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Abstract

Systemic lupus erythematosous (SLE) is an autoimmune disease with an important clinical and biological heterogeneity. B
lymphocytes appear central to the development of SLE which is characterized by the production of a large variety of
autoantibodies and hypergammaglobulinemia. In mice, immature B cells from spontaneous lupus prone animals are able to
produce autoantibodies when transferred into immunodeficient mice, strongly suggesting the existence of intrinsic B cell
defects during lupus. In order to approach these defects in humans, we compared the peripheral B cell transcriptomas of
quiescent lupus patients to normal B cell transcriptomas. When the statistical analysis is performed on the entire group of
patients, the differences between patients and controls appear quite weak with only 14 mRNA genes having a false
discovery rate ranging between 11 and 17%, with 6 underexpressed genes (PMEPA1, TLR10, TRAF3IP2, LDOC1L, CD1C and
EGR1). However, unforced hierarchical clustering of the microarrays reveals a subgroup of lupus patients distinct from both
the controls and the other lupus patients. This subgroup has no detectable clinical or immunological phenotypic peculiarity
compared to the other patients, but is characterized by 1/an IL-4 signature and 2/the abnormal expression of a large set of
genes with an extremely low false discovery rate, mainly pointing to the biological function of the endoplasmic reticulum,
and more precisely to genes implicated in the Unfolded Protein Response, suggesting that B cells entered an incomplete
BLIMP1 dependent plasmacytic differentiation which was undetectable by immunophenotyping. Thus, this microarray
analysis of B cells during quiescent lupus suggests that, despite a similar lupus phenotype, different biological roads can
lead to human lupus.
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Introduction

Systemic lupus erythematosous (SLE) is an autoimmune disease

which is clinically and biologically characterized by a wide

spectrum of signs variable from one patient to another. Indeed, the

diagnosis of SLE mainly relies on the association of clinical and

biological symptoms, some of which being validated as diagnostic

criteria [1]. Not only different organs can be affected in groups of

patients with SLE, but also the immunological hallmark of the

disease, the autoantibodies, are diversely expressed with the

exception of antinuclear antibodies which are quasi-constant in

patients. This phenotypic heterogeneity of SLE patients may

reflect different genetic contributions (i.e. various combinations of

susceptibility genes) and/or different environmental factors which

could lead to diverse immunopathological consequences. Among

the many immune cell types which have been implicated in this

heterogeneous disease, B lymphocytes appear central to the

development of lupus and deserve further attention because: 1/

they produce the autoantibodies, 2/they are activated during the

disease, 3/they are responsible for the frequent hypergammaglob-

ulinemia, and 4/they could present some intrinsic defects

responsible for lupus traits and currently unknown. Indeed, in

the spontaneous lupus prone mice NZB/W F1, it was shown that

immature B cells from the parental lines NZB and NZW, when

transferred to immunodeficient mice, produced hypergammaglob-

ulinemia and antiDNA antibodies [2]. In the recent years, the B

cell phenotype was extensively studied during lupus leading to the

dissection of quantitative abnormalities of B cell subpopulations

like naı̈ve B cells, CD5 B cells, transitional B cells, memory and

plasma B cells based on the expression of various membrane

markers [3–8]. Some of these B cell abnormalities correlate with

lupus activity and could reflect the extrinsic influence of various

factors, like type I Interferons and/or BAFF, on the B cell

subpopulations [9–11]. In an effort to track down putative intrinsic

B cell defects during SLE, we analysed the transcriptomas of

purifed B cells from inactive patients without immunosuppressive

treatment, and compared the SLE B cell gene expression to

healthy individual B cell transcriptomas. This approach, using

purifed B lymphocytes instead of a mixture of peripheral

mononuclear cells and non hypothesis driven large scale micro-
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arrays, should be able to point out the implication of some

biological pathways, and to define such intrinsic B cell defects. The

overall statistical analysis of the differential gene expression (17

patients versus 9 controls) identified a very low number of genes

with an acceptably low false discovery rate (FDR) showing that

gene expressions were quite similar between quiescent lupus B cells

and controls. However, a subgroup of patients was clearly distinct

from the others and from the controls, with differentially expressed

genes mainly implicated in plasmacytic differentiation and

confirming at the B cell level the heterogeneity of the pathways

leading to lupus.

Materials and Methods

Patients
17 patients (15 females and 2 males) with the diagnosis of SLE

were selected for this study after they gave their informed consent.

