data reports

CRYSTALLOGRAPHIC

OPEN access

Crystal structure of (E)-1-(2,4-dinitrophenyl)-2-[(*E*)-5-phenyl-1-(*p*-tolyl)pent-2en-4-yn-1-ylidene]hydrazine

Alexander A. Golovanov,^a Anna V. Vologzhanina,^b Evgeniya D. Voronova,^b Vadim V. Bekin^a and Sergey V. Naumov^c*

^aDepartment of Chemistry Chemical Processes and Technologies, Togliatti State University, 445667 Togliatti, Russian Federation, ^bNesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 119991 Moscow, Russian Federation, and ^cLaboratory of Functional of Heterocyclic Compounds, Togliatti State University, 445667 Togliatti, Russian Federation, *Correspondence e-mail: labofhc@gmail.com

Received 7 October 2015; accepted 12 October 2015

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

In the title compound, $C_{24}H_{18}N_4O_4$, the plane of the phenyl ring is inclined to those of the toluene ring and the dinitrosubstituted benzene ring by 66.96(19) and $47.06(18)^{\circ}$, respectively, while the planes of the two benzene rings are inclined to one another by 36.26 (19)°. There is an intramolecular N-H···O hydrogen bond between the NH group and the O atom of a nitro group, forming an S(6) ring motif. In the crystal, molecules are linked by $C-H \cdots O$ hydrogen bonds and $C-H \cdots \pi$ interactions, forming a three-dimensional network. There are also weak π - π interactions present involving the phenyl ring and the dinitro-substituted benzene ring [inter-centroid distance = 3.741(2) Å].

Keywords: crystal structure; hydrazones; hydrazine; hydrogen bonding; C—H··· π interactions; π – π interactions.

CCDC reference: 1430774

1. Related literature

For the biological activity of chalcones, and their arylthiocontaining derivatives, see: Nielsen et al. (2005); Wu et al. (2011); Chate et al. (2012); Karaman et al. (2012). For the synthesis and crystal structure of 1,5-diarylpent-2-en-4-yn-1one precursors, see: Golovanov et al. (2013); Vologzhanina et al. (2014).

 $V = 2061.63 (17) \text{ Å}^3$

 $0.42 \times 0.06 \times 0.06 \; \text{mm}$

Cu $K\alpha$ radiation

 $\mu = 0.79 \text{ mm}^{-1}$

T = 120 K

Z = 4

2. Experimental

2.1. Crystal data

C24H18N4O4 $M_r = 426.42$ Monoclinic, $P2_1/n$ a = 18.4810 (6) Å b = 6.1674 (2) Å c = 19.2366 (12) Å $\beta = 109.902 (5)^{\circ}$

2.2. Data collection

```
Bruker APEXII CCD
                                           27966 measured reflections
  diffractometer
                                           3661 independent reflections
Absorption correction: multi-scan
                                           2388 reflections with I > 2\sigma(I)
  (SADABS; Bruker, 2005)
                                           R_{\rm int} = 0.174
  T_{\min} = 0.903, \ T_{\max} = 0.916
```

2.3. Refinement R

H atoms treated by a mixture of
independent and constrained
refinement
$\Delta \rho_{\rm max} = 0.53 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.49 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

Cg2 is the centroid of the C12–C17 ring.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N2-H2N\cdots O1$	0.89 (5)	1.86 (5)	2.597 (5)	139 (4)
$C8 - H8 \cdot \cdot \cdot O1^{i}$	0.95	2.49	3.396 (5)	160
C10−H10···O2 ⁱⁱ	0.95	2.51	3.337 (5)	146
$C3 - H3 \cdots Cg2^{iii}$	0.95	2.63	3.504 (4)	153
	1 1	. 3 (**) 1	. 5 1 /	

Symmetry codes: (i) $-x - \frac{1}{2}$, $y - \frac{1}{2}$, $-z + \frac{3}{2}$; (ii) $x - \frac{1}{2}$, $-y + \frac{5}{2}$, $z - \frac{1}{2}$; (iii) x, y + 1, z.

