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Abstract: The NLRP inflammasome is a multi-protein complex which mainly consists of the nucleotide-
binding oligomerization domain, leucine-rich repeat, and pyrin domain. Its activation is linked to
microglial-mediated neuroinflammation and partial neuronal degeneration. Many neuropsychiatric
illnesses have increased inflammatory responses as both a primary cause and a defining feature. The
NLRP inflammasome inhibition delays the progression and alleviates the deteriorating effects of
neuroinflammation on several neuropsychiatric disorders. Evidence on the central effects of the NLRP
inflammasome potentially provides the scientific base of a promising drug target for the treatment
of neuropsychiatric disorders. This review elucidates the classification, composition, and functions
of the NLRP inflammasomes. It also explores the underlying mechanisms of NLRP inflammasome
activation and its divergent role in neuropsychiatric disorders, including Alzheimer’s disease, Hunt-
ington’s disease, Parkinson’s disease, depression, drug use disorders, and anxiety. Furthermore, we
explore the treatment potential of the NLRP inflammasome inhibitors against these disorders.

Keywords: NLRP inflammasome; neuropsychiatric disorders; neuroinflammation; pharmacological
treatment

1. Introduction

Neuropsychiatric disorders have a significant impact on human health and quality of
life, causing a huge socio-economic burden on society and overstretching the healthcare
system. Therefore, studies investigating the mechanisms of neuropsychiatric disorders for
effective therapies have increased. Activated inflammatory responses are a major cause
and common feature of numerous neuropsychiatric disorders [1,2]. Nucleotide-binding
oligomerization domain (NOD) and leucine-rich repeat (LRR)-containing receptors or
NOD-like receptors (NLRs) are inflammasomes that are critical to initiate innate immune
responses to host-derived danger signals [3]. Activations of many prototypic NLRs, in-
cluding a NLR with a pyrin domain (NLRP) containing NLRP1, NLRP3, and NLRP4,
result in the maturation and release of different pro-inflammatory cytokines (IL-1β and
IL-18) [4]. The process has been suggested to be of great importance to the occurrence of
programmed cell death, which is called pyroptosis [5]. As a part of the innate immune
system, the NLRP inflammasome regulates the host’s defense against harmful threats. Its
activation is implicated in microglial-mediated neuroinflammation and partial neuronal
degeneration [6]. In addition, it modulates the pathogenesis of various neuropsychiatric
disorders, including Alzheimer’s disease, Huntington’s disease, Parkinson’s disease, Amy-
otrophic lateral sclerosis (ALS), traumatic brain injury (TBI), drug use disorder, depression,
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and anxiety [7]. This review explores the significance and therapeutical implications of
NLRP inflammasomes in neuropsychiatric disorders, geared towards providing a basis for
exploring common pathway-based treatments for different neuropsychiatric diseases.

