surfaces to dimers (H = 0.55) (k). But during his hot streak, Fenn

intensively focused on electrospray ionization (H = 0.25) (I), which eventually won him the chemistry Nobel in 2002.

that scientists are more likely to explore with small teams before a
hot streak, but exploit with large teams after a hot streak begins.
Indeed, we quantify the change in team size through two mea-
sures. We trace the dynamics of team size around the beginning
of a hot streak (Fig. 4a). We also calculate the team size dis-
tribution observed in real careers normalized by the randomized
careers (R(team size); Fig. 4b). Both results show that team size
drops significantly before the hot streak yet becomes substantially
larger than expected during the hot streak (Fig. 4a, b). We further
find that the onset of hot streaks appears to mark an increase in
new collaborators (Supplementary Note 4), consistent with the
advantages of fresh teams3®. Note that the role and definition of
teams vary substantially across the three domains, hence this
analysis is applicable to scientific careers only. Given the obser-
vational nature of our study, we cannot rule out potential omitted
variables that might mediate these patterns. Nevertheless, these
results are in line with the findings that small and large teams are

differentially positioned for innovation”: large teams tend to
excel at furthering existing ideas and design, whereas small teams
tend to disrupt current ways of thinking with new ideas and
opportunities. We further test the robustness of these results
across different disciplines, adjusting for self-citations, and con-
trolling for the publication year, research field, and career stage
using regression analysis, all arriving at the same conclusions
(Supplementary Note 4).

Our next analysis probes potential connections between phases
of exploration and exploitation surrounding a scientist’s hot
streak. We examine properties of the topics that are explored
during the period leading up to hot streak, ranging from recency
to citation impact to popularity, asking which topics tend to be
chosen for subsequent exploitation. We find that the topic that
was eventually exploited is less likely to be the one explored the
most recently, or the highest cited, or the most popular among
the topics explored before (see Supplementary Note 5). These
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findings imply that, more than simply chasing after discovery prediction task to predict which topic to exploit using the features
through exploration, individuals appear to seek out new oppor-  discussed above that characterize the exploration phase, including
tunities by deliberating over different possibilities, and then team size and topic properties (Supplementary Note 5); this
harvesting promising directions through exploitation. To test if exercise yielded substantial predictive power (accuracy of 0.89
these potential connections can help us better understand which  and area under the curve of 0.83). Overall, these results suggest
direction to exploit following exploration, we set up a simple intriguing connections between phases of exploration and
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Fig. 3 Exploration, exploitation and career hot streaks. a-c Career histories of a Jackson Pollock, b Peter Jackson, and ¢ John Fenn illustrate the topics they
worked on before and during their hot streak and the impacts of the work. Color of the dots is consistent with the dots shown in Fig. 2b, f, j. d-f The

distribution of entropy P((H)) before a hot streak for 1000 realizations of the randomized careers for all individuals analyzed in our datasets. The vertical
line indicates (H) measured in real careers, showing that it is significantly larger than expected (z-scores are 4.24 for artists, 2.94 for directors, and 13.90
for scientists). g-i Same as (d-f), but for the entropy of work produced during hot streak. (H) in real careers (vertical line) is significantly smaller than
expected (z-scores are —2.42 for artists, —8.54 for directors, and —22.71 for scientists). j-1 The dynamics of topic entropy H surrounding the onset of hot
streak for real and randomized careers, measured through a sliding window of six artworks, five films or five scientific papers. Error bars represent the
standard error of the mean. m-o Cumulative entropy distribution P_(H) before and during hot streak in real careers across the three domains. P values of
the KS-test are 3.7x 107 for artists, 1.5x 10> for directors, and 1.1x 107%* for scientists. p-r Cumulative entropy distribution P_(H) before and during hot
streak for the null model. P- values are 0.23 for artists, 0.77 for directors, and 0.06 for scientists. s-u The probability to observe the onset of a hot streak at
the end of an exploration episode alone (not followed by exploitation), or at the beginning of an exploitation episode alone (not proceeded by exploration),
or at the transition from exploration to exploitation, or from exploitation to exploration. We then compare with the baseline probability of having a hot
streak. Here we calculate entropy with a sliding window of two years for artists and scientists, and five works for directors, and define exploration and

exploitation episodes as entropy above or below one's average.
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Fig. 4 Authorship structure and hot streaks in science. a The average
team size around the beginning of a hot streak for real and randomized
careers in science. Team size shows a significant drop before a hot streak
begins, but a notable increase during hot streak. b We calculate team size
for papers published before and during hot streak, and compare the
distribution to that of randomized careers for 500 realizations, denoted as
R(team size). R decreases with team size from above to below 1 for papers
published before a hot streak but increases with team size for papers
published during a hot streak. Both measures in (a) and (b) suggest that
scientists tend to engage with smaller teams before hot streak, and with
larger teams during the hot streak. Error bars represent the standard error
of the mean.

exploitation surrounding a hot streak, which may have implica-
tions for science funding, especially given hot streaks and
research grants tend to last for a similar duration.