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.

Acknowledgements

The authors are grateful to the Ministry of Education and Science of the Russian Federation for supporting this work (State program No. 426).

Supporting information for this paper is available from the IUCr electronic archives (Reference: SU5223).

References

Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

- Chate, A. V., Joshi, R. S., Mandhane, P. G., Mohekar, S. R. & Gill, C. H. (2012). Phosphorus Sulfur Silicon Relat. Elem. 187, 327-335.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.
- Golovanov, A. A., Latypova, D. R., Bekin, V. V., Pisareva, V. S., Vologzhanina, A. V. & Dokichev, V. A. (2013). Russ. J. Org. Chem. 49, 1264-1269.
- Karaman, İ, Gezegen, H., Ceylan, M. & Dilmaç, M. (2012). Phosphorus Sulfur Silicon Relat. Elem. 187, 580-586.
- Nielsen, S. F., Larsen, M., Boesen, T., Schønning, K. & Kromann, H. (2005). J. Med. Chem. 48, 2667-2677.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Vologzhanina, A. V., Golovanov, A. A., Gusev, D. M., Odin, S. I., Apreyan, R. A. & Suponitsky, K. Yu. (2014). *Cryst. Growth Des.* 14, 4402–4410.
 Wu, J., Li, J., Cai, Y., Pan, Y., Ye, F., Zhang, Y., Zhao, Y., Yang, S., Li, X. &
- Liang, G. (2011). J. Med. Chem. 54, 8110-8123.

supporting information

Acta Cryst. (2015). E71, o846-o847 [doi:10.1107/S2056989015019301]

Crystal structure of (*E*)-1-(2,4-dinitrophenyl)-2-[(*E*)-5-phenyl-1-(*p*-tolyl)pent-2en-4-yn-1-ylidene]hydrazine

Alexander A. Golovanov, Anna V. Vologzhanina, Evgeniya D. Voronova, Vadim V. Bekin and Sergey V. Naumov

S1. Comments

Chalcones exhibit antibiotic (Nielsen *et al.*, 2005) and anti-inflammatory (Wu *et al.*, 2011) activity. Arylthio-containing ketones are also active against some human pathogenic microorganisms (Chate *et al.*, 2012; Karaman *et al.*, 2012). Thus, a molecule which contains both fragments may have a high biological effect. Herein we present the synthesis and crystal structure of the title hydrazone, prepared by the reaction between 2,4-dinitrophenylhydrazine and 1-(4-methylphenyl)-5-phenyl-2-penten-4-yn-1-one.

In the title compound, Fig. 1, the length of the C3—C4 bond [1.427 (6) Å] indicates slight delocalization of electron density along the polyene C= C—C=C chain. In contrast with the parent pent-2-en-4-yn-1-one compound (Vologzhanina *et al.*, 2014) the benzene rings at C1 and C5 atoms are twisted with respect to one another, with a dihedral angle of 66.96 (19) °. There is an intramolecular N—H…O hydrogen bond, between an O atom of a nitro-group and the NH H atom forming an S(6) ring motif (Table 1 and Fig. 1).

In the crystal, molecules are linked by C—H···O hydrogen bonds and C—H··· π interactions, forming a threedimensional structure (Table 1 and Fig. 2). There are also weak π - π interactions present involving the phenyl ring and the dinitro-substituted benzene ring [Cg1···Cg3ⁱ = 3.741 (2) Å; Cg1 and Cg3 are the centroids of rings C6—C11 and C19— C24, respectively; symmetry code: x-1/2, -y+3/2, z-1/2].