The SLE diagnosis was based on the presence of at least 4 criterias

among those defined by the American College of Rheumatology.

The lupus was inactive in these patients for more than 6 months,

with a Systemic Lupus Erythematosous Disease Activity Index

(SLEDAI) score less than 4 [12], and they did not receive any

immunosuppressive drug. If they needed steroids, the patients

were not treated with more than 10 mg of prednisone per day (4

patients). 10 patients were treated with hydroxychoroquine. The

clinical characteristics of the patients are presented in Table 1.

The 10 control subjects were healthy individuals, (8 females and 2

males) ageing from 23 to 53 years, with no personal nor familial

history of autoimmune disease. 17 patients (15 females and 2

males) with the diagnosis of SLE were selected for this study after

they gave their written informed consent. This study was approved

by the ethic comity of the Hôpitaux Universitaires de Strasbourg.

B lymphocyte preparation and RNA purification
Peripheral blood was drawn into heparin-containing sterile tubes

and peripheral blood mononuclear cells were prepared by Ficoll

(Amersham) density gradient centrifugation for immediate use. B

cells were labeled with a biotin anti-CD19 monoclonal antibody

(HIB19 clone, Pharmingen) at 4uC and revealed by phycoerythrin-

labelled streptavidin (Biomeda) before immediate B cell sorting with

high speed cell sorter (FACS Diva, Beckton-Dickinson). Total

RNAs from the sorted B cells were extracted using TRIzol reagent

(Invitrogen) according to the manufacturer’s instructions. They

were then precipitated in Glycogen (Invitrogen) and suspended in

DNAase-free and RNAase-free water (Gibco). The quality of the

RNA preparations was always checked with RNAlabChip (Agilent)

before any further step. Good quality RNA preparations (approx-

imately 50 ng per preparation) were amplified using the Affymetrix

2 cycle cDNA synthesis kit. In order to reduce the variability of these

preparations, one control B cells and generally 2 patients’ B cells

preparations were treated simultaneously.

Gene micro arrays preparations and GeneChip analysis
cRNAs were synthesized, biotin-labelled and hybridized to the

Affymetrix GeneChip human genome U133 plus 2.0 (with probe sets

representing 38,572 UniGene clusters) according to the manufac-

turer’s instructions. After hybridization and washings, arrays were

stained with PE-conjugated streptavidin (10 mg/ml) before scanning.

Raw Affymetrix data (available at http://www.ncbi.nlm.nih.gov/

projects/geo/query/acc.cgi?acc=GSE30153) were analyzed using

R (R Development Core Team, 2008; The Comprehensive R

Archive Network: http://cran.r-project.org/) and Bioconductor

(Bioconductor: http://www.bioconductor.org/) softwares [13].

The quality of the 27 Affymetrix genechips and RNA was assessed

using the Bioconductor AffyPLM and simpleaffy packages, with qc,

Table 1. Clinical features, and disease activity index at the time of the study.

Patient n6 Age Sex
Duration of
disease (years) SLEDAI

IgG levels
(g/l)

ANAs
title Anti-dsDNA Steroids Chloroquine

1 36 F 3 0 8.49 1/160 2 2 2

2 59 F 20 3 8.15 1/1280 + 2 +

3 38 F 18 0 8.29 1/1280 2 2 +

4 37 F 9 2 7.3 1/640 + + +

5 36 F 8 4 7.22 1/1280 + 2 2

6 36 F 9 0 10.2 1/160 2 2 2

7 41 M 9 0 11.2 1/640 2 2 2

8 55 F 15 4 13.8 1/320 2 2 2

9 47 F 9 0 15.9 1/320 2 2 2

10 36 F 12 4 7.68 1/1280 + 2 2

11 37 F 8 2 9.47 1/1280 + + +

12 53 F 19 0 9.76 1/1280 2 + +

13 30 F 2 0 7.8 1/160 2 2 +

14 41 F 7 0 11.9 1/1280 2 + +

15 23 M 8 4 7.3 1/640 + 2 +

16 37 F 18 4 8.07 1/1280 + 2 +

17 50 F 26 0 10.5 1/640 2 2 +

Disease and treatment were stable for at least 6 months. SLEDAI: Systemic Lupus erythematosus disease activity index; IgG normal range: 7–14 g/l, ANA: antinuclear
antibodies.
doi:10.1371/journal.pone.0023900.t001
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AffyRNAdeg, fitPLM, image, RLE and NUSE functions: one

