
RESEARCH ARTICLE

DES-Amyloidoses “Amyloidoses through the

looking-glass”: A knowledgebase developed

for exploring and linking information related

to human amyloid-related diseases

Vladan P. BajicID
1‡*, Adil Salhi2, Katja Lakota3, Aleksandar Radovanovic2,

Rozaimi Razali2, Lada Zivkovic3, Biljana Spremo-Potparevic4, Mahmut Uludag2,

Faroug Tifratene2, Olaa Motwalli5, Benoit Marchand6, Vladimir B. Bajic2,

Takashi Gojobori2,7, Esma R. Isenovic1, Magbubah EssackID
2‡*

1 Institute of Nuclear Sciences “VINCA", Laboratory for Radiobiology and Molecular Genetics, University of

Belgrade, Belgrade, Republic of Serbia, 2 Computational Bioscience Research Center (CBRC), King

Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia, 3 Department of

Physiology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia, 4 Department of Pathobiology,

Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia, 5 Saudi Electronic University (SEU), College

of Computing and Informatics, Madinah, Kingdom of Saudi Arabia, 6 New York University, Abu Dhabi, UAE,

7 Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of

Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia

‡ VPB and ME share first authorship on this work.

* magbubah.essack@kaust.edu.sa (ME); vladanbajic@vinca.rs (VPB)

Abstract

More than 30 types of amyloids are linked to close to 50 diseases in humans, the most prom-

inent being Alzheimer’s disease (AD). AD is brain-related local amyloidosis, while another

amyloidosis, such as AA amyloidosis, tends to be more systemic. Therefore, we need to

know more about the biological entities’ influencing these amyloidosis processes. However,

there is currently no support system developed specifically to handle this extraordinarily

complex and demanding task. To acquire a systematic view of amyloidosis and how this

may be relevant to the brain and other organs, we needed a means to explore "amyloid net-

work systems" that may underly processes that leads to an amyloid-related disease. In this

regard, we developed the DES-Amyloidoses knowledgebase (KB) to obtain fast and rele-

vant information regarding the biological network related to amyloid proteins/peptides and

amyloid-related diseases. This KB contains information obtained through text and data min-

ing of available scientific literature and other public repositories. The information compiled

into the DES-Amyloidoses system based on 19 topic-specific dictionaries resulted in

796,409 associations between terms from these dictionaries. Users can explore this infor-

mation through various options, including enriched concepts, enriched pairs, and semantic

similarity. We show the usefulness of the KB using an example focused on inflammasome-

amyloid associations. To our knowledge, this is the only KB dedicated to human amyloid-

related diseases derived primarily through literature text mining and complemented by data

mining that provides a novel way of exploring information relevant to amyloidoses.
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1. Introduction

Amyloid refers to aberrant extracellular proteins that clump together, forming fibrils [1, 2].

The formation of these fibrillar assemblies causes the native secondary structure of proteins to

change its shape to predominantly cross-β-sheet secondary structures essential for fiber forma-

tion [3–5]. Unlike normal fibrous proteins that provide structural support in cells, these amy-

loid types (protein aggregates) are associated with the pathology of almost 50 disorders with

different symptoms collectively referred to as amyloidoses [6–10]. Rambaran et al. [11] and

Sipe et al. [12] provide inventories of amyloids associated with these human diseases, and

these works show that the number of known amyloids increased from 20 in 2008 to 31 in

2016. Amyloids display diversity in structure [13], aggregation time, and site of action [14].

Thus, today’s amyloidosis represents all diseases with misfolded aggregated proteins or pep-

tides as the common denominator.

Amyloidoses have been sub-classified into prion diseases and non-prion diseases; prions

(misfolded proteins) become a self-perpetuating infectious agent in prion disease, i.e., they are

transmissible, whereas misfolded proteins in non-prion diseases are non-transmissible [15].