2. NLRP Inflammasome

NLRP inflammasome is a three-part multi-protein complex which senses danger sig-
nals via the nucleotide-binding oligomerization domain (NOD) such as receptors (NLR)
containing a CARD (C-terminal caspase-recruitment domain), and controls the activation
of Caspase (Casp-1) [8]. The NLRP inflammasome family consists of more than 20 species,
including NLRP1, NLRP3, and NLRP4. Studies on neuropsychiatric disorders primarily
focus on NLRP1 and NLRP3 inflammasome [9]. NLRP1 inflammasome, majorly expressed
in the microglia and neurons of the brain, was the first member of the NLRP family to
be identified [10]. This inflammasome comprises a receptor protein (NLRP1), an adap-
tor protein (ASC), and an effector protein (pro-caspase-1) [11]. NLRP3 inflammasome,
primarily localized in the microglia, was the first inflammasome to be investigated in
the brain. NLRP3 inflammasome is composed of NLRP3, ASC, and pro-caspase-1. As
depicted in Figure 1, the structure of the NLRP inflammasome includes ASC, NLRPs, pro-
caspase-1. The adaptor ASC has two protein interaction domains, an N-terminal PYD and
a CARD [12]. Most inflammatory vesicles are activated by only one or a few highly specific
agonists, but NLRP1 and NLRP3 can be activated by many agonists with a Toll-like receptor
agonist (lipopolysaccharide (LPS), nigericin, monosodium urate crystals, and adenosine-
triphosphate), pathogens (bacteria, fungi and viruses), or a proinflammatory cytokine
(tumor necrosis factor, TNF) [13]. It can also be activated by various signalings specifically
associated with neuropsychiatric disorders, including K+ or Cl−, Ca2+, lysosomal disrup-
tion, mitochondrial dysfunction, metabolic changes and trans-Golgi catabolism [12,14].
In microglia, NLRP3 inflammasome becomes activated when these cells sense proteins
such as misfolded or aggregated amyloid-β, α-synuclein and prion protein or superoxide
dismutase, ATP and members of the complement pathway, and results in the maturation
and release of various pro-inflammatory cytokines (e.g., IL-1β, and IL-18) [7]. IL-1β pro-
motes inflammatory responses including leukocyte infiltrations, lymphocyte activation and
acute phase protein induction. Moreover, after binding to IL-1β receptors, it induces the
secretion of large amounts of inflammatory factors and chemokines [15,16]. IL-18 exerts
its pro-inflammatory effects by stimulating the production of nitric oxide and reactive
oxygen species. NLRP3 inflammasome activation results in caspase-1 activation, in turn
causing cleavage of pro-IL-1β and gasdermin D (GSDMD). Active GSDMD aggregates and
forms pores in the cell membrane, resulting in cell swelling and a programmed cell death
which is called pyroptosis [17]. Pyroptosis is implicated in the pathogenesis of several
neuropsychiatric disorders, such as multiple sclerosis (MS), Alzheimer’s disease, TBI, drug
use disorder, and depression [18,19]. In addition to microglia, NLRP1 and NLRP3 can also
be found in myeloid cells in the central nervous system and may also contribute to the
modulation of central innate immunity [20,21].
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The mechanisms leading to NLRP inflammasome activation are intensely debated.
Some of the detailed signaling pathways involved in NLRP1/NLRP3 inflammasome activa-
tion are described in this article, such as elevated ROS, K+/Ca2+ imbalance and autophagic
inhibition in activating NLRP inflammasome in neuropsychiatric disorders. The mecha-
nisms of action in NLRP inflammasomes in neuropsychiatric disorders are mainly depicted
in Figure 2. Recent reports have revealed complex interactions between the inflammasome
and ROS pathways. Chronic cerebral hypoperfusion (CCH) induces ROS accumulation
and promotes the activation of NLRP3 inflammasomes and the release of IL-1β. How-
ever, URB597 (URB) alleviated autophagy and mitochondrial impairment by reducing the
mitochondrial ROS as well as restoring the lysosomal function, which further inhibited
the NLRP3-CASP1 pathway activation in the rat hippocampus [22]. Acetoxychavicol ac-
etate (ACA) inhibited NLRP3 agonists (e.g., nigericin, MSU crystals, and ATP) in mouse
bone marrow-derived macrophages and NLRP3 inflammasome activation in human THP-
1 monocytes by suppressing the production of mitochondrial reactive oxygen species
(ROS) [5]. In addition, it inhibited the oligomerization of adapter molecules, ASC and the
cleavage of the cystein-1 mediated pyroptosis actuator Gasdermin D [5]. K+/Ca2+ imbal-
ance plays an important role in the activation of NLRP3 inflammasomes. Ca2+ influx and
K+ efflux promote NLRP3 inflammasome activation in mice. In addition, aldose reductase
(AR) regulates NLRP3 inflammation-mediated innate immune responses by altering the
ROS/LYN/SYK/PI3K/Ca2+/K+ signaling pathway [23]. Contact of the P2X7 purinoceptor
with extracellular ATP induces transmembrane K+/Ca2+ imbalance, leading to activation
of NLRP1 and NLRP3 inflammasomes in LPS-stimulated macrophages. This evidence
suggests that both potassium efflux and calcium influx are necessary for the generation
of mitochondrial ROS and to trigger NLRP inflammation [24]. Autophagic activity is
maintained at relatively low levels under steady-state conditions, but is effectively induced
by various cellular stresses, such as organelle damage and pathogen infection [25]. Recent
studies have shown that autophagy, an intracellular degradation system associated with
the maintenance of cellular homeostasis, plays a key role in the inactivation of the inflam-
masome. Notably, autophagy deficiency caused by genetic mutations can disrupt organelle
elimination, thereby inducing aberrant activation of the inflammasome and leading to
severe tissue damage [26]. Blocked autophagy and mitochondrial flux also enhanced the
activation of NLRP3-CASP1 pathways. Autophagy inhibition can lead to lysosomal dam-
age, resulting in the cytoplasmic release of lysosomal contents which (e.g.,) activate NLRP
inflammasome [27]. Mechanistically, Kaempferol (KA) promotes macrophage/autophagy
in microglia and promotes neuroinflammatory suppressive effects through the cooperation
of ubiquitination and autophagy, leading to the reduced expression of NLRP3 proteins
and consequently to the deactivation of NLRP3 inflammasomes in mice [28]. The blockade
of autophagy by genetic ablation of the autophagy regulators Atg16L1 or Atg7 makes
LPS-dependent inflammasome activation possible in the central nervous system (CNS) in
mice [29]. In conclusion, NLRP inflammasome activators play an important role in the
activation of inflammatory vesicles by triggering multiple cellular and molecular events
including potassium-calcium ion imbalance, mitochondrial dysfunction and lysosomal rup-
ture, especially alterations in intracellular ion levels that link different signal transductions;
however, the detailed mechanisms of inflammatory vesicle activation by each activation
signal still deserve more in-depth investigation. Information about the chemical structure
of NLRP inflammatory vesicle inhibitors, models of drug treatment of disease, and clinical
advances in drug treatment of neuropsychiatric disorders are described mainly in Table 1.
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Figure 2. Mechanisms of NLRP inflammasomes in neuropsychiatric disorders.