control chip showing too many defects was left aside, thus further

analysis were carried out on 9 control and 17 patient chips. For

normalization and background correction, Raw values were pre-

processed with RMA or GCRMA (library simpleAffy). As further

analysis with RMA or GCRMA data gave similar results, only results

with GCRMA expression values will be shown. According to the

histogram distribution of GCRMA expression values (Fig. 1), we

considered as unexpressed genes (both in patients and controls),

genes with expression values below 4. Genes with values lower than

this threshold were eliminated: of the 54,675 Affymetrix probe sets,

only 18,271 (33%) correspond to genes expressed in B lymphocytes.

Identification of differentially expressed genes and estimation of the

False Discovery Rate (FDR, [14,15]) were carried out using the

Significance Analysis of Microarrays (SAM) algorithm available in

the siggenes package [16].

Data clustering
The dist and hclust functions of the simpleaffy library were used

to build hierarchical clusterings of the data.

QRT-PCR Analysis
cDNAs from total RNAs were prepared after patients and

control B cell separations using the high capacity cDNA Reverse

transcription Kit (Applied Biosystems). 10 ng of each cDNA was

subjected to QRT-PCR using Applied Biosystems TaqMan assays

(validated for each selected gene) on the ABI Prism 7000

instrument. The DDCt provided the target gene expression value

by comparison with a calibrator sample (Applied Biosystems). The

patients and control samples and the calibrator were first

normalized by the relative expression of the 18s.

B Lymphocyte ligands and lupus
Zhu et al. in 2004 published an extensive analysis of mouse

splenic B cell gene expression changes in response to in vitro

stimulation with 33 ligands of B lymphocytes [[17], and Data

available online: UCSD-Nature Signaling Gateway, Alliance for

Cellular Signaling, AfCS Data Center, B-cell ligand screen,

http://www.signaling-gateway.org/data/cgi-bin/table.cgi?cellabbr

= BC]. In an attempt to find associations between human SLE and

these ligands, we compared patterns of genes differentially expressed

in B lymphocytes during SLE (our results in the subgroup of 5

patients) and in response to these ligands (Zhu’s results). In order to

identify homolog human and mouse genes, i.e gene with the same

symbol name, clone identifiers are converted to gene symbol names.

For Affymetrix probe sets the conversion to gene symbols is

straightforward using the Affymetrix NetAffx Analysis Center

(http://www.affymetrix.com/analysis/index.affx). In contrast the

conversion of mouse clone ID to symbol names require queries to

several data bases as the custom Agilent cDNA Microarray chip

used in Zhu et al. publication was made up of clones from four

libraries: RIKEN, NIA, Research Genetics, and Genome system-

s.The Representing Factor (http://www.nemates.com/uky/MA/

progs/overlap_stats.html) and the Resampling statistical methods

[18], and available online: http://www.resample.com/content/

text/index.shtml] were used to compare the patterns of genes

differentially expressed in human and mouse B lymphocytes.

The identification of the biological pathways and of the ontology

groups (biological processes and molecular functions) of selected

list of genes differentially expressed in the 5 lupus patients subgroup

was performed using the DAVID program with a Bonferroni

correction for multiple testing (DAVID Bioinformatic Resources,

NIAID, NIH), and the CYTOSCAPE program with the MiMI

plugin [19].

Results

The patients’ characteristics are presented in Table 1. They

were all considered of having an inactive phase of SLE with a

variable disease duration (2 to 26 years). B cell purity was checked

by FACS analysis of sorted CD19 positive cells ( more than 96%).

Figure 1. Histogram distribution of GCRMA expressions values. Genes with expression values below 4 were considered unexpressed in B
cells both in patients (A) and in control (B).
doi:10.1371/journal.pone.0023900.g001
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Differentially expressed genes in lupus B cells compared
to normal B cells