Thus far, all amyloids do not have demonstrated infectivity as prions. However, a preformed

fibril can seed amyloid formation. That is, in cell culture, seeding aggregation has been demon-

strated for non-prion disease amyloids such as Tau [16–18], α-synuclein [19–21], amyloid-

beta (Aβ) [22–24], huntingtin [25, 26], superoxide dismutase 1 (SOD1) [27, 28] or TDP-43

[29, 30]. Moreover, Tau [16, 20, 31–34], α-synuclein [19, 35, 36], and Aβ [23, 37] further

exhibit trans-cellular propagation and the ability to induce progressive pathology in vivo. Our

understanding of these amyloids’ roles is further complicated by experimental results showing

that amyloids can interact to aggregate into hybrid amyloid fibrils (a process called cross-seed-

ing) [38]. Reports of such co-localized amyloids include 1/ Aβ and human islet amyloid poly-

peptide (hIAPP) in the brain and beta-pancreatic cells [39, 40], 2/ Aβ and SAA in AD plaques

[41], and 3/ Aβ and phosphorylated tau (p-tau) in synaptic terminals of AD brains [42].

To expand our insights into amyloids mechanisms of action and roles, several methods/

tools have been developed to predict the propensity of proteins to aggregate, examples being

Tango [43], ZipperDB [44, 45], Pasta [46], NetCSSP [47], FoldAmyloid [48], AmyloidMutant

[49, 50], AmylPred2 [51]. When developing such tools/methods, the key task is to find

approaches for discovering sequence segments responsible for self-aggregation and protein

destabilization [44, 52–54]. Other databases facilitate in-depth investigation of these amyloids

due to their link to several disease states. Representative databases include AMYPdb, (Amyloid

Protein Database) [55], CPAD (Curated Protein Aggregation Database) [56], and ALBase

(Amyloid Light Chain Database) [57] [http://albase.bumc.bu.edu/aldb/]. Specifically, the

AmyPDB database houses amyloid protein data from 33 amyloid families, including 1,705 pro-

teins, complemented with bibliographic references and 3D structures. While CPAD provides a

collection of more than 2300 experimentally observed aggregation rates for known amyloids

that can be accessed based on various classifications. This data is further linked to Uniprot

[58], Protein Data Bank [59], PubMed [60], GAP [61], TANGO [62] and WALTZ [63]. On the

other hand, ALBase contains 4364 amyloid nucleotide sequences, of which 808 encode mono-

clonal proteins that form fibrillar deposits in patients with light chain, amyloidosis, including

295 control light chain sequences from healthy subjects used to analyze the amyloid sequences.

Overall, the existing amyloid-related databases’ scope is restrictive and does not allow for the

comprehensive exploration of literature information and all biomedical terms/concepts related

to amyloids.

Here we present DES-Amyloidoses (https://www.cbrc.kaust.edu.sa/des-amyloidosis/), a text

and data mining-based KB developed to facilitate more efficient exploration of information
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contained in the literature and link concepts related to human amyloidosis. The development

strategy is similar to the one we presented in [70]. Specifically, for text indexing, we used pre-

compiled biomedical terms/phrases (referred to as concepts) organized into thematic dictionar-

ies (e.g., diseases, pathways, miRNAs, lncRNAs, and so forth). The KB searches for the dictionary

terms in titles, abstracts, and full-length articles retrieved from PubMed and PubMed Central

[37]. We incorporated this data into the DES framework designed to provide users with the sta-

tistically enriched concepts in the topic-specific literature (in this case, about the amyloids and

associated diseases), statistically “enriched pairs” of concepts or concepts that co-occur in text, as

well as semantic similarity, for further exploration. We also provide an AD-related example to

show how DES-Amyloidoses can assist researchers in the amyloid domain.

2. The DES-Amyloidoses exploration system

Efficient exploration of information related to amyloids is challenging as published informa-

tion is substantial. For example, a PubMed Central query (31 December 2019) using "amyloid"

retrieves more than 125,000 articles, of which 50% were published in the last five years. The

challenge associated with exploring this voluminous amyloid-related information is further

augmented when searching for links between different amyloids or between amyloids and

other relevant biomedical concepts. However, the literature exploration process of complex

biomedical topics of this nature has been made easy by developing several topic-specific KBs

[64–75]. These KBs provide users with topic-specific enriched concepts and pre-computed sta-

tistically enriched associations between the enriched concepts. The text mining in these KBs

are based on the titles and abstracts of publicly available PubMed records [32]. However, we

can access significantly more information in full length articles [33]. Thus, the more recently

developed topic-specific KBs use text mining based on both titles and abstracts (PubMed [60])

and full length articles (the subset of open-access articles from PubMed Central [37]). Unfortu-

nately, to our knowledge, an amyloidoses-related KB of this type does not exist.