Finally, we consider career trajectories following the end of a
hot streak. We measure the average entropy (H) after the end of a
hot streak and compare the measurements in real careers with the
distribution of entropy P((H)) from the randomized careers
(Fig. 5a—c). We find that, after the hot-streak period, (H) becomes
statistically indistinguishable from the randomized -careers
(—1 < z-score < 1). We further examine the temporal changes in
entropy at the end of a hot streak by aligning careers based on
when their hot streaks end (Fig. 5d-f). We find again a lack of
difference between data and the null model. Together, these
analyses suggest that individuals return to “normal” after their
hot streak ends, showing an absence of exploration or exploita-
tion patterns.

Discussions

Taken together, these results unveil identifiable regularities
underlying the onset of career hot streaks, which appear to apply
universally across a wide range of creative domains. Overall, our
results highlight the important role of both exploration and
exploitation in individual careers. Curiously, across all three
domains we studied, a major turning point for individual careers
appears most closely linked with neither exploration nor

exploitation behavior in isolation, but rather with the particular
sequence of exploration followed by exploitation. Indeed, extant
literature has documented the fundamental role of exploration
and exploitation in creativity (Supplementary Note 2.2 and Sup-
plementary Table 1). Yet as creative behaviors, they have tradi-
tionally been considered either in isolation or in combination but
rarely in succession!%22; this is especially the case for career-level
analysis. Our results suggest a sequential view of creative strategies
that balance experimentation and implementation may be parti-
cularly powerful for producing long-lasting contributions. These
findings may hold broad relevance for identifying, training, and
nurturing creative talents, especially given the various forces that
sometimes appear in tension with the exploration-exploitation
dynamics, ranging from the intensifying pressure to publish3>40 to
the increasing trend of exploration over a career!6, from the
specialization of individual expertisel? to how such specialization
is favored in personnel evaluations*142,

It is important to note that while our results demonstrate
significant and consistent relationships across domains, the
overall effect size seems modest. On the one hand, this suggests
that additional controls might further tighten the relationship.
For example, after we control for authorship and the effect of
collaborations, the effect size seems to magnify (Supplementary
Note 4.5). On the other hand, it also suggests opportunities to
examine other potential processes that may also underlie the
onset of hot streaks. Indeed, real careers are complex, with het-
erogeneous influences operating across domains as well as a
multitude of individual and institutional factors. Hence, it is
plausible that additional factors may also be at work. In this
study, we also tested several alternative explanations for the onset
of hot streaks (Supplementary Note 6). Although each of these
hypotheses we tested appears plausible by itself, we find that none
of them shows consistent associations, indicating that none of
these alternative hypotheses alone can account for the hot-streak
dynamics we studied. It is also likely that on an individual basis,
the exploration-exploitation transition is further influenced by
other external factors, such as shifting market conditions*3, social
network structure3844, and disciplinary culture!®1°. Individuals
may also receive short-term feedback (e.g., art critiques or peer
reviews) that may offer additional signals shaping their career
focus. As such, the patterns of exploration and exploitation may
reflect personal initiatives as well as responses to external forces.
Nevertheless, our results suggest that, despite the obvious het-
erogeneity in the settings we examined and the myriad factors
that may affect career progression and success, the
exploration-exploitation dynamics appears consistently asso-
ciated with the onset of hot streaks across rather diverse domains.