According to the MIAME recommendations, the data discussed

in this publication have been deposited in NCBI’s Gene

Expression Omnibus and are accessible through GEO Series

accession number GSE30153 (http://www.ncbi.nlm.nih.gov/

projects/geo/query/acc.cgi?acc = GSE30153) as well as the full

normalized and annotated results of the RMA analysis of the

2,327 genes with initial p values of less than 0.05 (Table S1). Then,

the B cells transcriptional profiles originating from the 17 lupus

patients compared to the 9 normal individuals were analysed using

the SAM algorithm and multiple testing correction according to

Benjamini et al [14,15]. Using this stringent statistical analysis, and

after removing the upregulated Ig genes from this short list, it

appears that only a very small number of genes (14 out of the

18,271 which were expressed in B cells) are differentially expressed

with a FDR ranging from 11 to 17% (Table 2). At first glance,

these results indicate that, at the transcriptomal level, and during

the inactive phases of the disease, lupus B cells are very similar to

normal B cells. The differentially expressed genes were checked by

real time qPCR only in a few patients (because of the availability of

the cDNAs) and were confirmed to be up or downregulated during

lupus. Among these genes, it is interesting to note that TRAF3IP2

(alias ACT1) is a negative regulator of B cell function, its absence

leading to lymphoproliferation and autoantibody production [20],

but ACT1 is also essential in IL-17 dependent signaling during

autoimmune diseases [21], IL-17 being implicated during lupus

physiopathology [22]. On the other hand, the low level of

expression of CD1c mRNA could be related to the fact that CD1c

is highly expressed on unswitched memory B cells or circulating

counterpart of marginal zone B cells [23], this subpopulation being

decreased during the inactive phase of lupus [24]. TLR10 has to

date no defined agonist or function but is apparently functional

with a distinct signaling pathway in B cells [25,26].

A subset of SLE patients have a distinct gene expression
profile

Unforced hierarchical clustering of the patients and the controls

was performed with the 18,271 genes expressed in the B cells. The

figure 2A shows that the gene expressions of the patients and the

controls were quite similar, confirming the previous statistical

analysis. However, the same unforced hierarchical clustering

identifies a subgroup of 5 patients with a distinct gene expression

profile. The statistical analysis comparing the gene expression of

these 5 patients with the controls and the other patients was indeed

highly significant. Extremely low FDRs (less than 0.01) were

associated with the differential expression of approximately 800

genes (Table S2, and Heat-map of the first 50 genes in Fig. 2B).

Considering the availability of the mRNAs (which was the limiting

factor), we only checked by real time qPCR the expression levels of

6 selected genes in 2 patients and one control (ADA, RRM2,

CAV1, XBP1, ARHGAP24, FKBP11) and confirmed the

microarray results (Fig. 3). Looking for the origin of this peculiar

gene expression profiles in these 5 patients, we first tried to find

differences in the clinical phenotype of the patients but we were

unable to find such differences (gender, age of onset, disease

duration, activity score, levels of serum Ig and anti nuclear

antibodies, treatments at the time of sampling). Second, since the

difference could originate from a distinct representation of the B

cell subpopulations in these 5 patients, we checked the detailed

cytofluorometric patterns (CD19, IgG, IgM, IgD, CD138, CD27,

CD86) observed on B cells from both controls and patients.

Differences were evidenced between the patient and the control

groups [24], but we did not see any statistical difference between

Table 2. Genes over or underexpressed in lupus patients B cells (FDR from 11 to 17%) compared to control B cells.

Probes
Xfold
(log2) Unigene Gene symbol

Function
(NCBI)

1554474_a_a
209708_at

1.93 Hs.6909 MOXD1 Catecholamine metabolism

201890_at
209773_s_at

4.44 Hs.226390 RRM2 Oxidoreductase activity, implicated in DNA replication

202589_at
1554696_s_at

3.79 Hs.592338 TYMS DNA replication and repair

201543_s_at
210790_s_at

1.97 Hs.499960 SAR1A GTPase activity, intracellular protein transport

228486_at
228485_s_at

2.32 Hs.573495 SLC44A1 Transmembrane transport

201923_at 1.98 Hs.83383 PRDX4 Antioxidant enzyme, regulatory role in the NF-kappaB
pathway

203857_s_at 2.63 Hs.477352 PDIA5 Isomerase activity, protein folding

39249_at 1.40 Hs.234642 AQP3 Glycerol and water channel activity

222450_at 0.49 Hs.517155 PMEPA1 Androgen receptor signalling pathway

215411_s_at 0.71 Hs.654708 TRAF3IP2 Positive regulation of I-kappaB kinase/NF-kappaB cascade

223751_x_at 0.67 Hs.120551 TLR10 Innate immunity Potential Pam(3)CSK(4) receptor

205987_at 0.42 Hs.132448 CD1c Presentation of primarily lipid/glycolipid antigens

223228_at 0.66 Hs.715637 LDOC1L Unknown

227404_s_at
201694_s_at

0.38 Hs.326035 EGR1 Transcriptional regulator

doi:10.1371/journal.pone.0023900.t002
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the 2 patients subgroups (12 versus 5): equivalent percentages of

CD19/CD138 double positive cells, CD19/CD27 double positive

cells, and CD19/CD86 double positive cells were found. Third,

the differential gene expression could originate from B cell

extrinsic or intrinsic properties pointing to original biological

pathways in these 5 patients.

