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Abstract

Background: High-quality phenotype definitions are desirable to enable the extraction of patient cohorts from large
electronic health record repositories and are characterized by properties such as portability, reproducibility, and validity.
Phenotype libraries, where definitions are stored, have the potential to contribute significantly to the quality of the
definitions they host. In this work, we present a set of desiderata for the design of a next-generation phenotype library that
is able to ensure the quality of hosted definitions by combining the functionality currently offered by disparate tooling.
Methods: A group of researchers examined work to date on phenotype models, implementation, and validation, as well as
contemporary phenotype libraries developed as a part of their own phenomics communities. Existing phenotype
frameworks were also examined. This work was translated and refined by all the authors into a set of best practices.
Results: We present 14 library desiderata that promote high-quality phenotype definitions, in the areas of modelling,
logging, validation, and sharing and warehousing. Conclusions: There are a number of choices to be made when
constructing phenotype libraries. Our considerations distil the best practices in the field and include pointers towards their
further development to support portable, reproducible, and clinically valid phenotype design. The provision of high-quality
phenotype definitions enables electronic health record data to be more effectively used in medical domains.
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Introduction

As a result of the digitization of health systems worldwide, elec-
tronic health record (EHR) data repositories have emerged as

the main source of data for medical cohort research studies. To
extract these cohorts, there is an increasing reliance on EHR-
based phenotype definitions (also referred to as phenotyping al-
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gorithms), which identify individuals who exhibit certain phe-
notypic traits, such as the same diseases, characteristics, or
set of comorbidities. These definitions can be represented in
many forms, including narrative descriptions, pseudo-code, or,
in some cases, may already be directly executable. Conceptu-
ally, they may vary from simple code lists, via rule-based al-
gorithms, to more involved machine learning (ML) tasks and
high-throughput approaches using natural language processing
(NLP).

While traditional big data techniques can successfully ad-
dress the scale of the EHR data available, the effectiveness of
phenotype definitions is affected by a range of other syntactic
and semantic issues, including variations in the way data are
structured and the coding systems used.

To overcome these issues and enable effective cohort extrac-
tion, a phenotype definition must exhibit certain properties. It
must be reproducible, allowing for accurate (re)implementation,
irrespective of the idiosyncrasies of the dataset against which
the definition was originally developed; portable, allowing for
straightforward implementation, irrespective of the structure of
the target dataset; and valid, effectively capturing the disease or
condition modelled. A definition that exhibits all of these prop-
erties we refer to as “high quality”.

To ensure high-quality phenotype definitions, support
should be provided to the authoring, implementation, valida-
tion, and dissemination processes of a phenotype’s lifecycle.
While such support is currently available, it is often sporadic and
inconsistent because it is delivered via a wide range of different
tools. Instead, building on the work of Richesson et al. [1], we
propose that the functionality provided by these tools should
instead be provided centrally, through the phenotype libraries
where definitions are hosted. For example, libraries should en-
able phenotypes to be developed according to some set of stan-
dard models, and track the evolution of definitions under these
models, so as to ensure that hosted definitions are clearer to un-
derstand and thus have the potential to be more reproducible.
Moreover, libraries should assist in the derivation of directly
computable phenotype definitions, through the provision of im-
plementation tooling, to improve portability by enabling the
execution of phenotypes in local use cases. Similarly, libraries
should directly validate the definitions they host, through, for
example, automated comparisons with gold standards.

To this end, in this work we contribute a number of desider-
ata for the development of phenotype libraries, which not only
ensure that definitions are accessible but also maximize the
quality of the phenotypes they contain by supporting all parts
of the definition lifecycle. These desiderata are based on both
the lessons learned during the development of contemporary
libraries within the authors’ own phenomics communities, as
well as a review of the functionality currently offered by phe-
notype tooling, which represent practices that have led to the
development of high-quality phenotype definitions. By provid-
ing access to high-quality definitions, phenotype libraries en-
able both efficient and accurate use of EHR data for activities
such as medical research, decision support, and clinical trial re-
cruitment.

Background

Human phenomics is the study of human phenotypes and in-
cludes the science and practice of defining observable medical
phenomena that indicate phenotypes to advance research and
personalized care. The concept of a phenotype originated as a

complement to the genotype, and the phenome was defined as
the complete set of an individual’s inheritable characteristics.
Rather than describing someone’s genetic information, a phe-
nome captures all the observable properties (phenotypes) that
result from the interaction of their genetic make-up and en-
vironmental factors, including their demographic information,
such as height or eye color, and medical histories.

