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Abstract: A simple hetero-core optical fiber (MMF-NCF-MMF) surface plasmon resonance (SPR)
sensing structure was proposed. The SPR spectral sensitivity, full width of half peak (FWHM),
valley depth (VD), and figure of merit (FOM) were defined to evaluate the sensing performance
comprehensively. The effect of gold film thickness on the refractive index and temperature sensing
performance was studied experimentally. The optimum gold film thickness was found. The maximum
sensitivities for refractive index and temperature measurement were obtained to be 2933.25 nm/RIU
and −0.91973 nm/◦C, respectively. The experimental results are helpful to design the SPR structure
with improved sensing performance. The proposed SPR sensing structure has the advantages of simple
structure, easy implementation, and good robustness, which implies a broad application prospect.

Keywords: refractive index sensing; temperature sensing; optical fiber sensor; hetero-core fiber
structure; surface plasmon resonance

1. Introduction

Surface plasmon resonance (SPR) optical fiber sensor has the advantages of ultra-high sensitivity
and resolution, fast response, small size, and real-time detection capability, which has been widely
studied in environmental monitoring [1,2], disease diagnosis [3,4], biological analysis [5,6], and other
fields [7,8]. Its sensing performance mainly depends on the geometry and structure parameters of
optical fiber, type of metal coating, etc. In order to increase the evanescent wave outside the optical
fiber, removing some or all of the optical fiber cladding is employed with the traditional SPR optical
fiber sensor. For example, the typically processed fiber structures include etched fibers [9,10], side
polished fibers (SPF) [11,12], tapered fibers [13,14], D-shaped fibers [15,16], etc. Through this way,
the SPR effect is enhanced. However, removal of cladding will reduce the structural strength of the
fibers and result in decline in mechanical properties. To avoid the damage of fiber structure, high
sensitivity SPR optical sensors can also be realized by using grating structure, such as tilted fiber Bragg
grating (TFBG) [17,18], fiber Bragg grating (FBG) [19,20], and long period fiber grating (LPG) [21,22].
These grating structures maintain the integrity of the optical fiber and are easy to operate, but the
fabrication cost is high.

The mentioned problems can be solved with hetero-core fiber structure [23–25], which possesses
the merits of simple structure, low cost, high sensitivity, and good mechanical performance. Therefore,
we fabricated simple hetero-core optical fiber (MMF-NCF-MMF) structures using coreless optical fibers
(NCF) as sensing regions. Due to the absence of cladding, the core mode of NCF can directly contact

Sensors 2019, 19, 4345; doi:10.3390/s19194345 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-0349-067X
http://www.mdpi.com/1424-8220/19/19/4345?type=check_update&version=1
http://dx.doi.org/10.3390/s19194345
http://www.mdpi.com/journal/sensors


Sensors 2019, 19, 4345 2 of 10

with the external environment. When light propagates from the lead-in multimode optical fiber (MMF)
to NCF, evanescent wave outside the NCF can resonate with surface plasma wave (SPW) without any
complicated processing. On the other hand, silver or gold is usually used as the metal material to
excite SPR. But silver is easier to oxidize than gold. So gold is more often used as the coating material.
The performance of gold-coated fiber SPR sensor is closely related with the coating thickness.

In this work, the MMF-NCF-MMF hetero-core fiber structure is coated with a gold thin film and
the influence of gold film thickness on the refractive index and temperature sensing performance of
the as-fabricated SPR sensing structure is investigated.

2. Sensor Fabrication and Sensing Principle

The sensor structure is schematically shown in Figure 1a. The NCF with a length of 1 cm is
spliced between two MMFs. The core/cladding diameters of the MMF and NCF are 62.5/125 µm and
0/125 µm, respectively. Gold thin film is coated on the NCF by magnetron sputtering device (ETD-900M,
Elaborate Technology Development, China). The process of coating is simplified by double-sided
coating method [26]. Figure 1b is the picture of the as-fabricated structure coated with gold film.

Sensors 2019, 19, x FOR PEER REVIEW 2 of 10 

 

The mentioned problems can be solved with hetero-core fiber structure [23−25], which 
possesses the merits of simple structure, low cost, high sensitivity, and good mechanical 
performance. Therefore, we fabricated simple hetero-core optical fiber (MMF-NCF-MMF) structures 
using coreless optical fibers (NCF) as sensing regions. Due to the absence of cladding, the core mode 
of NCF can directly contact with the external environment. When light propagates from the lead-in 
multimode optical fiber (MMF) to NCF, evanescent wave outside the NCF can resonate with surface 
plasma wave (SPW) without any complicated processing. On the other hand, silver or gold is 
usually used as the metal material to excite SPR. But silver is easier to oxidize than gold. So gold is 
more often used as the coating material. The performance of gold-coated fiber SPR sensor is closely 
related with the coating thickness. 

