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Abstract

The stereo correspondence problem exists because false matches between the images

from multiple sensors camouflage the true (veridical) matches. True matches are corre-

spondences between image points that have the same generative source; false matches

are correspondences between similar image points that have different sources. This prob-

lem of selecting true matches among false ones must be overcome by both biological and

artificial stereo systems in order for them to be useful depth sensors. The proposed re-

examination of this fundamental issue shows that false matches form a symmetrical pattern

in the array of all possible matches, with true matches forming the axis of symmetry. The

patterning of false matches can therefore be used to locate true matches and derive the

depth profile of the surface that gave rise to them. This reverses the traditional strategy,

which treats false matches as noise. The new approach is particularly well-suited to extract

the 3-D locations and shapes of camouflaged surfaces and to work in scenes characterized

by high degrees of clutter. We demonstrate that the symmetry of false-match signals can be

exploited to identify surfaces in random-dot stereograms. This strategy permits novel depth

computations for target detection, localization, and identification by machine-vision sys-

tems, accounts for physiological and psychophysical findings that are otherwise puzzling

and makes possible new ways for combining stereo and motion signals.

Introduction

A necessary step in the stereoscopic reconstruction of 3-D surfaces is to select correspondences

between image features captured by multiple cameras or eyes. To usefully combine the two

images (‘L’ and ‘R’) and extract depth information, the system must distinguish ‘true matches’,

which combine L- and R-image elements whose source is a single environmental feature, and

‘false matches’, which combine similar image elements from different objects or from different

parts of the same object. False matches create the correspondence problem; they mimic true

matches while specifying disparities between the two images other than those produced by real

objects.
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Traditional solutions to the correspondence problem start with constraints consistent with

natural image properties. These constraints are used to reinforce likely true matches and sup-

press likely false ones. Often this is done through refinements and elaborations of strategies set

out in Julesz’s [1] and Marr and Poggio’s [2,3] cooperative algorithms, which continue to stim-

ulate developments in psychophysical, physiological, and computational approaches to stereo-

scopic processing, and remain essential components of current, state-of-the-art machine

vision methods, e.g., [4–6], also see [7]. These approaches are conventional in that they employ

‘direct’ algorithmic searches; they attempt to find true matches by selecting for likely true

matches. The approach considered here is different in kind—an ‘indirect’ approach that

locates true matches using cues possessed solely by false matches. It is compatible with both

correlation- and feature-based methods of stereo matching, yet dispenses with an integral

component of direct approaches, the need to suppress false matches.

The full set of matches, both true and false, is expressed in the Keplerian array (KA). Fig 1

shows a KA produced by two 1-dimensional binary random-dot images, which appear on the

margins. The KA compares the features of the two images and classifies each feature pair as

matching (red dot) or mismatching (white). The image features themselves can be defined as

desired. The x-direction of visual space is coded along the horizontal direction within the KA

and the z-direction is coded along the vertical direction. There are many more matches than

image dots. Each black or white dot produces multiple matches, only a small fraction of which

are true matches. Horizontal lines in Fig 1 connect the true matches produced by three fronto-

parallel surfaces; all the other matches are false matches. The problem of winnowing true from

false matches—the correspondence problem—can be especially challenging when target

objects are presented under camouflaged or crowded conditions.

We show here that instead of being a source of noise, false matches hold information about

the location of true matches. True matches can be thought of as an axis of symmetry in the

Keplerian array. False matches are symmetrically distributed on either side of this axis. The

two sides are related to the other by a scaling transformation that specifies the depth profile of

the surface generating the true matches. Fig 2 shows an example for the case of frontoparallel

surfaces, which produce a reflection symmetry within the diamond-shaped symmetry zones in

the orthogonal arrays used here. Surface slant adds an additional differential scaling transfor-

mation to the symmetry (Fig 3; arrows link symmetrical false-match nodes). This changes the

aspect ratio of matching blocks across the symmetry axis and hence changes the aspect ratio of

the symmetry region itself. For planar surfaces, aspect ratios of corresponding matching blocks

differ by a constant ratio that is directly related to surface slant. For curved surfaces (Fig 4),

this ratio is no longer constant. Instead, it undergoes a systematic variation across contiguous

corresponding matching blocks. This variation depends directly on the curvature. Depending

on the curvature parameters, this introduce a second-order expansion/contraction transfor-

mation of corresponding matching blocks across the symmetry axis.

Thus, each set of potential true matches—each contiguous string of nodes in Figs 2, 3 and 4

with a monotonic ordering along the x-axis (horizontal)—is flanked by arrays of nominally

false matches. The symmetry function relating the two flanking regions describes the depth

profile of the true-match surface. This function ranges from a simple reflection of matching

regions across a frontoparallel symmetry axis to a haphazard pairing across a random depth

profile, which is the ‘symmetry axis’ created by uncorrelated L and R input. The symmetry

parameters form an alternative coding of true-match structure, no less accurate for the sym-

metrical false matches being ‘non-veridical’.