With the emergence of large-scale EHR data repositories, the
term “phenotype” has evolved to denote traits shared by groups
of patients, such as a disease or condition that a cohort, or set of
individuals, has. This may also include other complex combina-
tions of traits, exposures, or outcomes, including comorbidities,
polypharmacy, and demographic data. Defining these pheno-
types, and validating them to ensure their accuracy and general-
izability, is a process known as “phenotyping”, with “EHR-based
phenotyping” relying primarily on data in the EHR. “Computa-
tional phenotyping” (also known as “deep phenotyping”) uses
either supervised ML techniques to discover new members of a
priorly defined cohort or unsupervised techniques to discover
entirely new phenotypes and investigate their properties.

EHR data repositories bring with them a very specific set of
data challenges in terms of managing syntactic and semantic
complexity, which act as a barrier to studies that need to use pa-
tient information from across multiple data sources and for the
needs of different studies. For example, by the nature of health-
care delivery and how EHRs are used to document, a patient who
has received a diagnosis of diabetes mellitus may be represented
slightly differently in two EHR systems and will almost certainly
be represented differently in EHRs for different countries.

Phenotype libraries—where definitions can be uploaded,
stored, indexed, retrieved, and downloaded by users—provide
a logical place in which to ensure that definitions are of a suit-
able quality to overcome many of the issues associated with ex-
tracting cohorts from complex EHR datasets. This is accentu-
ated by the fact that the development of phenotype libraries is
a rapidly growing area. Of particular note is the Observational
Health Data Sciences and Informatics (OHDSI) Gold Standard
Phenotype Library, which aims to support OHDSI community
members in finding, evaluating, and utilizing cohort definitions
that are validated by the research community. An initial version
of the library is currently available, alongside a wider set of re-
quirements to guide its future development [2]. Other libraries
planned for development include the VAPheLib [3], which aims
to collect, store, and make available 1,000 curated phenotype
definitions for the clinical operations research community by
the end of 2021. Phenotype libraries are also being developed as
a part of wider phenotype frameworks. Alongside Richesson’s
reusable phenotype definition framework sit initiatives such as
the Phenotyping Pipeline (PheP), which aims to extract, struc-
ture, and normalize phenotypes from EHR data collected across
participating sites [4].

Methods

To determine the functionality that should be provided by
a next-generation phenotype library, a team of international
researchers—comprising Health Data Research UK (HDR UK)
Phenomics theme members and US researchers from the
Mobilizing Computable Biomedical Knowledge (MCBK) and
Phenotype Execution and Modelling Architecture (PhEMA)
communities—first examined a range of tools supporting dif-
ferent parts of the definition lifecycle, which were developed
within their respective phenomics communities. This was en-
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riched with a wider review of the literature via Web of Science
(WoS) [5] and the grey literature via Google to identify third-
party projects that have developed phenotype tooling, or are
planning its development, and future trends. Our decision to
include the grey literature was informed by our a priori knowl-
edge of tools under development that do not yet have published
peer-reviewed articles. The tools reviewed included those that
support authoring (e.g., modelling using the Quality Data Model
[QDM] logic [6], the Clinical Quality Language [CQL] [7], and
use of the Observational Medical Outcomes Partnership [OMOP]
Common Data Model [CDM] [8] and associated tooling such as
OHDSI’s Automated PHenotype Routine for Observational Defi-
nition, Identification, Training and Evaluation [APHRODITE] [9]),
implementation (e.g., definition translators [10]), and validation
(e.g., electronic phenotyping validation [11]). Common function-
ality provided by the tools identified—representing opportuni-
ties for new phenotype library functionality—was extracted and
summarized.

In addition, the authors examined existing libraries from
within their own communities—including the Phenotype
Knowledge Base (PheKB) [12], CALIBER [13], Phenoflow [14], and
the Concept Library [15]—to identify instances of function-
ality currently supporting the phenotype definition lifecycle.
Common functionality provided by these libraries—which
has been shown to result in reproducible, portable, and valid
phenotype definitions, and thus represent best practice—was
also extracted and summarized.