Thus, we developed DES-Amyloidoses as a topic-specific KB using an upgraded version of

the Dragon Exploration System (DES), DES v3.0, on 17 February 2020. This version of DES

allows users to explore scientific concepts through literature-derived topic-specific enriched

concepts and pairs of concepts similar to the older versions, and it enables users to explore

these concepts through semantic similarity. The underlying systems, and concept enrichment

process used in the current version of DES has been described in [74].

2.1 The DES-Amyloidoses literature corpus

To create the DES-Amyloidoses literature corpus, on the 17 February 2020, we used the follow-

ing query: ((Amyloid AND ("Serum Amyloid A" OR SAA OR "amyloid A" OR AA OR apoSAA
OR ApoE OR "light chain amyloid" OR AL OR "amyloid enhancing factor" OR AEF OR "Serum
amyloid P component" OR SAP OR glycosaminoglycans OR "Heparin sulfate proteoglycan" OR
"islet amyloid polypeptide" OR IAPP OR "Imumunoglobin light chain" OR "Imumunoglobin
heavy chain" OR AH OR Transyerthertin OR ATTR OR "β2-microglobulin" OR Aβ2M OR "Apo-
lipoprotein AI" OR "AApo AI" OR AApoAII OR AApoAIII OR Gelsolin OR Agel OR Lysosyme
OR Alys OR Fibrinogenα OR Afib OR "Cystatin C" OR ACys OR "ABriPP variants" OR ABri OR
"α-Synuclein" OR AαSyn OR Tau OR ATau OR "Prion protein" OR APrP OR "Atrial natriuretic
factor" OR AANF OR Prolactin OR "A Pro" OR Insulin OR AIns OR "Galectin 7" OR AGal7 OR
Lactoferin OR ALac OR "Semenogelin 1" OR Asem1 OR Enfurvitide OR AEnf)) AND (human
OR humans OR "homo sapiens")), to retrieve topic-specific articles from our local repository

(MongoDB) of PubMed, and PubMed Central articles. This query retrieved 31,821 articles.
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2.2 Dictionaries incorporated into DES-Amyloidoses

We imported 18 dictionaries from the pre-existing DES v2.0 vocabularies. To ensure com-

pleteness, we further compiled the topic-related dictionary, “Amyloids (Human and Mouse)”

(see Table 1). The terms compiled in the 19 thematic dictionaries were normalized to a single

internal identifier in the KB, where possible, to allow for more efficient mining of relevant

terms in the text and enable linking terms to external sources. Additionally, term redundancies

within the same dictionary are unified into one term. The text mining of most dictionary

terms is generally straightforward. However, gene names are frequently interchangeably used

with their protein product names/symbols in biomedical text. Thus, for example, in the

"Human Genes and Proteins" dictionary, we combine EntrezGene [76] nomenclature (gene

names/symbols) with UniProt [77] nomenclature (protein names/symbols). Also, concepts in

all the dictionaries are normalized where possible, i.e., names/synonyms, and symbols refer-

ring to the same concept are retrieved by a single entity.

Initial indexing is performed, that is, concepts in these dictionaries are mined in the pre-

pared literature corpus and color-coded to reflect the dictionary from which it was retrieved.

In this manner, we can identify 1/ promiscuous terms through their high frequencies due to

their use as ordinary English words, and 2/ terms in newly imported dictionaries not found in

the prepared literature corpus, which we exclude as part of the dictionary cleaning process.

Then, re-indexing is performed based on clean dictionary data.

Table 1. DES-Amyloidoses dictionaries, terms per dictionary, and terms enriched in the literature corpus.