The sources of the true matches in Figs 1–4 are perfectly camouflaged surfaces (see the mar-

ginals of the KAs); there are no signals corresponding to the surfaces in either monocular
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image alone, only in the correlation between the images. Outside these symmetry zones, the

expected patterning is random.

For frontoparallel surfaces the reason for the symmetry is this: Let surface image points L(i)
and R(j) on the left and right retinas be true matches. Then, for unequal integers m and n, if

surface image points L(i+m) and R(j+n) falsely match, then so do L(i+n) and R(j+m) (because

in order for the surface to be frontoparallel, L values must equal R values within the limits of

the surface’s coordinates). A non-frontoparallel surface warps this reflection correspondence

between the L(i+m):R(j+n) and L(i+n):R(j+m) pairs, for there is no longer equality (with

Fig 1. Keplerian array with true matches linked by horizontal lines. L and R images are presented in the margins and compared in an

orthogonal array space. Points in the L image that match points in the R image (black/black or white/white combinations) are denoted by

red dots in the array, while mismatching points (white/black combinations) are left blank. The orthogonal format of this and subsequent

depictions of the KA has been adopted for convenience. A more realistic array, one reflecting actual sensor positions, could have been used

but to no advantage. The transformation to and from the orthogonal format is straightforward and bestows both conceptual and

computational benefits.

https://doi.org/10.1371/journal.pone.0219052.g001
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disparity offset) between L and R. Yet the inequality—the disparity function that relates the left

and right retinal images—is still encoded in the false matches; the warping fully preserves the

surface’s deviation from the frontoparallel plane.

In an antecedent of our approach, Tyler [8–9] observed that a surface on the horopter (i.e.,

having a disparity of zero) divides the KA into two sets of ‘conjugate pairs’, false matches hav-

ing the same disparity magnitude but opposite signs. He suggested disparity averaging along

lines of sight as a strategy for cancelling the conjugate pairs and thereby exposing the true

matches. He also pointed out a limitation of this strategy: Conjugate false matches for slanted

surfaces are not arrayed along lines of sight and therefore are not cancelled by averaging. Simi-

larly, averaging fails for frontoparallel surfaces that do not lie on the horopter and for those

that have extents less than the full KA. In both of these cases, conjugate pairs do not extend in

Fig 2. False match symmetry zones. False matches form diamond-shaped symmetry zones (boxed regions) surrounding the true matches

of frontoparallel surfaces. The true matches lie along the axis of symmetry.

https://doi.org/10.1371/journal.pone.0219052.g002
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depth across the entire KA; therefore, averaging along lines of sight does not eliminate all but

true-match disparity values. However, false-match symmetry can be put to use in ways other

than averaging, which we demonstrate here.

While false-match symmetry can be used to resolve the correspondence problem, it is not

sufficient for the perception of depth in biological—at least primate—visual systems. Interocu-

larly anticorrelated stimuli and their correlated counterparts produced KAs that are in anti-

phase: matches replace mismatches and vice versa. As a result, the two stimulus types produce

the same symmetry-zone parameters. However, anticorrelated stimuli lead to mismatches

instead of matches along the axis of symmetry and generally do not lead to the perception of

depth [10,11]. Thus, for animal vision false-match symmetry must be regarded as a cue to the

location of true matches rather than a direct signal of surface depth.

Fig 3. The sheared symmetry zone surrounding the true matches of a slanted planar surface. A bold black line has been drawn through

the true matches generated by a slanted planar surface. Red regions off this line are false matches. The thin lines form a rectangle bounding

the region of false-match symmetry. Discrete matches, as shown in Figs 1 and 2, have been merged into continuous blocks to emphasize

their shapes and sizes. Arrows link symmetrical false matching nodes.

https://doi.org/10.1371/journal.pone.0219052.g003
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Using false-match symmetry to sense surface shape

The three classes of surface shape in depth—frontoparallel surfaces, slanted planar surfaces,

and curved surfaces—each generates false-match symmetry zones in the KA that are distin-

guished by the transformation relating the false matches on one side of the symmetry axis to

the corresponding false matches on the other side. We use random-dot stereograms (RDSs) to

show the feasibility of recovering the depth profile of these surfaces using false-match symme-

try. We also examine the effects of false-match probability and luminance differences between

the L and R images, which mimic the influence of noise or a non-Lambertian reflectance func-

tion. Our goal is to show that false-match symmetry can be used to recover surface depth.

There are many potential algorithms for detecting false-match symmetry, including hybrid

approaches in combination with direct searches for true matches. Ours was designed to allow

Fig 4. Surface curvature smoothly varies the shearing transformation of the false-match symmetry. A curved surface is composed of

local planar segments defined by contiguous points of identical texture elements. The result is a continuous variation in the difference

between aspect ratios of corresponding matching blocks. Corresponding points on these blocks are linked here by arrows.

https://doi.org/10.1371/journal.pone.0219052.g004
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us to study intermediate computational states, not to optimize performance for a particular

criterion. The method we use seeks, in effect, to characterize all possible symmetry regions in

the KA and to select those that correspond to the symmetrical false matches likely generated

by smooth depth profiles. The method assumes that surfaces are larger than clusters of texture

elements having similar statistics; it assumes, for example, that the binary colored surface is

not all white or all black. Because the texture elements are randomly colored, this assumption

is, of course, probabilistic.