Both of these summaries were translated to a draft set of
desiderata via discussion amongst a subset of the authors (M.C.,
S.M., E.J., S.D., V.C.). All authors participated in an asynchronous
iterative review process to critique, consolidate, refine, and de-
fine the final set of desiderata. The desiderata were further clas-
sified into logical categories.

Desiderata

In total, the authors arrived at a finalized collection of 14 desider-
ata, which are organized across the following sections into 5
categories: modelling, logging, implementation, validation, and
sharing and warehousing. Figure 1 shows how the desiderata
presented promote the design of a phenotype library that sup-
ports all parts of the phenotype definition lifecycle.

Modelling

Phenotype models govern the structure and syntax of pheno-
type definitions. For example, phenotype definitions are tradi-
tionally rule-based, meaning that they are composed of individ-
ual logical statements that each evaluate to a Boolean value,
typically by relating data elements (with associated values)—
such as the presence of a particular set of ICD-10 codes or a
particular laboratory test result—to each other. The set of op-
erators available to an author when connecting data elements
(e.g., logical connectives such as conjunction and disjunction)
would be established within a phenotype definition model. A
model may dictate that a phenotype be represented in an un-
structured, semi-structured, structured, or executable manner
[16]. A summary of different phenotype definition formats, gov-
erned by phenotype models, is given in Table 1.

Implementing a phenotype definition involves translating
the abstract definition (if unstructured or semi-structured) into
an executable form that can be directly run against a patient
dataset to derive the cohort exhibiting the defined phenotype.
Typically this requires the logic of the definition to be realized

in a programming language, such as translating abstract con-
ditional clauses into a set of tangible Python conditional state-
ments. We refer to these implementations as “computable phe-
notypes”. For a definition to be reproducible, it must be realized
in a formal structure that can be accurately interpreted and im-
plemented. Given the potential for human error in translating
from an unstructured narrative to something computable, for-
mal phenotype models provide such a structure.

Phenotype models are also key in ensuring semantic inter-
operability between definitions. That is, while the development
of phenotype definitions can involve deriving a curated, canoni-
cal set of phenotype definitions containing “definitive” versions
for each disease or condition being modelled for a particular do-
main (e.g., a national stroke body may want to maintain their
set of stroke phenotyping algorithms), more often than not, it
is perfectly valid to have overlapping phenotype definitions for
different uses. For example, an eligibility criterion for a clinical
trial may differ from a rule that triggers a decision support tool
in an EHR system, and both would differ from a definition used
in a population health study, even if all three nominally refer to
same disease [17]. Internationally, definitions for the same dis-
ease may also differ [18]. While this overlap is permissible, dif-
ferent definitions for the same condition must still be compati-
ble, enabling, for example, their relative functionality to be com-
pared. The adoption of a phenotype model enables such com-
patibility.

Given these benefits, a phenotype library should adopt a for-
mal phenotype model to control the structure of hosted defi-
nitions. To ensure the use of such a model, a library can of-
fer a graphical authoring environment—in the same way that
tools such as the Phenotype Execution and Modelling architec-
ture (PhEMA) Authoring Tool (PhAT) do [6]—through which new
definitions can be authored. Similarly, existing definitions can be
automatically checked for their adherence to the chosen model
when uploaded.

Desiderata relating to the adoption of a phenotype model
by a library are listed in the following sections. We view these
desiderata as complementary to the well-established desiderata
for phenotype definition model development put forward by Mo
et al. [19].

Support modelling languages
The phenotype definition model adopted by a library should be
supported by a (non-executable) high-level modelling language
that dictates the syntax available to an author when defining
the logic of a phenotype. A computable form of the definition
can then be realized for execution in a local use case. When
selecting or developing a definition model, the temptation may
be to select a lower-level, executable programming language, in
an attempt to expedite local implementation. For example, one
could argue that a language such as Python is sufficient for si-
multaneously defining phenotypes and realizing them compu-
tationally. However, we would argue that using such a language
as a means to express the logic of a definition ties the defini-
tion to general purpose, low-level language constructs, reducing
clarity and thus reproducibility. This conclusion is supported by
work such as that of Papez et al. [20], which found openEHR an
overly restrictive standard when attempting to express pheno-
type definitions in a form that can be directly executed. An ex-
ample of a phenotype definition realized in an executable lan-
guage (Python) is given in Fig. 2.