S2. Synthesis and crystallization

A mixture of 2,4-dinitrophenylhydrazine (320 mg, 1.61 mmol), 1-(4-methylphenyl)-5-phenyl-2-penten-4-yn-1-one (374 mg, 1.61 mmol) and 1 ml concentrated HCl were dissolved in MeOH (20 ml). The reaction mixture was heated under reflux. The mixture was cooled, and the precipitate of the hydrozone was filtered off, washed on a filter with 2 ml of cold 95% EtOH, and dried (yield 87%). The single-crystals of the title compound were obtained by slow crystallization of a solution in MeOH (m.p.: 415–417 K). IR (KBr), ν/cm^{-1} : 2196, 1615. ¹H NMR (400 MHz, CDCl₃): 2.44 (s, 3H), 6.43 (d, 1H, J = 16.3 Hz), 7.07 (d, 1H, J = 16.3 Hz), 7.32 (m, 5H), 7.53 (dd, 2H, J = 4.3 Hz, J = 3.0 Hz), 7.61 (d, 2H, J = 8.0 Hz), 8.10 (d, 1H, J = 9.0 Hz), 8.35 (dd, 1H, J = 9.6 Hz, J = 2.0 Hz), 9.17 (d, 1H, J = 2.3 Hz), 11.65 (s, 1H). Anal. Calcd. for C₂₄H₁₈N₄O₄: C, 67.60; H, 4.26. Found: C, 67.95; H, 4.08.

S3. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The NH H atom was located in a difference Fourier map and freely refined. The C-bound H atoms were included in calculated positions and treated as riding atoms: C-H = 0.95-0.98 Å with $U_{iso}(H) = 1.5U_{eq}(C-methyl)$ and $1.2U_{eq}(C)$ for other H atoms.

Figure 1

The molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

A partial view along the b axis of the crystal packing of the title compound. The H atoms have been omitted.

(E)-1-(2,4-Dinitrophenyl)-2-[(E)-5-phenyl-1-(p-tolyl)pent-2-en-4-yn-1-ylidene]hydrazine

F(000) = 888

 $\theta = 2.9 - 66.5^{\circ}$

 $\mu = 0.79 \text{ mm}^{-1}$

T = 120 K

Needle, red

 $R_{\rm int} = 0.174$

 $h = -22 \rightarrow 22$ $k = -7 \rightarrow 7$ $l = -21 \rightarrow 22$

 $D_{\rm x} = 1.374 {\rm Mg} {\rm m}^{-3}$

 $0.42 \times 0.06 \times 0.06 \text{ mm}$

 $\theta_{\rm max} = 68.1^{\circ}, \ \theta_{\rm min} = 2.9^{\circ}$

27966 measured reflections 3661 independent reflections 2388 reflections with $I > 2\sigma(I)$

Cu *Ka* radiation, $\lambda = 1.54178$ Å Cell parameters from 4900 reflections

Crystal data

 $C_{24}H_{18}N_4O_4$ $M_r = 426.42$ Monoclinic, $P2_1/n$ a = 18.4810 (6) Å b = 6.1674 (2) Å c = 19.2366 (12) Å $\beta = 109.902$ (5)° V = 2061.63 (17) Å³ Z = 4

Data collection

Refinement

Refinement on F^2 Hydrogen site location: mixed Least-squares matrix: full H atoms treated by a mixture of independent $R[F^2 > 2\sigma(F^2)] = 0.091$ and constrained refinement $wR(F^2) = 0.283$ $w = 1/[\sigma^2(F_o^2) + (0.1877P)^2 + 0.4158P]$ S = 1.03where $P = (F_o^2 + 2F_c^2)/3$ 3661 reflections $(\Delta/\sigma)_{\rm max} < 0.001$ 295 parameters $\Delta \rho_{\rm max} = 0.53 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\rm min} = -0.49 \text{ e } \text{\AA}^{-3}$ 0 restraints Primary atom site location: structure-invariant Extinction correction: SHELXL2014 (Sheldrick, 2015), $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ direct methods Extinction coefficient: 0.0043 (10) Secondary atom site location: difference Fourier map