Dictionary # Enriched

concepts

# Enriched pairs of

concepts

# Enriched pairs that contain

amyloids

Status

Chemicals/Compounds

Amyloids (Human and Mouse) [in-house compiled] 298 19,218 1,084 newly compiled

Chemical Entities of Biological Interest (ChEBI) [78] 6,996 233,926 1,769 pre-existing in DES

Lipids (Lipid Maps) [79, 80] 580 19,678 61 pre-existing in DES

Metabolites (MetaboLights) [81] 1,636 54,755 240 pre-existing in DES

Toxins (T3DB) [82] 1,046 47,615 314 pre-existing in DES

Functional Annotation

Biological Process (GO) [83] 2,327 44,829 523 pre-existing in DES

Cellular Component (GO) [83] 645 17,404 201 pre-existing in DES

Molecular Function (GO) [83] 820 14,245 157 pre-existing in DES

Pathways (KEGG [84], Reactome [85], UniPathway [86],

PANTHER [87])

723 18,773 144 pre-existing in DES

Diseases

DOID Ontology (Bioportal) Human Disease Ontology [88] 1,517 33,970 312 pre-existing in DES

HP Ontology (Bioportal) Human Phenotype Ontology [89] 1,592 38,701 312 pre-existing in DES

SIDER (Drug Indications and Side Effects) [90] 1,354 31,828 276 pre-existing in DES

Drugs

Drugs (DrugBank) [91] 1,887 76,994 531 pre-existing in DES

Anatomies

Human Anatomy [in-house compiled] 1,325 76,315 1,001 pre-existing in DES

Human

Human Genes & Proteins (EntrezGene) [92] 13,346 756,763 11,085 pre-existing in DES

Human Long Non-Coding RNAs [93] 99 2,232 20 pre-existing in DES

Human microRNAs [93, 94] 741 26,002 61 pre-existing in DES

Human Transcription Factors [95] 1,010 63,353 647 pre-existing in DES

Mutations (tmVar) [96] 5,144 40,204 480 pre-existing in DES

https://doi.org/10.1371/journal.pone.0271737.t001
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Table 1 lists the dictionaries used and provide, 1/ the number of enriched concepts in the

literature corpus per dictionary, 2/ the number of enriched concept pairs in the literature cor-

pus per dictionary, and 3/ the number of enriched pairs that include an amyloid per dictio-

nary. Out of all concepts in the 19 dictionaries, 43,086 were found to be statistically enriched.

Based on the statistically enriched terms in the corpus, the system identified 796,409 enriched

pairs of concepts in the literature corpus. Embedding the network of concept pairs enabled

semantic similarity computation between the KB concepts.

2.2.1 Enriched concepts. The frequency at which a concept appears in the full literature

set is expected to be similar to its frequency in that literature’s random subset. Thus, in DES, a

concept is defined as enriched when overrepresented in the topic-specific corpus, in this case,

the DES-Amyloidoses corpus, compared to the complete set of PubMed and PubMed Central

articles in DES MongoDB database. We calculated the false discovery rate (FDR) <0.05 (P-
value) based on the Benjamini–Hochberg procedure to correct for multiplicity testing. Con-

cepts are quantified to be enriched when it has an FDR/P-value< 0.05 in the DES-Amyloi-

doses corpus compared to the complete article set. In this manner, the KB provides the user

with the most topic-relevant concepts.

2.2.2 Enriched pairs. The enriched or topic-relevant concepts co-occur in literature with

several other concepts. We classified concepts as co-occurring if they were mentioned within a

200-character distance in text. This co-occurrence of concepts may also be enriched; for exam-

ple, the enriched concept may co-occur with the other concept 90% of the time. Thus, DES-A-

myloidoses also provides users with the pairs of enriched concepts based on co-occurrence (or

association) compared to the enriched concept’s occurrence (the second concept in the pair

may or may not be enriched). The concepts’ co-occurrence signifies a potential association,

but concepts in the enriched pair might not be directly associated. Nonetheless, enriched con-

cept pairs increase the probability of an association between the two concepts existing.