Method

Stimuli

In order to simulate the highest degree of camouflage, we generated instances of pairs of one-

dimensional random-dot images that had equal proportion of randomly assigned white and

black dots. Each image was composed of 1x101 pixels. There were no monocular cues to the

position or the shape of the surface, which was defined by disparity only and revealed by com-

bining the two images into a RDS. The RDSs contained camouflaged surfaces whose depth

profiles were either frontoparallel, slanted, or curved and whose extent spanned all or part of

the 101 pixels of the stereogram. We also generated stereograms with grayscale intensities by

randomly assigning each pixel with a floating-point number between zero to one from a uni-

form distribution. These also depicted frontoparallel, slanted, or curved surfaces, but generated

fewer false matches than the binary images.

A set of conditions introduced noise into the pixel intensities to simulate non-Lambertian

reflections and other factors that render corresponding points unequal in intensity. We varied

both the proportion of pixels that carried noise and the amount of noise between correspond-

ing points. Noise was randomly selected from a uniform distribution up to the maximum

allowable intensity difference, halved, and applied to the L and R images with opposite polari-

ties (noise intensity subtracted from the R image if added to the L, and vice versa).

Image processing and constructing Keplerian arrays

The KAs shown in Figs 1–4 were formed by simple arithmetical combination of L and R image

elements. The false-match symmetry parameters within such KAs could be extracted directly

in order to locate the symmetry axis and identify candidate true matches. However, in physi-

cally realized systems, non-Lambertian reflectances, pre-processing operations, and noise

would make their own contributions. The resulting KA would differ from the idealized arith-

metical KA and would be more informative from an implementational view. We chose to con-

struct the KA by optionally adding intensity noise, filtering each image with an array of paired

L and R Gabor kernels, and combining the filtered output into Keplerian arrays whose false-

match symmetry could be scored using these filtered outputs to identify regions of symmetry

and candidate true matches.

In order to visualize KAs and identify symmetrical patterns at different spatial resolutions,

images were convolved with pairs of antiphase odd-symmetric Gabor kernels of various sizes

(Fig 5A). Kernel size was varied by incrementing the wavelength of grating component in

steps of single pixels, while keeping the standard deviation of the Gaussian envelope always at

4⨉ the wavelength. This was a monocular operation. Products from every L kernel at the vari-

ous resolutions were then additively combined with the products of every antiphase R kernel

of various resolutions. This created multiple KAs; there were n×m KAs, given m differently

sized L kernels and n differently sized R kernels (Fig 5B). Paired L and R kernels were in anti-

phase in order to pick up false matches, as explained below.
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Match determination and pooling

Matches within a KA were determined pixelwise, by summing the left and right convolution

products. The combined convolution products define a potential symmetry zone. True

matches lie along the zero crossing of the kernels and so would cancel. False matches flanking

the symmetry axis and parallel to the other diagonal would have identical but oppositely signed

Fig 5. Reconstruction of depth profiles using false match symmetry in Keplerian arrays. (A) Stereo images were first convolved with odd-

symmetric Gabor kernels of various sizes. (B) The convolution products of each KA were summed and rectified (squared) at every possible pixel

combination. White patches indicate highly symmetrical, and black patches, unsymmetrical. (C) Decorrelation scaled and normalized the rectified

binocular signals according to its cumulative distribution so that KAs sampled at different resolutions are comparable (see Supplementary Methods in

S1 Text).

https://doi.org/10.1371/journal.pone.0219052.g005
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outcomes (Figure B in S1 Text). This false-match outcome was used as evidence of symmetry.

Thus, each KA produced by the steps above will have a different spatial resolution, where each

pixel in the KA contained a scaled and normalized signal that represented the degree to which

L and R images matched at the positions corresponding to that pixel (Fig 5C; see S1 Text for

details).

The coarsest resolution at which symmetry can be detected within such a zone is indicative

of the width of the candidate true match, while the ratio of left and right kernel sizes—the

aspect ratio of their combination—yielding the strongest evidence of symmetry indicates its

slant (Fig 6; also see Figure B in S1 Text). To accumulate the evidence for symmetry across spa-

tial resolutions, the signals within each KA were first rectified by squaring and then pooled

and ranked across KAs of different kernel resolutions and L and R aspect ratios (see Figure C

in S1 Text). The false-match symmetry that flanks true matches should be consistent across all

resolutions within the symmetry zone and will reinforce rather than cancel when combined.