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.03666 (16)	0.8320 (6)	0.91286 (19)	0.0415 (10)	
O2	0.08785 (16)	1.1218 (6)	0.97070 (17)	0.0347 (9)	
O3	0.35551 (17)	1.2102 (5)	1.08437 (18)	0.0343 (8)	
O4	0.43421 (15)	0.9726 (5)	1.06733 (17)	0.0337 (9)	
N1	0.13617 (18)	0.3687 (6)	0.84326 (18)	0.0235 (9)	
N2	0.12194 (18)	0.5366 (6)	0.88310 (19)	0.0239 (9)	
H2N	0.077 (3)	0.598 (8)	0.877 (3)	0.036 (14)*	

N3	0.09357 (18)	0.9408 (6)	0.94809 (19)	0.0253 (9)
N4	0.36865 (19)	1.0372 (6)	1.05984 (19)	0.0256 (9)
C1	0.0782 (2)	0.2979 (7)	0.7893 (2)	0.0218 (10)
C2	-0.0018 (2)	0.3818 (7)	0.7662 (2)	0.0237 (10)
H2	-0.0418	0.2810	0.7626	0.028*
C3	-0.0214 (2)	0.5874 (7)	0.7502 (2)	0.0239 (10)
H3	0.0183	0.6913	0.7564	0.029*
C4	-0.0994 (2)	0.6596 (8)	0.7240 (2)	0.0267 (10)
C5	-0.1651 (2)	0.7169 (8)	0.7004 (2)	0.0261 (10)
C6	-0.2456 (2)	0.7682 (7)	0.6685 (2)	0.0229 (10)
C7	-0.3002 (2)	0.6081 (8)	0.6657 (2)	0.0278 (11)
H7	-0.2841	0.4694	0.6868	0.033*
C8	-0.3780 (2)	0.6527 (8)	0.6322 (2)	0.0307 (11)
H8	-0.4150	0.5436	0.6301	0.037*
C9	-0.4020 (2)	0.8530 (8)	0.6020 (2)	0.0293 (11)
Н9	-0.4553	0.8816	0.5785	0.035*
C10	-0.3485 (2)	1.0128 (8)	0.6058 (2)	0.0292 (11)
H10	-0.3650	1.1522	0.5857	0.035*
C11	-0.2702 (2)	0.9698 (7)	0.6390 (2)	0.0268 (10)
H11	-0.2336	1.0802	0.6414	0.032*
C12	0.0927 (2)	0.1107 (7)	0.7471 (2)	0.0210 (9)
C13	0.0446 (2)	0.0721 (7)	0.6754 (2)	0.0260 (10)
H13	0.0018	0.1644	0.6534	0.031*
C14	0.0585 (2)	-0.1003 (7)	0.6353 (2)	0.0275 (11)
H14	0.0253	-0.1240	0.5859	0.033*
C15	0.1208 (2)	-0.2392 (7)	0.6668 (2)	0.0245 (10)
C16	0.1688 (2)	-0.2011 (7)	0.7387 (2)	0.0261 (10)
H16	0.2108	-0.2960	0.7611	0.031*
C17	0.1563 (2)	-0.0273 (7)	0.7783 (2)	0.0251 (10)
H17	0.1908	-0.0003	0.8269	0.030*
C18	0.1338 (2)	-0.4305 (8)	0.6238 (3)	0.0331 (12)
H18C	0.1508	-0.5552	0.6569	0.050*
H18B	0.1733	-0.3941	0.6023	0.050*
H18A	0.0856	-0.4667	0.5841	0.050*
C19	0.1805 (2)	0.6534 (7)	0.9298 (2)	0.0218 (10)
C20	0.1700 (2)	0.8485 (7)	0.9621 (2)	0.0207 (9)
C21	0.2312 (2)	0.9736 (7)	1.0058 (2)	0.0216 (10)
H21	0.2226	1.1075	1.0261	0.026*
C22	0.3048 (2)	0.8976 (7)	1.0187 (2)	0.0221 (10)
C23	0.3174 (2)	0.7040 (8)	0.9893 (2)	0.0251 (10)
H23	0.3687	0.6549	0.9996	0.030*
C24	0.2583 (2)	0.5810 (7)	0.9458 (2)	0.0261 (10)
H24	0.2685	0.4476	0.9261	0.031*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
01	0.0141 (15)	0.054 (2)	0.049 (2)	0.0019 (15)	0.0020 (14)	-0.0209 (18)