2.2.3 Semantic similarity. Here, we used semantic similarity as a metric that establishes

how close in meaning or relatedness two concepts are, based on their distribution within a text

corpus. The semantic similarity relatedness can be in the form of hypernymy/hyponymy,

antonymy, or synonymy. For example, liquid and water are semantically similar even though

they are different concepts because water is a hyponym of liquid, and hence are more likely to

be co-mentioned in the same context. We acquired the semantic similarity by first training a

skip-gram Word2Vec model on the DES-Amyloidoses corpus, then calculating the cosine dis-

tance between concept embeddings, representing semantic similarity in DES. Therefore,

semantic similarity represents a concept co-occurrence in DES, which might not be direct.

3. DES-Amyloidoses utilities and case study

DES-Amyloidoses provide users with a list of topic-specific enriched concepts and lists of

concepts frequently mentioned in the same text as the enriched concept based on the amy-

loid-related literature, as these concepts may be directly or indirectly associated with the

enriched concept. Users can explore these enriched concepts via multiple links built into

the KB, including “Enriched Concepts", “Enriched Pairs”, and “Semantic Similarity”

(described in detail by [70, 74]).

Briefly, the “Enriched Concepts” link allows users to familiarize themselves with and

explore the concepts enriched in the amyloid-related literature, such as APP, amyloid-beta,

MAPT, cerebral, etc. The “Enriched Pairs” link allows the users to focus on a specific enriched

concept of their interest, and explore other concepts (not enriched in the amyloid-related liter-

ature) that may be associated with the enriched concept, for example, NLRP3 and aortic sinus;

NLRP3 and saturated fatty acid anion; NLRP3 and cytochalasin; NLRP3 and LRRFIP1, and so
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forth. On the other hand, the “Semantic Similarity” link allows the users to explore concept co-

occurrence that is not necessarily directly linked, as in the “Enriched Pairs” case; checking

such co-occurring concepts for inferred biological association can be used to shortlist potential

novel hypotheses.

For each exploration, users can view enriched concepts in pre-compiled theme-based dic-

tionaries and restrict concepts based on a specific term/concept, for example, using the text

box to search for the enriched concepts that contain the term Amyloid, retrieves concepts such

as “Conjunctival amyloidosis”, “paramyloidosis”, “amyloid precursor protein metabolic pro-

cess”, and so forth. Concepts of interest can also be sorted using ranking options, including

false discovery rate (FDR), density, KB frequency (KB_FDR), and background frequency

(BKB_FDR) (see “Column visibility”), and results can be exported in excel or csv format via

the “Export” link. Also, each concept is linked to a hover box from which users can generate a

“Network” or retrieve “Term Co-occurrences”; generated networks can be saved in the json.txt

format using the “Export Network” link.

3.1 Case study 1: Illustrating the usefulness of DES-Amyloidoses as a

research support system: Progression of an Amyloid “network” in the

pathogenesis of AD

Here we demonstrate the efficacy of DES-Amyloidoses in exploring inflammasome-amyloid

associations, as amyloids have been demonstrated to activate the inflammasome to process

Interleukin 1 beta (IL-1β) [97]. For example, activation is induced in AD via Aβ [98], in Diabe-

tes type II (T2D) via IAPP [99], in PD via α-synuclein [100] and in amyotrophic lateral sclero-

sis (ALS) through SOD1 [101].

We started this process by checking if the inflammasome pathway is an enriched concept in

the amyloid literature. This was done by clicking the DES-Amyloidoses “Enriched Pairs” option

(Step 1), which opens a page that lists associated terms from all dictionaries in two columns. In

the first column, where users can specify the first dictionary (or concept A), we filtered by select-

ing the “Human Genes and Proteins (EntrezGene)" dictionary from the drop-down menu. Sim-

ilarly, for the second dictionary (or concept B), we selected the “Pathways” dictionary from the

drop-down menu. The “inflammasome” pathway is listed multiple times, and even the “The

NLRP3 inflammasome” pathway is listed as one of the most significant pathways. Because Halle

et al. [98] demonstrated that activation of the NALP3 inflammasome is an essential process in

AD-related inflammation and tissue damage, we proceed by accessing the right-click menu (or

hovering over) for the “The NLRP3 inflammasome” concept to generate a network (Step 2). On

the network page, we selected "Amyloids", "Human Genes and Proteins", and "Lipids" in the

“Choose Dictionaries” menu, then selected the ‘The NLRP3 inflammasome’ node and used the

right-click menu to ‘Expand’ the network with nodes from the selected dictionaries (Step 3).