Ligand signature?
Still focusing on the differential gene expression between the

subgroup of patients and the controls, the results could represent

intrinsic or extrinsic gene expression abnormalities or both. In

order to approach the possible influence of extrinsic factors, we

took advantage of the Signaling gateway data center which gives

the results of an extensive analysis of microarrays performed on

murine purified splenic B cells during in vitro stimulation with 33

different ligands [17]. Thus, we compared our list of in vivo

differentially expressed human genes during SLE with differen-

tially expressed murine genes under influence of these ligands. To

be precise, we specifically compared the differentially expressed

(1.5 fold change) murine genes after 4 h ligand stimulations with

our list of highly differentially expressed genes originating from the

subgroup of the 5 SLE patients( thereby named SLE list). Different

Figure 2. A subgroup of 5 patients stands out from the others. (A) Dendrogram obtained by unforced hierarchical clustering of the
microarrays from the 17 patients and the 9 controls. A subgroup of 5 patients (surrounded by a dashed line) stands out from the others. (B) Heat-map
of the 50 first differentially expressed genes in these 5 patients compared to controls after filtering the results for low signal. Over-expressed genes
are shown in red and under-expressed are depicted in green.
doi:10.1371/journal.pone.0023900.g002

Figure 3. Quantitative RT-PCR of 6 selected genes in 2 patients and one control. FKBP11, RRM2, XBP1, ADA, CAV1 and ARHGAP24
expressions were determined by real time quantitative RT-PCR. Each sample was normalized to the endogenous control 18S.
doi:10.1371/journal.pone.0023900.g003

B Cell Signature during Inactive Systemic Lupus

PLoS ONE | www.plosone.org 5 August 2011 | Volume 6 | Issue 8 | e23900



steps were required: 1/only genes which were present on both

murine and human microarrays were considered for this analysis,

2/we identified the different ligand regulated gene files, 3/among

these files, we identified the murine genes which were also present

in the SLE list (common lists of genes) and counted the number of

genes varying in the same direction for each ligand, 4/then, for

each ligand, we calculated the Representing Factor and the

associated probability of finding an overlap set of genes [http://

www.nemates.com/uky/MA/progs/overlap_stats.html]. This cal-

culation leads to identify IL4 imprinting as the only significant

signature in these 5 patients B cells: the common list of genes for

IL4 contained 112 genes with 101 genes varying in the same

direction. This was confirmed by another statistical method

(Resampling, [18]). Type I Interferon (only 35 genes on the

common list, with 30 moving in the same direction), BAFF (33

genes on the common list, with 25 moving in the same direction)

and CD40L (84 genes on the common list, but 59 only varying in

the same direction) did not reach statistical significance.

Biological pathways in the subgroup of 5 patients
In order to analyse the biological significance of differentially

expressed genes in these 5 patients compared to controls, different

tools are available. We used the DAVID program to look for

statistically represented biological pathways. If we enter the SLE

list of genes into the DAVID program, it appears that one

biological pathway is highly significantly overrepresented after a

Bonferroni correction for multiple testing: the endoplasmic

reticulum (p less than 8.8610211). Among these genes which

point to the endoplasmic reticulum, a large set of genes participate

to the Unfolded Protein Response. Many of these genes are

controlled by the overexpression of BLIMP1, a master regulator of

B cell terminal differentiation: DNAJC3, SEC61A, BIP, SSR4,

PPIB, RPN1… This overexpression of BLIMP1 mRNAs is not

related to EGR1 because the later is also down regulated in these 5

patients [27]. On the other hand, XBP1, whose mRNAs are also

overexpressed, could be inactive since its specific target genes are

not upregulated (SLC30A, ARHQ, OBF1). It is interesting to note

that 1/IL4 is indeed able to induce XBP1, but not the IRE1

activation induced XBP1 splicing which is necessary to produce

the active form of XBP1 [28], and not to induce BLIMP1, and 2/

BI1 mRNAs (Bax Inhibitor 1) are increased in these B cells and

BI1 is known to repress IRE1 activation [29].