O2	0.0210 (15)	0.045 (2)	0.0337 (19)	0.0090 (14)	0.0032 (13)	-0.0054 (16)
O3	0.0243 (16)	0.036 (2)	0.0363 (19)	-0.0025 (14)	0.0024 (13)	-0.0077 (15)
O4	0.0146 (14)	0.048 (2)	0.0335 (18)	0.0014 (14)	0.0018 (12)	-0.0048 (15)
N1	0.0194 (17)	0.030 (2)	0.0198 (18)	0.0003 (15)	0.0045 (14)	-0.0016 (15)
N2	0.0113 (16)	0.036 (2)	0.0210 (19)	0.0008 (15)	0.0010 (14)	-0.0081 (16)
N3	0.0165 (17)	0.034 (2)	0.0212 (19)	0.0048 (16)	0.0011 (14)	-0.0079 (16)
N4	0.0204 (18)	0.033 (2)	0.0205 (19)	-0.0014 (16)	0.0033 (14)	0.0011 (16)
C1	0.0145 (19)	0.031 (3)	0.019 (2)	0.0018 (17)	0.0055 (16)	0.0040 (17)
C2	0.0153 (19)	0.032 (3)	0.023 (2)	0.0005 (18)	0.0053 (16)	0.0000 (19)
C3	0.0149 (19)	0.036 (3)	0.017 (2)	0.0038 (18)	0.0001 (15)	0.0029 (18)
C4	0.022 (2)	0.036 (3)	0.020 (2)	0.0042 (19)	0.0058 (17)	0.0005 (19)
C5	0.021 (2)	0.037 (3)	0.016 (2)	0.0047 (19)	-0.0004 (16)	0.0026 (18)
C6	0.0140 (18)	0.033 (3)	0.019 (2)	0.0037 (17)	0.0017 (15)	0.0028 (18)
C7	0.027 (2)	0.036 (3)	0.019 (2)	0.001 (2)	0.0067 (18)	0.0023 (19)
C8	0.019 (2)	0.045 (3)	0.029 (2)	-0.005 (2)	0.0081 (18)	-0.002 (2)
C9	0.016 (2)	0.046 (3)	0.024 (2)	0.001 (2)	0.0044 (17)	-0.004 (2)
C10	0.022 (2)	0.039 (3)	0.023 (2)	0.010 (2)	0.0021 (17)	0.007 (2)
C11	0.021 (2)	0.031 (3)	0.025 (2)	0.0005 (19)	0.0038 (17)	0.0026 (18)
C12	0.0152 (18)	0.030 (3)	0.017 (2)	0.0005 (17)	0.0045 (15)	0.0024 (17)
C13	0.019 (2)	0.032 (3)	0.021 (2)	0.0030 (18)	-0.0013 (17)	0.0017 (19)
C14	0.022 (2)	0.035 (3)	0.020 (2)	-0.0017 (19)	0.0011 (17)	-0.0041 (19)
C15	0.021 (2)	0.027 (3)	0.027 (2)	-0.0035 (18)	0.0115 (17)	-0.0019 (18)
C16	0.0173 (19)	0.033 (3)	0.025 (2)	0.0044 (18)	0.0032 (17)	0.0001 (19)
C17	0.0133 (19)	0.037 (3)	0.021 (2)	-0.0007 (18)	0.0008 (16)	0.0014 (19)
C18	0.023 (2)	0.045 (3)	0.031 (3)	-0.001 (2)	0.0092 (19)	-0.010 (2)
C19	0.017 (2)	0.031 (3)	0.016 (2)	0.0003 (17)	0.0042 (16)	0.0017 (17)
C20	0.0126 (19)	0.028 (3)	0.018 (2)	0.0026 (16)	0.0005 (15)	0.0028 (17)
C21	0.023 (2)	0.029 (3)	0.0111 (19)	0.0003 (18)	0.0024 (15)	0.0005 (17)
C22	0.0154 (19)	0.033 (3)	0.014 (2)	-0.0037 (18)	0.0002 (15)	0.0028 (17)
C23	0.0135 (19)	0.037 (3)	0.023 (2)	0.0015 (18)	0.0034 (16)	0.0007 (19)
C24	0.017 (2)	0.033 (3)	0.025 (2)	0.0033 (18)	0.0033 (17)	0.0020 (19)