Using the same dictionaries, we performed a second round of network expansion on all nodes

obtained in Step 3. We removed all nodes with two or fewer links (Fig 1, Step 4).

The final network comprises two sub-networks; one centered on the NLPR3 inflammasome

node, while the other is centered on the amyloid, IAPP. The amyloid network, in this case,

IAPP, works in concert with the activation of the inflammasome through NLPR3. Moreover, it

also depicts an array of inflammation-related genes/proteins, and a direct association between

NLPR3-CASP1(inflammation-associated protein) and TRIM20 (MEFV) associated with

innate regulation immunity suggests crosstalk between amyloids, innate immunity, and

inflammation. Specifically, MEFV inhibits the NLPR3-CASP1 inflammasome pathway by

directly binding to inflammasome components, including NLRP1, NLRP3, and CASP1. Also,

it recruits autophagic machinery to execute degradation [102]. In this manner, autophagy
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controls the hub signaling machinery [102]. A similar direct association is depicted between

NLPR3-CASP1 (inflammation-associated proteins) and Cathepsin B (CTSB). CTSB plays a

crucial role in several physiological processes, one essential being driving degradation within

the lysosome [103]. CTSB reduces the expression levels of lysosomal and autophagy-related

proteins, thereby reducing the number of lysosomes and autophagosomes in the cell. It has

further been demonstrated that CTSB is released from the lysosome with lysosomal damage,

causing autophagy-lysosomal dysfunction and the activation of the NLRP3-CASP1 inflamma-

some pathway [98, 104, 105]. Thus, both IAPP and Aβ induce NLPR3-CASP1 activation

through a mechanism involving the released CTSB [99].

The precise mechanism of NLPR3-CASP1 activation is still debated, however, considering

that 1/ CTSB inhibition prevents Aβ-induced NLPR3-CASP1 activation, which reduces amy-

loid plaque load and improves memory in the AD brain of mouse models [106], and 2/ CTSB

has been associated with several amyloids, this network provides users with a bird’s-eye view

of amyloid-related literature. It suggests CTSB should be considered a potential therapeutic

approach for treating AD wherein the inflammasome is targeted.

Fig 1. A depiction of the inflammasome-amyloid “network” involved in Alzheimer’s disease’s pathogenesis.

https://doi.org/10.1371/journal.pone.0271737.g001
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3.2 Case study 2: DES-Amyloidoses unveils the microRNA, possibly

regulating the Amyloid “network” in the pathogenesis of AD

To identify the microRNAs possibly regulating the inflammasome-amyloid associations in AD,

we explored the microRNAs semantically linked to the essential genes ("IAAP," "CTSB," "NLRP3",

"PYCARD," and "CASP1") identified in the inflammasome-amyloid associations in AD (see case

study 1). This was done by clicking the DES-Amyloidoses “Semantic Similarity” option, which

opens a page with two columns. In the first column, we inserted the name of the gene of interest

(or concept A), but for the second column, we selected the “Human microRNAs” dictionary from

the drop-down menu (or concept B) (see Fig 2). Then, we repeated this process for all genes of

interest and tabulated all microRNAs significantly linked to these genes (provided in Fig 2).

We identified 13 unique microRNA with cosine similarity above 0.7. However, we found

no literature connecting these microRNA to the amyloid “network” despite this indirect asso-

ciation depicted by DES-Amyloidoses. Consequently, we used the microRNA Data Integration

Portal (mirDIP) to search if these microRNAs are predicted to target our set of genes. As a

result, we found 9 of the 13 unique microRNA (hsa-miR-6089, hsa-miR-3661, hsa-miR-299,

hsa-miR-653, hsa-miR-129-1, hsa-miR-625, hsa-miR-1302, hsa-miR-489, hsa-miR-34a, and

hsa-miR-1908) predicted to target all five genes, and a literature search showed all these micro-

RNAs have differential expression linked to AD [107–110] (see Fig 3). Furthermore, one of the

microRNAs, hsa-miR-1908, was experimentally validated to inhibit ApoE expression, which

suggested that miR-1908 inhibits Aβ clearance by repressing ApoE expression [111].