At the level of gene interactions, using Cytoscape and the MiMI

program, analysis indicates complex relationships between differ-

entially expressed genes which can belong to distinct biological

pathways. As an example, we can mention the complex network of

possible interactions between FYN, whose mRNAs are down

regulated in these patients, and 8 directly interacting gene

products whose mRNAs are overexpressed in the same cells.

Discussion

Based on two main considerations (the central role of B cells

during SLE, and the possible intrinsic abnormalities of SLE B

cells), we performed the transcriptomic analysis of purified B cells

during non active phases of the disease. Such an analysis 1/should

reduce the variability of the transcriptomas because of the purity of

the analysed cells, and 2/should reduce the risk of focusing on

gene expressions associated with lupus flares and their medical

treatments. The interpretation of the microarrays is here limited to

B cells, avoiding difficulties in data mining linked to heterogeneous

populations of cells present in the peripheral blood mononuclear

cells in unknown proportions [30]. Still the interpretation can be

obscured by the presence of different B cell subpopulations in the

human peripheral blood. Indeed, in a separate set of experiments

starting with the same blood samples, we performed a detailed B

cell immunophenotyping which showed some differences between

control B cells and SLE B cells [24], some of which being

potentially able to explain differentially expressed genes. Despite

these differences, one of the main results of our study is the

important similarity at the transcriptomic level between normal B

cells and SLE B cells during non active phase of the disease. At a

threshold close to 10% for the FDR (upper limit of reasonably

acceptable risk for microarray analysis [31]), only 14 genes out of

18,271 appear differentially expressed. The biological significance

of these differences could be diverse. For instance, the down

expression of CD1c mRNAs could be related to the low

percentage of the CD1c high unswitched memory B cells among

total SLE B cells. On the other hand, the down expression of

ACT1 (TRAF3IP2), could be linked to SLE because of the

importance of this negative regulator on the B cell function [20–

22]. At that stage, it is almost impossible to compare the results of

the different SLE wide genome scans with our microarray results

because of the very limited informations of the functionality of the

different polymorphisms which were described. However, it is

interesting to note that BLK (C8orf13) does not appear on our list

of differentially expressed genes despite the B cell down expression

of this kinase when its regulatory region expresses the ‘‘SLE’’

polymorphism [32]. Whether this polymorphism is present or not

in our patients, or whether the downregulation of BLK only occurs

during an active phase of the disease, remains to be determined.

The second main result of our data is related to the

transcriptomic heterogeneity of the patients. The unforced

hierarchical clustering of the patients and controls revealed a

subgroup of 5 patients with a distinct pattern of mRNA expression

in B cells leading to the identification of a set of genes with a high

statistical significance. Looking for clinical or biological peculiarities

in these 5 patients, we did not find any difference with the other 12

SLE patients. We also compared their B cell subpopulations

patterns, but again did not find any difference. Thus, we are left

with the possibility that the B cell signature of these 5 patients could

be the result of either extrinsic or intrinsic B cell properties.

Looking for an extrinsic signature of the SLE B cell transcriptoma

in these five patients, we found a significantly enriched expression of

genes induced by Il4. However, this approach has several limits: 1/

ligand induced gene expression in purified B cells could be different

in mouse and human, although generally speaking these biological

pathways are quite conserved, 2/for comparisons with our human

gene list, we only considered mouse genes that were consistently

modified 4 h after in vitro ligand stimulations, which could ignore

some interesting early and late gene changes, 3/the analysis can be

obscured by the frequent sharing of expression change patterns

between different ligands (anti-Ig, CD40L, BAFF, IL-4, CpG, Type

I Interferons, data not shown). Having in mind these limitations, it

appears that B cells from these 5 inactive SLE patients have only

one weak signature, although we did not find an increase of serum

IL-4 level in these patients (data not shown). However, the serum

level of IL-4, or the IL-4 production by peripheral blood

mononuclear cells during lupus is not clear, with conflicting results

maybe linked to the activation status of the patients [33-36]. It is

interesting to note that the type I interferon signature which was

reported during active SLE was not clearly detected during the

inactive phase of the disease.