Table 1. Basic information on NLRP inflammasome inhibitors for the treatment of neuropsychi-
atric disorders.

Name Structure Model Findings Clinical
Advance References

Rg1
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Table 1. Cont.
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3. Roles of NLRP Inflammasome in Neuropsychiatric Disorders

Neuroinflammation is a vital factor in the pathogenesis of psychiatric illnesses, includ-
ing Alzheimer’s disease, Huntington’s disease, Parkinson’s disease, drug use disorders,
depression, and anxiety. In addition, it is involved in sickness behaviors, diminished
cognition, and memory [38].

3.1. Alzheimer’s Disease

Alzheimer’s disease is a neurodegenerative disease with the characteristics of memory
loss and cognitive decreases. It is also associated with progressive atrophy and extensive
neuronal death in the temporal lobe, hippocampus, frontal cortex, and other brain ar-
eas [50,51]. Alzheimer’s disease develops from the accumulation of beta-amyloid (Aβ) and
neuronal tangles comprising hyperphosphorylated tau proteins within neural progenitor
fibers. Subsequent neurodegeneration and microglial activation mediate neuroinflamma-
tion in the brain [52–57]. Oxidative stress, neuroinflammation, and Ca2+ overload are
significant in the development of Alzheimer’s disease. NLRP inflammasome promotes
oxidative stress and inflammation in the brain [58].