Response optimization

Image processing was initialized with Gabor kernels with standard deviations that ranged

from a third of the image resolution to a third of the Nyquist frequency. This range was chosen

to enable 99% of the information contained within 2 pixels to be sampled by the smallest ker-

nel, and 99% of the entire image to be sampled by the largest kernel. Threshold was initially set

at the 95th percentile. These initial parameters may not be optimum for the surface properties

in the stereogram (see Results). Hence, the range of the Gabor kernels and the threshold were

iteratively optimized from the initial estimate by an unsupervised combination of simulated

annealing and least squares minimization to maximize the signal-to-noise ratio.

The objective function maximized the signal-to-noise ratio, which in this implementation

was defined as evidence for the presence of slants in the individual channels. Accordingly, the

averaged data in each slant’s channel were subjected to the Hough Transform. The signal-to-

noise ratio in each channel was:

SNR ¼
var ðyÞ

var ðy =2 PopÞ

where θ is orthogonal to the expected slant angle in each channel and Pop represents all angles

in the transform.

S1 Fig gives the step-by-step procedure of the methods using an example random-dot ste-

reogram as input.

Results

Our technique selects solutions by identifying symmetrical regions of false matches in Kepler-

ian arrays (Fig 5). The size of the symmetrical region is correlated with the extent of the target

surface, while the aspect ratio of the symmetrical region is related to surface slant (Figs 2 and

3). For each surface type, the images we used for analysis were one-dimensional horizontal

strips taken from each pair of twenty 101x101-pixel RDSs. Pixels in these RDSs were had either

binary intensity values or were grayscale, with randomly assigned intensity values taken from a

uniform distribution between 0 and 1. Each image pair was convolved with odd-symmetric

Gabor kernels of different sizes. The kernels for L and R images were in anti-phase. Examples

of a single pair of kernels applied to the two images are shown in the marginals of Fig 6A.

Matches between L and R images were made by summing pairs of filter outputs. The output of

filters of all combinations of sizes were summed, each combination producing a KA. Summa-

tion of L and R filter output is equivalent to placing an odd-symmetric binocular receptive
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Fig 6. Binocular receptive fields obtained by summing and squaring phase-reversed monocular receptive fields. (A) Two examples of L and R antiphase

kernels. Kernels pairs include those with the same and different sizes. Their summation results in odd-symmetric binocular receptive fields where the negative

(dark) and positive (light) regions lie on either side of the symmetry zone (white box) flanking the true matches (white diagonal). Near-zero sums (A) are

indicative of true match symmetry axes, and rectification (B) would give positive outcomes in all other cases. (C) Two examples in which the surface is a slanted

plane of different sizes. Insets show the rectified binocular receptive fields.

https://doi.org/10.1371/journal.pone.0219052.g006
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field at a depth plane specified by the disparity of the individual positions of the kernels (Fig

6A). A near-zero binocular sum would be consistent with the presence of a surface with that

disparity, for the product of one side of the false matches would cancel the product of its sym-

metrical other side. Asymmetrical regions would produce non-zero signals. Rectification

(through squaring) before summation doubles the symmetry scores (Fig 6B). Applying both

operations in sequence improves selectivity for true matches over false positives.

Large surfaces generate large symmetry regions with correspondingly large sampling band-

widths (Fig 6C). Selection of candidate surface depth profiles was based on signal strength for

each aspect ratio up to the limiting kernel size. Note that this detection scheme makes no spe-

cial provision for curved surfaces, whose signals will be dispersed across aspect ratios. The fol-

lowing sections present examples of this strategy as applied to random-dot surfaces with

different depth profiles and examines the effect of noise level on the outcome. Mean parameter

values (kernel sizes, thresholds and mean signal-to-noise ratios) for reconstructed surfaces in a

large representative sample of all conditions tested appear in Table 1 at the end of Results.

Horopter surfaces

The simplest stereogram consisted to identical grayscale L and R images (Fig 7A), from which a

single row (marked by red box) was analyzed. This RDS contains true matches along the horop-

ter spanning the entire image width and conforms to Tyler’s [8,9] conjugate-pair assumptions.

Twenty independent samples of the horopter depth plane were analyzed, each with a ran-

domly selected set of grayscale pixel intensity values. To maximize the number of false matches,

we generated another twenty random dot stereograms, now with binary intensity values. Fig 7B

shows the reconstructed profiles for these grayscale and binary images. They were supported by

L/R kernels with ratios of 1. The Gaussian component of these kernels ranged between 0.1 and

19 pixels (standard deviation of the Gaussian envelope). Including kernel sizes outside this

range reduced the signal to noise ratio and increased the number of spurious matches. The

means and standard deviations of the SNRs are given in Fig 7C. These SNRs were compared to

uncorrelated random dot stereograms control conditions generated by scrambling the pixel

intensity values in both L and R images. SNRs for the horopter-surface stereograms were signifi-

cantly higher than for the uncorrelated stereograms (p<0.01; t-test) across the 20 samples.

Table 1. Results summary. Kernel sizes, threshold values, and mean signal-to-noise ratios for a set of conditions discussed in the text.