To look for intrinsic B cell defects in these 5 patients, we

removed from the list of differentially expressed genes all those that

were shown to be in vitro ligand regulated [17]. Analysis of the

gene product interactions through the Cytoscape program gives

some interesting clues. For instance, the Src family kinase FYN

B Cell Signature during Inactive Systemic Lupus
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could be central to the disease: it is slightly down regulated in

almost all the patients, and FYN deficiency in mice induces a

tendency to produce anti-DNA antibodies and proteinuria

through a non immunological mechanism [37]. FYN appears

physically connected to 8 gene products whose mRNAs are

overexpressed in the subgroup of 5 patients (SLAMF1, RICS,

CSF2RB, CAV1, CDK5, CASP3, IL2RB, ATXN1 [38–42]) and

could compete for FYN. The consequences on B cell biology of

such a competition between the possible overexpressed proteins

and the deficient target FYN are currently unknown. Looking for

the origin of low FYN expression in these 5 patients, it is

interesting to note that it is associated with the down expression of

EGR1 which is known to control the FYN gene expression

through an EGR1 binding site located in the promotor region of

FYN [43]. Beside FYN, other genes coding for adhesion molecules

like ICAM and CD44, can be regulated by EGR1 [44,45] their

mRNAs being down regulated in these patients as well.

In order to find activation of biological pathways in the B cells of

these 5 patients, we used the DAVID program. It identifies a large

overrepresented set of genes which are deregulated during the

plasmacytic differentiation of B cells as well as during the Unfolded

Protein Response in different cell types. The fine analysis of the

deregulated genes in these B cells suggests that B cells underwent

Blimp1 induced partial plasmacytic differentiation, but without

further terminal plasma cell differentiation (Fig. 4): BLIMP1 and

XBP1 mRNAs are both overexpressed, but XBP1 could be

inactive because 1/HERPUD1, ADA and ELL2 ( all being target

genes for BLIMP1, but not for XBP1) mRNAs are increased, 2/

On the contrary, specific target genes for XBP1 (SLC30A5,

ARHQ) are not deregulated, which is consistent with an IL-4

influence [28,46]. The precise stimulus that induces BLIMP1 over

expression, but not XBP1 splicing, is not clear but if IL-21 is an

obvious candidate, others are still possible alone or in combina-

tion: BCR, Calcineurin/NFAT, CD40/NFkB [47]. On the other

hand, a new polymorphism associated with SLE was recently

described in the vicinity of the BLIMP1 gene locus, suggesting an

intrinsic property of B cells bearing this variant [48]. Thus, it

seems that, in these patients, B cells are in a stage of intermediate

differentiation, maybe arrested at a step before IRE1 induced

XBP1 unconventional splicing which is necessary to produce the

active form of the protein required for the full plasmacytic

differentiation [49,50]. Consistent with this hypothesis, the serum

levels of IgG were not different in these 5 patients compared to the

12 others, but 20 out of the 32 genes of the plasmablast signature

(module M1.1, [51]) are present in our list.

Such a possible stage opens new questions: 1/is this develop-

mental arrest an intrinsic (constitutive) abnormality of B cells in

these patients, or is it linked to permanent extrinsic stimulation

(IL-4?, IL-21?, Antigen?), 2/do these cells express some new

surface markers which were not detectable during our quite

extensive B cell immunophenotyping? 3/is this stage linked to

lupus susceptibility in these patients, or is it an indication for flare

susceptibility? All these questions will have to be addressed in a

new and large cohort of patients that will be longitudinally tested.

Finally, the description of this subgroup of lupus patients adds

some new insights on the different biological roads which can lead

to a lupus phenotype.

Supporting Information

Table S1 Non normalized data of the 17 patients and 8
controls with probe identification, gene names and

Figure 4. The observed significant variations of mRNAs in the B cells of the five patients are surrended and suggest a BLIMP1
induced partial plasmacytic differentiation.
doi:10.1371/journal.pone.0023900.g004
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statistics. List of genes with p-values less than 0.05 (Wilcoxon

test).

(XLS)

Table S2 List of differentially expressed gene with a
FDR less than 0.01 in the 5 patients compared to
controls.
(XLS)
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Measurement of intracellular interferon-gamma and interleukin-4 in whole

blood T lymphocytes from patients with systemic lupus erythematosus. Immunol

Lett 74: 207–210.