There is a significant link between NLRP inflammasome and the pathogenesis of
Alzheimer’s disease [59,60]. Aβ plaques not only induce oxidative stress and damage
neurons, but also activate NLRP3 inflammasomes further releasing IL-1β to trigger neuroin-
flammation in patients with Alzheimer’s disease [61]. In neurons, NLRP1 inflammasome
levels increase by approximately 25–30 fold in the patients with Alzheimer’s disease [62].
Neurotoxic effects of Aβ open the cellular ion channels, causing the inward and outward
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flow of calcium and potassium. An imbalance of K+/Ca2+ activates NLRP1 inflammasome
in neurons, hence upregulating the expression of NLRP1 inflammasome, caspase-1, and
IL-1β in LPS-primed macrophages [13]. Additionally, chronic glucocorticoid exposure is as-
sociated with neuronal degeneration, subsequently accelerating the deleterious progression
in mice. Chronic glucocorticoid exposure in mice activates NLRP1 inflammasome-signaling
pathways [13,63]. NLRP1 inflammasome inhibition by Ginsenoside Rg1 suppressed chronic
glucocorticoid exposure-induced neuronal degenerations in mice [30,31]. Recent studies in-
dicate that pyroptosis could also promote the development of Alzheimer’s disease. Chronic
Aβ treatment significantly decreased PC12 cell viabilities and activated NLRP-1/caspase-
1/GSDMD pathways, which was followed by the increased extracellular release of IL-18
and IL-1β [64].

NLRP3 inflammasome plays a role in destructive inflammatory responses by pro-
ducing active forms of inflammatory cytokines. NLRP3 inflammasome activation mod-
ulates neuroinflammation, tissue damage, and cognitive impairment commonly found
in the mouse model of Alzheimer’s disease [52]. Intestinal bacteria in the patients with
Alzheimer’s disease mediate neuroinflammation via NLRP3 inflammasome activation [65].
Deposition and aggregation of Aβ in the brain of APP/PS1 mice stimulate NLRP3 in-
flammation, caspase-1, and IL-Iβ. In APP/PS1 mice, the process appears to be critical
for the development of neuroinflammatory responses. In contrast, improved cognition
using the Morris water maze (MWM) model and increased Aβ level was observed in
NLRP3-knockout mice [66]. Primary microglia stimulation in vitro by fibrillar Aβ activates
the production of NLRP3 inflammasome, caspase-1, causing the increased secretion of
IL-1β in the animal models of Alzheimer’s disease [37]. Additionally, autophagy regu-
lates the Aβ-induced activation of NLRP3 inflammasome via the LRP1/AMPK and the
AMPK/mTOR/ULK1 pathway in Aβ-induced BV-2 cells and APP/PS1 mice [67,68]. Im-
paired autophagic processes in the microglia cause dysregulated Aβ clearance and severe
deposition via the PRKAA1 pathway, potentially exacerbating inflammatory responses
and NLRP3 inflammasome activation in mice [66]. The intraperitoneal injection of NLRP3
inflammasome inhibitor (JC-124) significantly improves the Aβ load in the brain of mice,
suppressing neuroinflammatory responses and thereby producing neuroprotective ef-
fects [32]. A small molecule, MCC950, can inhibit NLRP3 inflammasome, repressing IL-1β
and IL-18 secretion in mice [69]. The abnormal expression of tau proteins activates NLRP3
inflammasome, causing the subsequent release of IL-1β from the microglia [52,70,71].
NLRP3 inflammasome induces tau protein aggregation and hyperphosphorylation, pro-
moting neuronal degeneration in mice [72–74]. Considering the non-negligible role of
NLRP3/ASC/caspase-1 axis-mediated inflammation in Alzheimer’s disease, Alzheimer’s
disease transgenic mice with selective suppression of NLRP3 inflammasome or caspase-
1 expressions in the brain revealed significantly improvement cognitive functions [75].
The total Aβ volume significantly decreases in the hippocampus and cortex in NLRP3 or
caspase-1-knockdown mice. Therefore, NLRP3/ASC/caspase-1 signaling pathways are
implicated in the neuroinflammatory effects of Alzheimer’s disease [52,76–78].