Stereogram Kernel size Threshold SNR

Grayscale horopter 0.1–19 0.0001 25.07±8.40SD

Binary horopter 0.1–19 25.58±5.16SD

Binary multi-frontoparallel 0.1–6.5 7.98

Grayscale multi-frontoparallel 0.1–6.5 10.74

Binary 18.4˚ forward slant 1–19 15.88

Binary 26.5˚ forward slant 2–19 28.68

Binary 18.4˚ backward slant 1–19 11.75

Binary 26.5˚ backward slant 2–19 22.37

Grayscale 26.5˚ backward slant 2–19 27.5313

Binary 5% noise, 50% pixels 0.1–6.5 5.82

Binary 10% noise, 50% pixels 0.0002 2.29

Binary 20% noise, 50% pixels 2.31

Binary 30% noise, 50% pixels 1.66

Binary 5% noise, 25% pixels 0.0001 6.27

Binary 5% noise, 75% pixels 5.0

Binary 5% noise, all pixels 3.55

https://doi.org/10.1371/journal.pone.0219052.t001
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The average performance across the twenty binary stereograms, as measured by the SNR,

was no higher than the grayscale stereograms with fewer false matches (Fig 7C), suggesting

that though the reconstructions were visibly different, performance had plateaued with respect

to the number of false matches.

Complex surfaces

We presented the algorithm with both binary and grayscale stereograms containing three dis-

joint frontoparallel surfaces, surfaces slanted 18.4˚ and 26.5˚ relative to the horopter, and con-

cave curved surfaces. Again, there twenty samples of each case. For frontoparallel and slanted

surfaces, the reconstructed depth profiles were similar for binary stereograms (examples of

which are shown in Fig 8A and 8B, respectively), and grayscale stereograms (Fig 8A and 8B,

insets), showing that performance does not degrade as the number of false matches increases,

as it tends to do in other methods. Reconstruction parameters are related to surface size, ker-

nels for the frontoparallel surfaces averaging between 0.46 to 6.8 pixels, with those for the slant

averaging between 1.88 to 19.2 pixels. Planar surfaces, regardless of the slant (up to 26.5˚),

were detected well in RDSs (Fig 9).

Curved surfaces, by contrast, were detected at a low level. The SNR was 1.42. As previously

noted, our surface selection procedure favored planar surfaces; moreover, curvature recon-

struction is intrinsically more difficult. Spatially asymmetric kernels, which were not utilized

here, could prove helpful. SNRs for the depth profiles are given in Fig 8C.

Added noise

Natural surfaces seldom have Lambertian reflectances. Hence, under natural viewing condi-

tions, corresponding points often differ in intensity. To examine the effect of differences

between the luminance of corresponding dots, we introduced random noise into RDSs depict-

ing three frontoparallel surfaces. Noise was manipulated by varying the range of luminance

variation across all corresponding dots in the images or by varying the number of noisy corre-

sponding pixels. In the former case, the magnitude of variation was chosen randomly from a

uniform distribution from zero to the cutoff. In the latter case, the intensity cutoff was 5%.

Signal strength dropped sharply as the maximum noise value increased to 10% (Fig 10A).

With maximum noise at 30%, the signal was still above chance level, but barely. By contrast,

smaller intensity differences were reasonably well tolerated, with SNR gradually declining with

the proportion of noisy pixels (Fig 10B). Thus, noiseless images are not necessary for recovery

of object surfaces in RDSs by this method. Modifying the algorithm at the filter level to down-

weight the contributions of fine-scale kernels might increase noise tolerance generally.

Results summary

Table 1 gives mean parameter values (kernel sizes, thresholds and mean signal-to-noise ratios)

for the reconstructed surfaces in a representative sample of all the planar-surface conditions

tested. In all of these cases the symmetry-identified true matches superimposed with ground

truth, with minor exceptions that appear at the ends of surfaces in low-signal-to-noise-ratio

conditions (see S2 and S3 Figs).

Discussion

The relation between true and false matches

The distribution of features within stereo image pairs determines the extent to which false

matches will populate the KA. When each feature in one image has only one matching
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counterpart in the other image, then there are no false matches and no correspondence prob-

lem. Stereopsis is then ‘local’ [1]. We show here that if false matches do co-exist with true

matches, the organization of the two is tightly coupled. In particular, false matches within the

texture of a single surface are reflected across the true matches in the KA (Fig 3; arrows within

Fig 7. Example RDS and associated depth recovery. (A) An example of a 101x101 grayscale random-dot stereogram.