In this work, the MMF-NCF-MMF hetero-core fiber structure is coated with a gold thin film and 
the influence of gold film thickness on the refractive index and temperature sensing performance of 
the as-fabricated SPR sensing structure is investigated. 

2. Sensor Fabrication and Sensing Principle 

The sensor structure is schematically shown in Figure 1a. The NCF with a length of 1 cm is 
spliced between two MMFs. The core/cladding diameters of the MMF and NCF are 62.5/125 μm and 
0/125 μm, respectively. Gold thin film is coated on the NCF by magnetron sputtering device 
(ETD-900M, Elaborate Technology Development, China). The process of coating is simplified by 
double-sided coating method [26]. Figure 1b is the picture of the as-fabricated structure coated with 
gold film. 

 
Figure 1. (a) Schematic of the proposed sensor; (b) Picture of the as-fabricated structure coated with 
gold film. 

The gold film thicknesses are measured by a step profiler. The typical screenshot of the step 
profiler for measuring the gold film thickness with sputtering time of 90 s is shown in Figure 2a. 
Figure 2b shows the measured gold film thickness as a function of the sputtering time, which implies 
that the gold film thickness increases linearly with the sputtering time. Hereafter, the gold film 
thickness for other samples with other different sputtering time is estimated according to Figure 2b. 

Figure 1. (a) Schematic of the proposed sensor; (b) Picture of the as-fabricated structure coated with
gold film.

The gold film thicknesses are measured by a step profiler. The typical screenshot of the step profiler
for measuring the gold film thickness with sputtering time of 90 s is shown in Figure 2a. Figure 2b
shows the measured gold film thickness as a function of the sputtering time, which implies that the
gold film thickness increases linearly with the sputtering time. Hereafter, the gold film thickness for
other samples with other different sputtering time is estimated according to Figure 2b.
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Figure 2. (a) Typical screenshot of the step profiler for measuring the gold film thickness with sputtering
time of 90 s; (b) Gold film thickness as a function of sputtering time.

The glycerol aqueous solution and ethanol are utilized for the refractive index and temperature
sensing experiments, respectively. Ethanol has a relatively high thermo-optical coefficient of around
−4 × 10−4 RIU/◦C, which is two orders of magnitude higher than that of silica, which is about
9.2 × 10−6 RIU/◦C [27,28].

There are several conditions to excite the optical fiber SPR sensing structure: (1) phase matching;
(2) polarization of light is perpendicular to the metal surface; (3) sensing region is in the range of
evanescent field. The evanescent field is usually only 100−200 nm in depth and decays exponentially
away from the interface between the fiber and gold film. Theoretically, the penetration depth d of
evanescent field is related to incident angle θ, refractive index of fiber core and cladding, which can be
expressed as [1]:

d =
λ

2π
√

n2
1 sin2 θ− n2

2

, (1)

where n1 and n2 are the refractive indices of fiber core and cladding, respectively. λ is the
incident wavelength.

The propagation constant of surface plasmon polaritons (SPP) is expressed as [5,29]:

βSPP =
ω
c

√
εmεs

εm + εs
, (2)
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where c is the speed of light in vacuum, ω is the angular frequency of light, εm and εs are the relative
dielectric constants of gold film and surrounding environment near the metal surface, respectively.
Therefore, the phase-matching condition can be expressed as:

βi = βSPP, (3)

where βi is the propagation constant of the fiber mode, i is the order number of the fiber mode.
According to Equations (2) and (3), the resonance wavelength will change when the refractive index
(or dielectric constant) of the surrounding environment changes. Therefore, the sensing function can
be realized.

3. Experiments Results and Discussion

The experimental setup for investigating the sensing performance of the as-fabricated hetero-core
fiber structure is shown in Figure 3. The sensing system mainly includes halogen light source
(360–2000 nm, HL-2000, Ocean Optics (Shanghai) Co., LTD, China), sensing part, optical fiber
spectrometer (USB4000, Ocean Optics (Shanghai) Co., LTD, China), and computer. An optical fiber
spectrometer is used to collect the output spectrum, which is further recorded and analyzed by
the computer.
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Figure 3. Experimental setup for investigating the sensing properties of the simple hetero-core optical
fiber (MMF-NCF-MMF) structure.