Fig 2. An illustration of how DES-Amyloidoses can be used to identify relationships between the concepts based on semantic similarity. The yellow square indicates

the changes that were implemented, and the tabulation shows the microRNAs that were shortlisted for this process.

https://doi.org/10.1371/journal.pone.0271737.g002
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4. Discussion

The idea that the amyloids present a system is not new [112–114]. The reason is that they have

networks that suggest interrelations with other biological networks and environmental stress-

ors that can induce metabolic changes that may impair homeostatic defenses during the life-

time of humans. Furthermore, changes in the interrelations with these other networks may

cause differences in patterns, heterogeneity, age of onset, disease progression, and divergent

patient phenotypes. Some phenotypes have emerged due to different Aβ conformations [115]

and the seeding capabilities of the amyloids [38, 116], which adds to this complexity. For

example, IAPP was identified in human cerebral Aβ deposits, and Aβ fibrils were found to

seed IAPP in vivo as efficiently as hproIAPP [116], which offers a possible molecular link as to

Fig 3. The microRNAs predicted to target the essential genes with the mirDIP scores indicated. AD MCI marker [110]; Preclinical AD [107]; AD Blood Mononuclear

Cells [108, 109].

https://doi.org/10.1371/journal.pone.0271737.g003
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why epidemiological studies suggest patients with type 2 diabetes have an almost twofold

increased risk of developing AD [117].

Specific amyloid converting endotrophic triggers have not yet been pinpointed, despite

genetic mutations linked to some disorders’ etiology. The reason is that sensitivity towards

environmental pathogens (e.g., pesticides), reactive oxygen species, or metals characterizes

amyloid aggregation, which partially explains the idiopathic amyloid disorders, is more fre-

quent than familial cases. Fig 1 suggests that IAPP being more prone to Aβ Amyloidosis than

AA amyloidosis may be a consequence of the divergence in its interaction with the NLRP3-in-

flammasome that can sense and respond to dysfunction triggered by environmental stressors

[114].

Clearance of amyloids by phagocytosis is a needed physiological process, but it can

adversely perturb cellular homeostasis. Specifically, phagocytosis of amyloid peptides, like Aβ
and IAPP, still may lead to the activation of the innate immunity activator, NLPR3 [118]. A

recent paper by Cai and colleagues [119] showed that pattern recognition receptors and prion

could replace NLPR3 and ASC, respectively, in inflammasome signaling. This may indicate

that amyloids have a more intrinsic role in inflammatory processes than previously realized,

and they may be working with other signaling proteins to shift perturbed homeostatic mecha-

nisms to typical values, which suggests a protective role. On the other hand, these amyloids

may independently aggravate inflammation in neurodegeneration disorders such as AD by

activating caspase 1, which then cleaves pro-IL-1β and pro-IL-18 into their mature, secreted

forms resulting in neuronal cell death [120]. A multitarget approach may be a promising ther-

apy strategy; as the case studies indicate, targeting Cathepsin B in concert with an inflamma-

some-amyloid network associated microRNA/s may reset the mechanism altered in AD.

5. Concluding remarks

The notion that amyloids comprise a “Network” that can be defined as a system is an essential

jump in understanding protein folding diseases. By defining the network/system in which a

disease is presented through an integrative perspective from the genotype to the phenotype, it

shall be possible to discern important “hub” proteins and pathways, as shown through the

“inflammasome-amyloid hub”. With DES-Amyloidoses we presented an “amyloid system”

and its interacting network based on the literature and data mining approaches compiled into

a KB. This system enables a novel way to interrogate information about amyloids and associ-

ated diseases. We hope the two case studies shared demonstrate how users may find DES-A-

myloidoses to be a valuable tool for supporting amyloidoses-related research questions.

Furthermore, we intend to update the KB biannually to ensure the KB contents remain

current.
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