The L and R images are identical. A horizontal row extracted from the middle (red boxes) was provided to the

algorithm. (B) Left: True matches fall on the horopter. Right: Surface recovery from an example stereogram. Ground

truth to these solutions appears in panel A of S2 Fig. (C) Mean signal-to-noise ratios across 20 simulations each of

grayscale and binary stereograms. Error bars indicate standard deviations of the SNR. ‘Corr’ denotes fully correlated

RDSs; ‘Scram’ denotes pixel-scrambled controls.

https://doi.org/10.1371/journal.pone.0219052.g007

Fig 8. Examples of reconstructed profiles. Surface reconstruction in (A) is from multiple frontoparallel depth planes (ground truth in panel B of S2

Fig) and in (B) from a single 26.5˚ slanted surface (ground truth in panel C of S2 Fig). Image intensity values were binary (grayscale for insets). (C)

Performance with binary and grayscale images for the two surface profiles.

https://doi.org/10.1371/journal.pone.0219052.g008
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the red block). Locating this symmetry and characterizing the relationship between the two

false-match regions can specify the position and depth profile of object surfaces. Detecting

false-match symmetry is a novel means of population readout: The property that is read out,

Fig 9. Reconstruction of planar surfaces with different slants. Reconstructions (top) have slants with L and R components in ratios of 2:1 and

3:1. SNRs for each slant (bottom) are compared with scrambled versions of the same stereograms. Ground truths are shown in panels D and E of

S2 Fig.

https://doi.org/10.1371/journal.pone.0219052.g009
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symmetry, is not a property to which the population units are sensitive. The method uses all

the information in the KA and offers a way of solving the correspondence problem in binocu-

lar vision that can be applied directly to motion, as discussed below.

We demonstrated the use of false-match symmetry for detecting surfaces camouflaged

within RDSs. False matches dominate the correspondences between pairs of these images,

making the identification of true matches a challenge. Biological stereo systems can in many

instances solve the RDS correspondence problem readily, even in the presence of considerable

between-image distortion [12]. This is despite the fact that objects rendered in depth in RDSs

are defined solely by the correlation between the L and R stereo images. Because the target

objects are not contained in either L or R image alone, correspondence performance is not

limited by within-image object segmentation requirements. Hence, RDSs are an excellent

Fig 10. Effect of added intensity noise. (A) Signal-to-noise ratio as a function of corresponding pixel intensity differences. (B) Signal-to-noise ratio as a function of

the percentage of noisy pixels. Graphical depictions of the solutions are in S3 Fig. Ground truth to the solutions are in panel D of S2 Fig.

https://doi.org/10.1371/journal.pone.0219052.g010
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format for testing correspondence algorithms. Compared with conventional images, RDSs

also magnify the number of false matches, which serves our present purpose.

The correspondence problem can be resolved directly, by selecting true matches, or indi-

rectly, by using the flanking patterns of false matches to locate the true matches. The sought-

after image properties in the two cases are quite different. The false-match parameters, unlike

the true-match parameters, are not those associated with the objects that produced the images.

Instead, they are properties of associated with symmetrical regions of false matches and the

transformations operating on these regions. Frontoparallel surfaces, slanted planar surfaces,

and curved surfaces, when covered with non-unique texture elements, create distinct transfor-

mations of false-match symmetry in the KA. In the orthogonal KAs used here, true matches of

frontoparallel surfaces are flanked by regions of false matches with reflection symmetry. True

matches for slanted surfaces are flanked by symmetrical reflections of false-matches that are

scaled by a constant (Fig 6). The symmetry of false matches from curved surfaces have system-

atically varying aspect ratios.

A frontoparallel surface extending across the visual field along the horopter divides the KA

into reflected positive and negative disparity domains. Tyler [8,9] suggested disparity averag-

ing along lines of sight as a means of cancelling the false-match disparity values, thereby reveal-

ing the presence of the true matches. For other cases, including off-horopter frontoparallel

surfaces and slanted or curved surfaces, line-of-sight averaging does not lead to cancellation.

However, false-match symmetry does not have to fill the entire KA or fall along lines of sight

in order to be useful. Characterizing the transformation that maps the relatively ‘near’ false

matches onto the relatively ‘far’ false matches gives the disparity profile of the true-match can-

didates lying on the axis of symmetry that divides them.

Using example frontoparallel, slanted, and curved surfaces rendered by the correlation

between L and R random-dot images, we showed the feasibility of selecting true matches by

examining the flanking false-match regions. Our demonstration was restricted to a horizontal

dimension. Even so, the algorithm was relatively computationally intensive given the image

size. For purposes of demonstration, this is not of great concern; efficiency was not our goal.

For other purposes, the desired resolution could vary with the expected parameters of target

surfaces. Other computational strategies exist. Graphical methods dedicated to the detection

of symmetry, for example, are not considered here but would be of obvious utility.

Comparison with other approaches. The goal of solving the correspondence problem is

to find likely true matches. Our method differs from others in that it approaches this goal indi-

rectly. Instead of searching for matches with the properties expected of true matches, it

searches for false matches having properties that lead to the location of true matches. These

false-match properties are not the properties of likely true matches—smoothness, for example.

Instead, the sought-after property is a relationship between regions of false matches.