Figure 4 shows the transmission spectra of the sensing structure at different surrounding refractive
indices and ambient temperatures, respectively. The thickness of the coated gold film is 25.753 nm.
The measured SPR spectrum is normalized according to the following definition:

Ptrans =
Tsol −Dbg

Tair −Dbg
, (4)

where Tsol and Tair are the measured intensity when the structure is in measurand and air, respectively.
Dbg is the background signal. To reduce high-frequency noise, each spectrum has been smoothed.
Figure 4 shows that the resonance wavelength drifts to a long wavelength with the external refractive
index. However, the resonance wavelength drifts to a short wavelength with the increase of temperature,
which is due to the decrease of the refractive index of ethanol solution at high temperature. On the other
hand, the intensity of the SPR wavelength dip remains unchanged, which reflects the measurement
stability of the sensing structure.
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Figure 4. Transmission spectra of the sensing structure at different surrounding refractive indices (a)
and ambient temperatures (b). The thickness of the gold film is 25.753 nm.

Similarly, the refractive-index and temperature-dependent spectra for other samples with different
gold film thicknesses are obtained. Figure 5 displays the variation of resonance wavelength with
surrounding refractive index and ambient temperature at different gold film thicknesses, respectively.
The higher the external refractive index is, the larger the resonance wavelength is. Contrarily,
the resonance wavelength shifts to a short wavelength with the increase of temperature, which is
due to the negative thermo-optical coefficient of ethanol. At fixed external refractive index or
ambient temperature, the resonance wavelength drifts to a long wavelength with gold film thickness.
Some experimental data deviate from the linear fitting, which may be due to the errors in film thickness,
refractive index, and temperature [30].
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Figure 5. Resonance wavelength as a function of surrounding refractive index (a) and ambient
temperature (b) at different gold film thicknesses.

Figure 6 shows the refractive index and temperature sensitivities as functions of gold film thickness.
The polynomial fitting method was employed. It can be seen from Figure 6 that both sensitivities
increase first and then decrease with the increase of film thickness. When the thickness of gold
film is around 40 nm, the refractive index and temperature sensitivities are the highest, which are
2933.25 nm/RIU and −0.91973 nm/◦C, respectively.
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In order to further characterize the effect of gold film thickness on SPR spectra, full width of
half peak (FWHM), valley depth (VD), and figure of merit (FOM) of the SPR spectra are analyzed.
The FOM is defined as FOM = S

FWHM ×VD, where S is the sensitivity of the sensor. VD is defined as
the transmittance difference between the maximum (on the lower side) and minimum values forming
the corresponding valley. Figure 7 shows the gold-film-thickness dependent FWHM, VD, and FOM of
the sensing structure at different refractive indices (at an ambient temperature of 20 ◦C).
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Figure 7a indicates FWHM decreases with the increase of film thickness for certain external
refractive index. Besides, the larger the external refractive index is, the larger the change of FWHM with
the film thickness will be. However, FWHM increases with the increase of the refractive index when
the film thickness is less than 18 nm. When the thickness is greater than 35 nm, FWHM decreases with
the increase of refractive index. When the film thickness is between 18 and 35 nm, FWHM increases
first and then decreases with the refractive index.

Figure 7b shows that VD increases with film thickness at the small refractive index regime.
When the external refractive index is large, VD decreases with the film thickness. For samples with
certain film thickness, the VD decreases with the increase of refractive index.

Figure 7c shows that FOM increases with the gold film thickness in general. In most cases,
the largest FOM is achieved for the sample with a film thickness of 41.487 nm. Therefore, the sensor
with the best performance can be obtained for the sample with a gold film thickness of 41.487 nm.

Similarly, the gold-film-thickness dependent FOM of the sensing structure at different ambient
temperatures (at an initial refractive index of 1.361) is calculated and plotted in Figure 8. It can be
seen from Figure 8 that the optimum gold film thickness is around 25.753 nm. This result guides us to
optimize the gold film thickness reasonably to make the sensor have the best performance for different
application cases.
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4. Conclusions

The dependence of sensing performance of the MMF-NCF-MMF hetero-core fiber SPR structure
on the gold film thickness was studied experimentally. The corresponding refractive index and
temperature sensitivities are 2933.25 nm/RIU and −0.91973 nm/◦C, respectively. The variation of
FWHM, VD, and FOM with refractive index and temperature are discussed and analyzed. The results
show that the proposed sensor has different optimal gold film thicknesses for temperature and refractive
index measurements. The proposed SPR sensing structure has the features of simple structure, easy
implementation and good robustness, which has great application prospect.
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