Rats exhibited an improvement in spatial learning when treated with an anti-inflammatory
drug (probenecid), which reduced NLRP1 inflammasome activation-mediated IL-1β and
IL-18 secretion [38,39]. NLRP3 inflammasome inhibitors (CRID3) reduced tau hyperphos-
phorylation and aggregation by regulating tau kinase and phosphatase, improving spatial
memory deficits in mice with Alzheimer’s symptoms [33,35]. Rats displayed significantly
improved spatial memory after treatment with phosphatidylcholine (EPA-PC), inhibiting
Aβ-induced toxicity by reducing NLRP3 inflammasome activation and increasing au-
tophagy [79]. Osthole (OST) reduced hippocampal Aβ deposition and improved cognitive
dysfunctions in the rat model of Alzheimer’s disease by NLRP3 inflammasome suppression
via a PI3K/Akt/GSK-3β signaling pathway [36,80]. NLRP inflammasome is a potential
treatment target for the progression of Alzheimer’s disease.
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3.2. Parkinson’s Disease

Parkinson’s disease is one of the most common neurodegenerative disorders and the
classical motor symptoms include bradykinesia, tremors, rigid movements, and demen-
tia [81]. One of the primary causes of Parkinson’s disease is a gradual loss of dopamin-
ergic (DA) neurons in the substantial nigra pars compacta (SNPC) [82]. Lewy bodies
(LB) formation primarily comprising fibrillar alpha-synuclein (a-Syn) is also evident in
patients with Parkinson’s disease [83]. Peripheral immune cell infiltrations and the activa-
tion of microglia and astrocytes have been reported in patients with Parkinson’s disease.
These changes cause neuroinflammation [84,85]. Central and peripheral inflammation
occurs in the prodromal stage of Parkinson’s disease, and remains sustained throughout
the disease’s progression [81]. The abnormal regulation of a-Syn activates microglia to
produce inflammatory factors and damage neurons in mice models of Parkinson’s dis-
ease [81]. Production of these cytokines is primarily regulated by the nuclear factor kappa
B (NF-kB) and multi-protein inflammasome complexes, including NLRP1 inflammasome,
NLRP3 inflammasome, and caspase-1 [86]. A clinical study collected serum samples from
12 untreated patients with Parkinson’s disease (aged 63–78 years) and detected a signifi-
cantly upregulated expression of NLRP3 inflammasome, caspase-1, and IL-1β levels [87].
In BV2 cells, α-Syn activates NLRP3 inflammasome, followed by the release of caspase-1
and IL-1β. Increased caspase-1 and IL-1β levels cause neuroinflammation, subsequently
damaging dopaminergic neurons [88–96]. The inhibition of the hepatic Nlrp3 protects
dopaminergic neurons by attenuating systemic inflammation in a MPTP/p mouse model
of Parkinson’s disease [97]. Based on recent studies, the inflammasome spontaneously
assembles in mice and human DA neurons when parkin function is lost, which causes DA
neuron death and the symptoms of Parkinson’s disease in the animals [98].

NLRP3 inflammasome-mediated neuroinflammation exerts a significant effect on the
pathogenesis of Parkinson’s disease. NLRP3 inflammasome inhibitors promote the survival
of DA neurons. NLRP3 inflammasome blockade significantly prevents α-syn-induced mi-
croglial activation and IL-1β production, preventing neuronal damage of midbrain DA neu-
rons, ultimately improving the symptoms in patients with Parkinson’s disease [99]. Ellagic
acid (EA) harbors profound implications in protecting DA neurons by inhibiting NLRP3
inflammasome activation in the microglia [40]. Safflower flavonoid extract (SAFE) reduced
the level of plasma inflammatory factors, inhibiting NLRP3 inflammasome activation in
mice, exhibiting significant anti-Parkinson’s disease effects [41]. Naringin (NAR) inhibited
microglial NLRP3 inflammasome signaling activation and pro-inflammatory factor release
in rats and protected DA neuron viabilities in rats [42]. Echinacoside (ECH) promoted
the survival of DA neurons and inhibited microglial-mediated NLRP3/Caspase1/IL-Iβ
inflammatory signaling pathway activation in the substantia nigra (SN) in mice [43]. These
results highlight the neuroprotective effects of NLRP3 inflammasome inhibitors in the
occurrence and progression of Parkinson’s disease [43].

3.3. Huntington’s Disease

Huntington’s disease is an autosomal dominant neurodegenerative disease caused by
expansions of triplet repeats encoded by polyglutamine sequences in the N-terminal region
of the proteins associated with Huntington’s disease (mHTTs). Moreover, Huntington’s
disease is characterized by impaired motor and cognitive functions, brain atrophy, weight
loss, and reduced life expectancy [100].