Though this is a novel approach, the algorithm we use to find symmetry has features in

common with other biologically inspired stereo-correspondence algorithms. Even so, the com-

monalities are partial and come with critical antitheses. Many traditional correspondence algo-

rithms are dense matching processes in that they employ spatial filtering at various scales and

positions to identify corresponding points or cooperative processes involving networks of

excitatory and inhibitory elements. For example, Marr and Poggio’s 1979 [3] algorithm detects

true matches consistent with smoothness by spatially filtering and detecting correspondence

first at a coarse level, which are then used as guides to bring finer details into correspondence.

The disparity map is built up sequentially. Such multi-resolution filtering is a common way to

generate a disparity space and it is used in our algorithm.

In algorithms like this, true matches are sought within disparity ranges and gradients that

enforce a smoothness constraint. Smoothness is supported with a range around the x-axis (or
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the x-y plane) and is inhibited along the z-axis (e.g., [2,13]). In seeking false-match symmetry,

our approach looks in the opposite direction. Symmetry is sought along an axis offset from

that the surface—normal to the surface in the case of frontoparallel surfaces (in general, angled

from the frontoparallel normal by -θ for a surface with slant θ). In addition, and in contrast to

many other approaches, it requires no edge or zero-crossing detection, no feature identifica-

tion, no image segmentation, and no constraints to the range of disparities or temporal delay

in detecting fine ones. Because the signals it exploits are complementary to those used else-

where, our algorithm can be combined readily with others. This could produce a flexible sys-

tem of depth and surface profile detection suitable also for motion-in-depth analysis.

Motion, like binocularity, has a correspondence problem: finding true matches among false

ones in images separated in time rather than in space. This makes the KA’s false-match sym-

metry useful for jointly extracting stereo depth and motion signals. Extending the false-match

symmetry analysis to motion is made easy by relabeling: Changing the ‘Left/Right Retina’ axis

labels in Figs 1–4 to ‘Single Retina at Time 1/Time 2’ gives a coding of 2-frame monocular

object motion (extendable to ‘Time 2/Time 3’ and so on.). Bilateral (top/bottom) mirror-

image symmetry—hence, true matches confined to the KA’s horizontal bisector, from corner

to corner—represents a static display, the motion analog of a frontoparallel plane with zero

disparity.

At the more peripheral level of binocular correlation, our implementation again employs

elements found in other models. Its use of binocular summation and rectification, for example,

is seemingly similar to that found in the disparity energy model [14,15]. However, the energy

model computes correlation by employing units that vary in either the position or phase of the

receptive fields in quadrature. Its purpose, like that of other binocular matching mechanisms,

is to detect correspondences between images, not to distinguish true and false correspon-

dences. Hence, its output, over an array of units, is a KA, complete with the correspondence

problem. By contrast, our approach uses odd-symmetric kernels in antiphase throughout to

ensure detection of false-match symmetry and to solve the correspondence problem. True

matches are scored lowly and disregarded. Unlike the energy model’s output, signals in our

KAs are not depth readouts. Computed signals in the KAs indicate the confidence of the pres-

ence of symmetry. The position within the KA where this signal is found to be consistent

across kernel sizes corresponds to the depth profile. Most fundamentally, other approaches dif-

fer from false-match symmetry in that they function best where our approach would fail: in

images that lack false matches.

The disparity energy model has been quite successful in accounting for behavioral and

physiological responses to disparity. It predicts disparity-selective responses not only to corre-

lated input, but also to anti-correlated input. Anti-correlated stimuli produce a sign-reversed

response in disparity energy units, a response seen in neurons in several areas of primate visual

cortex [9,10,16], though without an accompanying perception of depth of densely textured

surfaces [17–19]. The Keplerian response to anti-correlated input is the inverse of the match-

ing array produced by the correlated version of the same input. Matches and mismatches in

the KA switch places, preserving the symmetry parameters (Fig 11). It is clear that false-match

symmetry, if used in biological systems, would locate true matches rather than produce per-

ceptions of depth directly; since only mismatches would be found along the symmetry axis,

observers would not see depth from anti-correlated stereograms. It is also clear that the pres-

ence of true matches is not necessary for false-match symmetry to locate the symmetry axis;

false matches locate the same symmetry axis whether the input is correlated or anti-correlated,

though true matches (as usually defined) exist in one and not the other. The perception of

reversed depth in anticorrelated input, to the extent it occurs at all, is found primarily in sparse

visual patterns, such as isolated lines or dots [20]. Such situations eliminate mismatches,
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perhaps allowing the output of local correlators, rather than matches along a symmetry axis, to

drive perception.

Further biological considerations

Many low-level binocular neurons in mammals, whose receptive fields span a range of spatial

frequencies, orientations, and sizes, also code disparities between the eyes [21]. Individual neu-

rons are tuned to a limited range of disparity values typically related to receptive field size (the

‘size-disparity correlation’) [22–24]. This is sufficient for the ensemble of neural responses to

disparity to form a Keplerian array. But the KAs like those shown in Figs 1–4 are fully con-

nected and code all disparities regardless of size, whereas biology favors local connections and

limited means of coding large disparities. The maximum disparity that yields perceived depth

varies with stimulus scale and retinal eccentricity, but in humans it may be as large as 10˚ of

visual angle or more (reviewed in [21]), far exceeding the fusible range. Even so, a biologically

instantiated KA of sufficient lateral extent would lack representation of very large disparities.