Geometric parameters (Å, °)

01—N3	1.237 (4)	C10—C11	1.394 (6)
O2—N3	1.215 (4)	C10—H10	0.9500
O3—N4	1.224 (5)	C11—H11	0.9500
O4—N4	1.236 (4)	C12—C13	1.383 (6)
N1—C1	1.288 (5)	C12—C17	1.409 (6)
N1—N2	1.366 (5)	C13—C14	1.388 (6)
N2-C19	1.355 (5)	C13—H13	0.9500
N2—H2N	0.89 (5)	C14—C15	1.396 (6)
N3—C20	1.461 (5)	C14—H14	0.9500
N4—C22	1.457 (5)	C15—C16	1.387 (6)
C1—C2	1.484 (5)	C15—C18	1.507 (6)
C1—C12	1.488 (6)	C16—C17	1.378 (6)
C2—C3	1.326 (6)	C16—H16	0.9500
С2—Н2	0.9500	С17—Н17	0.9500

supporting information

$C_2 = C_4$	1 427 (6)	C19 U19C	0 0800
$C_3 = C_4$	1.427 (0)		0.9800
C3—H3	0.9500	C18—H18B	0.9800
C4 - C3	1.195 (0)	C10—F18A	0.9800
C_{5}	1.439 (5)	C19—C20	1.398 (6)
	1.377 (6)	C19—C24	1.435 (5)
	1.400 (6)	C20—C21	1.391 (6)
	1.388 (6)	C21—C22	1.3/9(6)
С/—Н/	0.9500	C21—H21	0.9500
C8—C9	1.373 (7)	C22—C23	1.374 (6)
С8—Н8	0.9500	C23—C24	1.358 (6)
C9—C10	1.380 (6)	C23—H23	0.9500
С9—Н9	0.9500	C24—H24	0.9500
C1—N1—N2	116.2 (3)	C17—C12—C1	121.0 (4)
C19—N2—N1	120.8 (3)	C12—C13—C14	120.6 (4)
C19—N2—H2N	112 (3)	C12—C13—H13	119.7
N1—N2—H2N	127 (3)	C14—C13—H13	119.7
O2—N3—O1	122.2 (3)	C13—C14—C15	120.6 (4)
O2—N3—C20	119.2 (3)	C13—C14—H14	119.7
01 - N3 - C20	118.6 (4)	C15—C14—H14	119.7
03—N4—O4	123 4 (4)	C16-C15-C14	118 8 (4)
03—N4—C22	1196(3)	C16-C15-C18	120.9(4)
04 - N4 - C22	116.9 (4)	C14 - C15 - C18	120.3(4)
N1-C1-C2	126.5 (4)	C17 - C16 - C15	120.3(1) 120.8(4)
N1 = C1 = C2	116.6 (3)	$C_{17} = C_{10} = C_{15}$	110.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	110.0(3)	$C_{1} = C_{10} = H_{10}$	119.0
$C_2 = C_1 = C_{12}$	117.0(3)	$C_{15} = C_{10} = 110$	119.0 120.4(4)
$C_3 = C_2 = C_1$	124.0 (4)	C16 - C17 - C12	120.4 (4)
$C_3 = C_2 = H_2$	117.7	С10—С17—Н17	119.8
C1 = C2 = H2	11/./	C12—C17—H17	119.8
$C_2 = C_3 = C_4$	122.9 (4)	C15—C18—H18C	109.5
C2—C3—H3	118.5	C15—C18—H18B	109.5
C4—C3—H3	118.5	H18C—C18—H18B	109.5
C3—C4—C3	178.3 (5)	С15—С18—Н18А	109.5
C4—C5—C6	174.9 (5)	H18C—C18—H18A	109.5
C11—C6—C7	119.2 (4)	H18B—C18—H18A	109.5
C11—C6—C5	121.5 (4)	N2—C19—C20	123.5 (4)
C7—C6—C5	119.3 (4)	N2—C19—C24	119.6 (4)
C8—C7—C6	119.8 (4)	C20—C19—C24	116.9 (4)
С8—С7—Н7	120.1	C21—C20—C19	122.6 (4)
С6—С7—Н7	120.1	C21—C20—N3	115.6 (4)
C9—C8—C7	120.6 (4)	C19—C20—N3	121.7 (3)
С9—С8—Н8	119.7	C22—C21—C20	118.0 (4)
С7—С8—Н8	119.7	C22—C21—H21	121.0
C8—C9—C10	119.9 (4)	C20—C21—H21	121.0
С8—С9—Н9	120.1	C23—C22—C21	121.0 (4)
С10—С9—Н9	120.1	C23—C22—N4	121.2 (4)
C9—C10—C11	120.1 (4)	C21—C22—N4	117.6 (4)
C9—C10—H10	120.0	C24—C23—C22	121.7 (4)