Aggregation of mutant huntingtin culminates in neuronal dysfunction and death in
patients with Huntington’s disease. In patients with Huntington’s disease and mice model-
ing Huntington’s disease, mHTTs were highly expressed in both neurons and microglia,
whereas mutated mHTT aggregate to form inclusion bodies. Mutated mHTT expression
activates NLRP3 inflammasome, causing neuroinflammatory responses, disrupting brain
cell functions, and causing ultimate neuronal dysfunctions or even death [97]. Unlike
in healthy individuals, NLRP3 inflammasome levels significantly increase in peripheral
blood mononuclear cells (PBMCs) in patients with Huntington’s disease [101]. Galectin
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(Gal), which includes the carbohydrate recognition structural domain of β-galactosidase,
affects the development of comorbid cognitive impairment in patients with Huntington’s
disease. Gal3 damaged neurons by improving the secretion of NLRP3 inflammasome
and IL-1β in the mice model of Huntington’s disease [97]. R6/2 mice (transgenic mice
of Huntington’s disease) with Gal3 gene mutation in the striatum reduced the number
of mHTT and inhibited NLRP3 inflammasome activation in the microglia, mitigating the
effects of neuronal damage [97,102].

NLRP3 inflammasome inhibition or the use of other immunosuppressive agents
reduces the pathophysiological changes in Huntington’s disease. PAP (papaverine) sup-
presses NLRP3 inflammasome activation by regulating NF-κB and CREB signaling path-
ways in mice, hence inhibiting microglial activation and neuronal cell death [45]. Tail vein
injections of LV3-siNLRP3 in mice suppress hepatic pro-inflammatory cytokine production,
down-regulate hepatic NLRP3 protein expression, and inhibit NLRP3 inflammasome acti-
vation, subsequently alleviating midbrain DA neuronal damage [103]. MIF (macrophage
migration inhibitory factor) reduces the expression of NLRP3 inflammasome and inflam-
matory factors induced by MPP+ (1-methyl-4-phenylpyridinium) in microglia, reducing
DA neuronal damage and exerting protective effects against neuroinflammation induced
by Parkinson’s disease [104]. NLRP3 inflammasome inhibition by MCC950 decreases mi-
croglial inflammatory vesicle activation in mice, protects DA neurons in the substantia nigra,
and suppresses motor dysfunctions in the mice model of Huntington’s disease [94,105].
RRx-001, the NLRP3 inflammasome inhibitors, reduces IL-1β and IL-18 expressions, in-
ducing a decrease in T cell initiation and T cell trafficking to the brain and improving the
course of experimental allergic encephalomyelitis (EAE) [46,47].

3.4. Depression

Abnormalities in cytokines and innate immunity receptors, including NLRP inflam-
masome, have been observed in the postmortem brains of depressed individuals. The
protein and mRNA expressions of NLRP1, NLRP3, NLRP6 inflammasome, caspase-3, and
ASC are significantly increased in individuals with major depression in the prefrontal
cortex [106]. Since proinflammatory cytokine levels in the serum of people with major de-
pression were significantly increased [106], inflammatory abnormalities have been involved
in the pathophysiology of depression. NLRP1 inflammasome is significantly activated
undergoing chronic stress in the hippocampus of rats [38,107]. NLRP1 inflammasome
inhibition attenuates the depression-like behaviors and inhibits the secretion of mature
IL-1β in the hippocampus of rats via the PKR/NLRP1 inflammasome pathway [107].

3.5. Drug Use Disorder

Drug use disorder is a chronic brain disorder with devastating consequences for
individuals and society [108]. Drugs interact with the neuroimmune system to change
neuroimmune gene expression and signaling, resulting in neurotoxicity. Chronic drug
exposure causes compulsive drug use behaviors and long-lasting cravings, along with
severe cognitive dysfunctions [109].