A disparity limit would affect the upper and lower apices of KAs like those shown in Fig 1,

where disparities are largest.

A measure of whether the correspondence problem has actually been solved in a particular

cortical area can be gained by examining neural responses to false matches. Physiological

recordings in primate inferior temporal cortex, reveals a dorsal (or ‘what’) pathway in which

neurons respond to correlated RDS displays of object surfaces but not to anticorrelated RDS’s

[25]. This provides evidence of a selective response to true matches and a rejection of false

matches at or before activation of this region of cortex. But multiple areas along the dorsal

(‘where’) pathway do respond well to anticorrelated stereograms [16], indicating that the cor-

respondence problem has not been solved. These dorsal areas are also strongly tuned to

Fig 11. Effect of anti-correlation. (A) The KA associated with correlated random-dot input. Binary L and R input is in the margins. Matching points in the KA are

marked in red. The horizontal line runs along the axis of symmetry, cutting through the true matches for a frontoparallel surface. (B) The inverted KA associated with the

anti-correlated version of the input seen in (A). The axis of symmetry is unchanged, but now passes through mismatches.

https://doi.org/10.1371/journal.pone.0219052.g011
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motion. Thus, false matches appear to be propagated through a series of functional areas that

might be used in the computation of motion in depth. The transformations that relate the sym-

metrical blocks of false matches that flank true match also characterize solutions to the motion

correspondence problem for rigid object surfaces moving in three-dimensional space [26,27].

Fig 12. Keplerian array overlaid with a co-extensive pair of receptive fields. The receptive field, one with even symmetry and one with

odd symmetry, straddle a row of true matches. In this position, the odd receptive field, if no larger than the false-match symmetry zone, will

give an output of zero. The even receptive field, if not summing over mismatches only, will give a non-zero output. The ratio of the outputs

over the two receptive fields serves as a symmetry detector.

https://doi.org/10.1371/journal.pone.0219052.g012
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Hence, the coding of false-match structure may be isomorphic with the coding of motion-

defined spatial structure and both may be analyzed by the same circuitry and computational

strategy [28–30]. Supplementing evidence of use of false-match symmetry for depth perception

[31] with moving stimuli would provide a means of testing the computation behind perceived

motion in depth.

Symmetry detection, too, can be and has been implemented biologically, as shown by

ample data starting with Mach’s [32] observations on the human response to spatially symmet-

rical patterns. Our detection problem is similar; instead of detecting a spatially symmetrical

pattern of visual input, as concerned Mach, we have the problem of detecting a pattern of neu-

ral responses to symmetrical relative disparity values. An easily visualized and biologically real-

istic version of our algorithm relies on the Fourier transform of a symmetrical signal being a

real function, the sine terms having a coefficient of zero. It compares the responses of two neu-

rons with co-located receptive fields (filters), one with even symmetry and one with odd sym-

metry—counterparts of the transform’s cosine and sine terms. This is shown in Fig 12, where

the receptive field pair is aligned with a row of true matches. High values of the even:odd out-

put ratio would identify candidate regions of reflection symmetry. An odd receptive field cen-

tered on the symmetry axis will output a low (ideally, zero) value; the co-located even receptive

field will output a low value of integrated nodes only if those nodes are mismatches (outputting

zero). The even receptive field thus serves a control function: It negates the effect of odd recep-

tive fields whose low output is due to input from mismatches rather than symmetrically dis-

tributed matches. This, like the basic false-match symmetry concept, is entirely a post-

matching computation, so any correlator—energy-model neurons, for example—could be

used to generate the KA in which symmetry is detected. False-match symmetry, in other

words, operates in the realm of global rather than local stereopsis [1].

In order to detect surfaces of different extents and slants, families of receptive field pairs,

spanning a range of sizes and orientations, would have to tile the KA. Still, curves surfaces

would be difficult to detect by this method, unless they were approximated by slanted seg-

ments and integrated into a coherent surface at a later stage of processing. Nevertheless, the

neural components and the required computations are familiar ones that functionally recapit-

ulate the algorithm we used here.
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S2 Fig. Ground truth. Ground truth (ideal solutions) appear in (A) for horopter stimulus (for

results shown in Fig 7), (B) for frontoparallel stimulus (for results shown in Fig 8A), (C) for

26.5˚ backward slant (for results shown in Fig 8B), (D & E) for backward and forward slants

(for results shown in Fig 9), and (F) for noisy frontoparalel stimuli (for results shown in Figs

10 and S3).
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S3 Fig. Effect of noise. Solutions obtained when (A) pixel intensity noise varied between 0%

and 30%, and (B) the proportion of pixels with 5% noise rose from 25% to 100%. SNRs are

graphed in Fig 10.
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