C11—C10—H10 C6—C11—C10 C6—C11—H11 C10—C11—H11 C13—C12—C17 C13—C12—C1	120.0 120.4 (4) 119.8 119.8 118.7 (4) 120.2 (4)	C24—C23—H23 C22—C23—H23 C23—C24—C19 C23—C24—H24 C19—C24—H24	119.1 119.1 119.6 (4) 120.2 120.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -165.5 (4) \\ 0.5 (6) \\ -178.2 (3) \\ 54.1 (6) \\ -127.2 (5) \\ 176.3 (4) \\ 1.3 (6) \\ -177.2 (4) \\ -0.4 (7) \\ -0.9 (7) \\ 1.1 (7) \\ -1.1 (6) \\ 177.4 (4) \\ -0.1 (7) \\ -157.2 (4) \\ 24.0 (6) \\ 21.3 (6) \\ -157.5 (4) \\ 0.5 (6) \\ 179.0 (4) \\ 0.7 (7) \\ -0.4 (6) \\ 177.0 (4) \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-2.0 (6) 179.5 (4) 168.5 (4) -9.2 (6) -175.4 (4) 2.4 (6) 0.5 (6) 178.3 (4) 4.4 (6) -176.3 (4) -171.9 (4) 7.5 (6) -1.6 (6) -177.8 (3) 0.0 (6) 175.5 (3) 178.9 (4) -0.4 (6) 3.4 (6) -175.9 (4) 0.8 (7) -174.6 (4)
C14—C15—C16—C17 C18—C15—C16—C17 C15—C16—C17—C12	-1.1 (6) -179.3 (4) 2.3 (7)	N2-C19-C24-C19 C20-C19-C24-C23 C20-C19-C24-C23	176.4 (4) -1.5 (6)

Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C12–C17 ring.

<i>D</i> —H··· <i>A</i>	D—H	H…A	D···A	<i>D</i> —H··· <i>A</i>
N2—H2 <i>N</i> …O1	0.89 (5)	1.86 (5)	2.597 (5)	139 (4)
C8—H8····O1 ⁱ	0.95	2.49	3.396 (5)	160
C10—H10····O2 ⁱⁱ	0.95	2.51	3.337 (5)	146
C3—H3… <i>Cg</i> 2 ⁱⁱⁱ	0.95	2.63	3.504 (4)	153

Symmetry codes: (i) -*x*-1/2, *y*-1/2, -*z*+3/2; (ii) *x*-1/2, -*y*+5/2, *z*-1/2; (iii) *x*, *y*+1, *z*.