Neuroinflammation is a major underlying mechanism of methamphetamine (METH)-
induced cognitive deficits. Increased levels of hippocampal NLRP1 and NLRP3 inflam-
masome expression as well as the induction of inflammation and apoptosis were found in
11 patients with METH drug use disorder [110]. METH promotes NLRP inflammasome
release, and upregulates caspase-1 expressions, causing the aggregation of apoptosis-
associated ASC proteins from rat cortical microglial. These outcomes are followed by the
maturation and secretion of IL-Iβ, eventually resulting in neuroinflammation and neurotox-
icity [34,111]. METH causes toxic effects in primary rat striatal neurons, cortical neurons,
and PC12 cells, resulting in apoptosis and autophagy. The toxic effects of METH were
accompanied by a significant increase in NLRP1 inflammasome expression, suppressed by
knocking down the NLRP1 inflammasome gene [112]. METH further causes microglia to
participate in neuroinflammatory effects by activating NLRP inflammasome [113]. In BV2
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cells, NLRP3 inflammasome blockade by MCC950 significantly inhibits METH-induced
increases in iNOS (a marker of activated microglia) expression, reducing microglial activa-
tion and cytotoxicity [34]. Mice treated with intraperitoneal injections of METH showed
increased NLRP3 inflammasome levels and caspase-1 activation in the hippocampal brain
regions [114]. NLRP1 inflammasome and downstream NLRP1/Caspase-1/GSDMD sig-
naling pathways have important roles in the METH-induced cognitive function in rats.
Using the new object recognition test, METH induced significant cognitive impairment and
increased activity of NLRP1, cleaved-Caspase-11, IL-1β and TNF-α in the rat hippocampus.
These phenomena were attenuated by aspirin-triggered-lipoxin A4 (ATL), a potent anti-
inflammatory mediator [115]. In various cells, including cardiomyocytes, microglia, and
neurons, METH induces apoptosis and pyroptosis through the NLRP-Caspase1-GSDMD
pathway [116]. Therefore, METH exposures increased NLRP1 and NLRP3 inflammasome
levels as well as neuroinflammation responses in the brain, followed by neurotoxicity and
substantial damage to the brain.

Cocaine use disorder has been demonstrated to increase the level of oxidative stress
and induce neuroinflammation which produces detrimental effects on the central nervous
system in cocaine-disorder co-occurring AIDS patients [117]. Cocaine exposure was as-
sociated with the increased expression of various pro-inflammatory cytokines, NLRP1
inflammasome as well as adhesion molecules [118]. The expression of NLRP3 inflamma-
some in the cortical brain tissues of cocaine-dependent patients was significantly higher
than that of the control participants [119]. Microglial activation mediated by cocaine is
suggested to be involved with both ROS and NLRP3 inflammasome [120]. Studies using
an NLRP3 blocker (MCC950) and siNLRP3 have also demonstrated the essential role of
NLRP3 inflammasome in cocaine-mediated activation of inflammasomes and microglial
activation in mice in both the striatum and the cortical regions [119]. NLRP3 inflammasome
is a potential therapeutic target for relieving cocaine-mediated neuroinflammation.

Excessive ethanol consumption causes neurotoxicity via oxidative stress, inflamma-
tion, and cell death of the brain tissues in male C57BL/6 mice [121]. NLRP inflammasome
is also involved in the neurotoxicity of alcohol [122]. Alcohol exposure significantly upreg-
ulates the expression of NLRP3 inflammasome and caspase-1. Alcohol increases caspase-1
and IL-1β expression in the central nervous system of wild-type mice, but not in NLRP3
or ASC knockout mice. Caspase-1 is subsequently activated, causing mitochondrial dys-
function in mice [123,124]. Previous studies have shown the role of NLRP3 inflammasome
in alcohol-induced astrocyte inflammation and associated its activation with the produc-
tion of ROS. This suggests that the activation of NLRP3 inflammatory in astrocytes is
caused by alcohol exposure, eventually exacerbating the accumulation of mitochondrial
ROS and the occurrence of cell death [125–127]. This suggests a critical role for NLRP3
inflammasome in regulating the effects of alcohol-induced neuroinflammation and neu-
rotoxicity [128]. Calcium overload by alcohol has been shown to promote NLRP1, and
NLRP3 inflammasome formation in rat cortical neurons and human neuroblastoma cells
via the CaMKII/JNK1 pathway [129,130]. ROCK2 inhibition decreases the expression of
NLRP3 inflammasome in astrocytes and attenuates alcohol-induced neuronal damage.
This shows that ROCK2 downregulation suppresses the activation of NLRP3 inflamma-
tory bodies [131]. Disulfiram (DSF), by reducing oxidative stress and blocking NLRP3
inflammasome, is an FDA-approved drug to treat chronic alcohol-use disorder. Additional
studies indicate that DSF treatment alleviates the function of the lowered left heart and the
apoptosis of myocardial cells by suppressing the activation of NLRP3 inflammasome in
mice [48]. Considering the abstinence and cardiac protection impacts of DSF via the inhibi-
tion of NLRP inflammasome, the clinical application of NLRP inflammasome inhibitors
represents a novel approach to protecting and treating disease-induced inflammation.