36. Yu H-H, Liu P-H, Lin Y-C, Chen WJ, Lee J-H, et al. (2010) Interleukin 4 and

STAT6 gene polymorphisms are associated with systemic lupus erythematosus

in Chinese patients. Lupus 19: 1219–1228. doi:10.1177/0961203310371152.

37. Yu CC, Yen TS, Lowell CA, DeFranco AL (2001) Lupus-like kidney disease in

mice deficient in the Src family tyrosine kinases Lyn and Fyn. Curr Biol 11:

34–38.

38. Engel P, Eck MJ, Terhorst C (2003) The SAP and SLAM families in immune

responses and X-linked lymphoproliferative disease. Nat Rev Immunol 3:

813–821. doi:10.1038/nri1202.

39. Luciano F, Ricci JE, Auberger P (2001) Cleavage of Fyn and Lyn in their N-

terminal unique regions during induction of apoptosis: a new mechanism for Src

kinase regulation. Oncogene 20: 4935–4941. doi:10.1038/sj.onc.1204661.

40. Wary KK, Mariotti A, Zurzolo C, Giancotti FG (1998) A requirement for

caveolin-1 and associated kinase Fyn in integrin signaling and anchorage-

dependent cell growth. Cell 94: 625–634.

41. Li S, Couet J, Lisanti MP (1996) Src tyrosine kinases, Galpha subunits, and H-

Ras share a common membrane-anchored scaffolding protein, caveolin.

Caveolin binding negatively regulates the auto-activation of Src tyrosine kinases.

J Biol Chem 271: 29182–29190.

42. Xu Y, Yang G, Hu G (2009) Binding of IFITM1 enhances the inhibiting effect

of caveolin-1 on ERK activation. Acta Biochim Biophys Sin (Shanghai) 41:

488–494.

43. Gao Y, Howard A, Ban K, Chandra J (2009) Oxidative stress promotes

transcriptional up-regulation of Fyn in BCR-ABL1-expressing cells. J Biol Chem

284: 7114–7125. doi:10.1074/jbc.M804801200.

44. Maltzman JS, Carmen JA, Monroe JG (1996) Transcriptional regulation of the

Icam-1 gene in antigen receptor- and phorbol ester-stimulated B lymphocytes:

role for transcription factor EGR1. J Exp Med 183: 1747–1759.

45. Maltzman JS, Carman JA, Monroe JG (1996) Role of EGR1 in regulation of

stimulus-dependent CD44 transcription in B lymphocytes. Mol Cell Biol 16:

2283–2294.

B Cell Signature during Inactive Systemic Lupus

PLoS ONE | www.plosone.org 8 August 2011 | Volume 6 | Issue 8 | e23900



46. Shaffer AL, Shapiro-Shelef M, Iwakoshi NN, Lee A-H, Qian S-B, et al. (2004)

XBP1, downstream of Blimp-1, expands the secretory apparatus and other
organelles, and increases protein synthesis in plasma cell differentiation.

Immunity 21: 81–93. doi:10.1016/j.immuni.2004.06.010.

47. Calame K (2008) Activation-dependent induction of Blimp-1. Current Opinion
in Immunology 20: 259–264. doi:10.1016/j.coi.2008.04.010.

48. Gateva V, Sandling JK, Hom G, Taylor KE, Chung SA, et al. (2009) A large-
scale replication study identifies TNIP1, PRDM1, JAZF1, UHRF1BP1 and

IL10 as risk loci for systemic lupus erythematosus. Nat Genet 41: 1228–1233.

doi:10.1038/ng.468.

49. Yoshida H, Matsui T, Yamamoto A, Okada T, Mori K (2001) XBP1 mRNA is

induced by ATF6 and spliced by IRE1 in response to ER stress to produce a

highly active transcription factor. Cell 107: 881–891.

50. Calfon M, Zeng H, Urano F, Till JH, Hubbard SR, et al. (2002) IRE1 couples

endoplasmic reticulum load to secretory capacity by processing the XBP-1

mRNA. Nature 415: 92–96. doi:10.1038/415092a.

51. Chaussabel D, Quinn C, Shen J, Patel P, Glaser C, et al. (2008) A modular

analysis framework for blood genomics studies: application to systemic lupus

erythematosus. Immunity 29: 150–164. doi:10.1016/j.immuni.2008.05.012.

B Cell Signature during Inactive Systemic Lupus

PLoS ONE | www.plosone.org 9 August 2011 | Volume 6 | Issue 8 | e23900