The data-driven nature of our study indicates that it is not
immune to two limitations common in this type of analysis. First,
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Fig. 5 When hot streak ends. a-c The distribution of entropy P({H)) after a hot streak for 1000 realizations of the randomized careers for all individuals
analyzed in our datasets. The vertical line indicates (H) measured in real careers, showing that it is statistically indistinguishable from the randomized
careers. d=f The dynamics of entropy H surrounding the end of hot streaks for real and randomized careers, measured through a sliding window of six
artworks, five films, or five scientific papers. Error bars represent the standard error of the mean.

while the datasets we assembled in this paper represent large
collections of career histories and outputs across a variety of
domains, they are limited to individuals who have had sufficiently
long careers providing enough data points for statistical analyses
(Supplementary Note 1). Second, this paper presents correlational
evidence, whose primary goal is to investigate empirical regula-
rities associated with the onset of hot streaks. Future work using
causal research designs may improve causative interpretations of
the regularities reported here.

Furthermore, while this work mainly focuses on universal
patterns related to the onset of hot streaks, there could be
important domain-specific differences in the role of exploration,
exploitation, and success that are worth investigating further. For
example, our preliminary analysis suggests that the level of
exploration and exploitation in science appears much stronger
than in art or film directing (Fig. 3). The number of styles/topics
within each career also varies substantially across domains
(Supplementary Fig. 30). While these cross-domain differences
could flow from inherent differences in data and methods,
assessing domain-specific patterns is an important direction for
future work.

Notably, the sequence of exploration followed by exploitation
closely resembles strategies observed in a wide range of natural
and socio-technical settings, from animal foraging*® to human
cognitive search®, from multi-armed bandits and reinforcement
learning®” to role oscillation between brokerage and closure in
social network*3 to changing innovation strategies over business
cycles®®. Tt thus suggests that the sequential strategies of
exploration followed by exploitation uncovered in this study may
have broad relevance that goes beyond individuals’ careers. Lastly,
the representation techniques used in this paper could open up
promising avenues for research on creativity”9->2, offering a
quantitative framework to probe the characteristics of the creative
products themselves. Future advances in deep learning may

enable researchers to incorporate more creative dimensions, and
hence more fruitfully contribute to a computationally enhanced
understanding of creativity.

Methods

High-dimensional representation of artworks. We apply a pre-trained
VGGNet algorithm33, one of the best-known algorithms for image recognition, to
images of artworks, and connect it with an additional neural network with fully
connected layers to classify the art style labels recorded in our dataset (Fig. 1a). The
convolutional layers in the pre-trained VGGNet use 3 x 3 filters to detect local
patterns from the artwork (Fig. 1b). The filters in the first layer capture spatial
patterns such as line orientations and brushstrokes (Fig. 1b), whereas those in
higher layers combine outputs of filters from lower layers to capture more complex
features, such as shapes and objects (Fig. 1c). To leverage VGGNet’s image
recognition capabilities, here we do not train the VGGNet layers, but instead train
the fully connected layers to repurpose VGGNet to identify art styles (Fig. 1a),
helping the first two fully connected layers to find an abstract representation of
concepts and themes by grouping together related outputs of the VGGNet layers.
Prior research shows that art style may be decoded from both brush strokes and the
overall concepts, subjects, and themes>43, suggesting that both low- and high-level
features are important for capturing art styles. We combine the outputs from the
first and third convolutional layers in VGGNet with the fully connected layer
before the final classification layer (see Supplementary Note 1.1 for several case
studies showing how art styles are interpreted by our deep learning framework).
We apply our deep neural network to the career outputs of each artist in the
dataset, and then use principal component analysis for dimensionality reduction to
generate a 200-dimensional embedding of each artwork.

High-dimensional representation of films. We build high-dimensional repre-
sentations of films by combing the plot and casting information of each film. We
first train word embeddings®! in the description of the plot to learn a 100-
dimensional text representation of a film from the co-occurrence of words (Fig. 1d
and Supplementary Note 1.2). To incorporate casting information, we construct a
weighted co-casting network among all actors and apply a node embedding
method DeepWalk>* to obtain a 100-dimensional casting vector for each film
(Fig. le and Supplementary Note 1.2). We then concatenate the vectors for plot and
cast, allowing us to develop a 200-dimensional embedding space to represent all
films. Despite the myriad factors that may affect the artistic and financial success of
a film®°, ranging from the screenplay to acting, we find that the learned high-
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dimensional representation can successfully predict film genre with an accuracy of
0.948 (Supplementary Note 1.2).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data used in this study have been deposited in the GitHub repository https://kellogg-
cssi.github.io/onsethotstreaks.

Code availability
The code used in this study has been deposited in the GitHub repository https://kellogg-
cssi.github.io/onsethotstreaks.
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