Significant NLRP3 inflammasome activation was observed in the prefrontal cortex
and peripheral blood of morphine-treated mice [132]. Repeated exposures to morphine
in wild-type mice increased the level of inflammation-related signals including NLRP3
inflammasome via the TLR4/NF-κB/NLRP3 pathway [133]. Procyanidins inhibit the
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morphine-induced activation of NLRP3 inflammasome and inflammatory responses in
the microglia [134]. The different neuropsychiatric disorders and NLRP inflammasome
inhibitors are summarized in Table 2.

Table 2. Different neuropsychiatric disorders and NLRP inflammasome inhibitors.

Diseases Drugs Pathways Pathological Changes Performance References

Alzheimer’s disease
Rg1, JC-124,

CR2D3, EPA-PC,
OST, Probenecid

K+/Ca2+-NLRP-
Caspase1-IL-1β

Aβ deposition, tau
protein entanglement.

Loss of memory
function and

cognitive decline.
[51,53,56,63,65]

Parkinson’s disease
EA, SAFE, NAR,

ECH,
Laquinimod

a-Syn-NLRP-Caspase1

Decrease in
dopaminergic neurons

and formation of
Lewy bodies.

The Campaign Triad. [83,89,95,97,100]

Huntington’s
disease PAP, MCC950 Gal3-NLRP3-IL-1β

Inclusion body
formation,

brain atrophy.

Motor, cognitive
impairment. [101,102,104,105]

Depression caspase3-NLRP-IL-1β Inflammatory lesion. Persistent depression
and loss of interest. [109,110]

Drug use
disorder

METH MCC950 NLRP-Caspase-1-IL-1β

ASC protein
aggregation and

increased
autophagosomes.

Cognitive
dysfunction,

schizophrenia.
[114,115,117,119]

Cocaine MCC950 ROS/NLRP Oxidative stress and
neuroinflammation.

Nervous and
mental injury. [120,123]

Alcohol Cod liver oil,
VX765 CaMKII/JNK1-NLRP1 Lysosomal and

mitochondrial damage.

Central nervous
system lesions,

behavioral disorders.
[125,127]

4. Outlook

Many studies have demonstrated the basis for the identification of novel therapeu-
tic approaches for neuropsychiatric disorders. Several studies presented in this review
highlighted the importance of regulating NLRP inflammasome to delay the progression
and outcomes of neuroinflammation in neuropsychiatric disorders. Clinical trials have
also investigated the therapeutic effects of NLRP inflammasome inhibitors on alcohol-use
disorder [135,136]. More clinical trials would be critically needed, in order to provide more
solid evidence about the potential benefits of NLRP inhibitors. Furthermore, it appears
that different psychiatric disorders share a common mechanism, neuroinflammation. The
relationship between NLRP inflammasome and other neuropsychiatric disorders, includ-
ing schizophrenia, autism, and obsessive-compulsive disorder, remains largely unknown.
NLRP inflammasome inhibitors may potentially have a common therapeutic effect on
different neuropsychiatric disorders.
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