In contrast, the syntax of higher-level modelling languages,
while still precise, is often clearer, as well as often being domain
specific. For example PhEMA’s PhAT allows users to define phe-
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Figure 1: The stages of the phenotype definition lifecycle supported by a next-generation phenotype library.

Table 1: Phenotype definition formats

Format Description Example Category

Code list A set of codes that must exist in a
patient’s health record in order to include
them within a phenotype cohort

COVID-19 ICD-10 code “U07.1” Rule-based

Simple data elements Formalizing the relationship between
code-based data elements using logical
connectives

COVID-19 ICD-10 code “U07.1” AND
ICD-11 code “RA01.0”

Rule-based

Complex data
elements

Formalizing the relationship between
complex data elements, such as those
derived via NLP

Patient’s blood pressure reading >140 OR
patient notes contain “high BP”

Rule-based

Temporal Prefix rules with temporal qualifiers Albumin levels increased by 25% over
6 hours, high blood pressure reading has
to occur during hospitalization

Rule-based

Trained classifier Use rule-based definitions as the basis for
constructing a classifier for future (or
additional) cohorts

A k-fold cross-validated classifier capable
of identifying patients with COVID-19

Probabilistic

Figure 2: Python (executable) vs CQL (modelling) [21] representation of pharyn-
gitis phenotype.

notypes using the high-level, domain-specific syntax associated
with the Quality Data Model’s (QDM) logic expressions (now ca-
pable of working instead with CQL [7]). Both QDM and CQL make
particular provision for the representation of temporal informa-
tion, such as the (sequential) relationship between events, or be-

tween events and defined measurement periods. A further ex-
ample of a modelling language is OHDSI’s cohort definition syn-
tax, which, although tied directly to the OMOP CDM, is also high-
level and domain specific, allowing for significant clarity when
interpreting existing definitions [8]. Like QDM/CQL, this syntax
also makes provision for temporal elements (e.g., associating pa-
tient observations to an elapsed time period) but looks more
holistically at the cohort relating to the phenotype being defined,
through, for example, the use of specified inclusion and exclu-
sion criteria. As a final example, Phenoflow’s workflow-based
model relies on a categorized set of steps to express phenotype
definitions, with the same benefits [14]. An example of a pheno-
type realized in a higher level modelling language (CQL) is also
given in Fig. 2 for comparison.

It is also important to note that the use of a modelling lan-
guage as the basis for a phenotype model does not preclude
the utility or use of higher-level, (more) human-readable rep-
resentations such as flow charts. In fact, modelling languages
typically connect well with such representations. For example,
flow charts can be directly generated from Phenoflow’s workflow
model, QDM is linked to a graphical HTML layer, and OHDSI co-
horts can be viewed graphically using the ATLAS cohort editor.
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Support Natural Language Processing–based and machine learning–
based definitions
The modelling language selected to form the basis of a pheno-
type definition model should also support the representation of
a wider range of definition types (Table 1). That is, under a def-
inition model, one should be able to express not only standard
rule-based definitions but also more complex definitions based
on ML and NLP techniques. These techniques are becoming in-
creasingly prevalent, particularly in those situations where the
datasets against which the implemented definition is to be exe-
cuted are of varying completeness or lack consistent record cod-
ing. The use of modelling languages to represent these types
of definitions is also important for reproducibility because the
use of an abstract representation reduces the potential for refer-
ences to implemented libraries, commonly used by NLP and ML
techniques.

Critically, in order to sufficiently represent both ML- and NLP-
based phenotypes, a modelling language must be able to repre-
sent not only static information (as in rule-based phenotypes)
but also complex processes. For example, in the case of ML, a
definition may consist of a static, high-level specification of a
trained patient classifier (via the provision of values such as fea-
ture coefficients) or may be a more complex description of the
workflow used to train a classifier for a given condition, with a
view to the classifier being re-implemented in new use cases or
training a new model in new use cases, respectively. The work-
flow used to train a classifier may involve the identification of
cases using the presence of certain keywords within an EHR [22]
or, as in the case of the PheNorm framework, may involve addi-
tional steps, such as normalization (to factor in number of en-
counters when looking at the significance of a larger number
of keywords or codes) and denoising (to look at the wider con-
text of a keyword or code count, e.g., competing diagnoses) [23].
The high-level definition of ML-based, or probabilistic, pheno-
types in this way is supported in the OHDSI’s Automated PHeno-
type Routine for Observational Definition, Identification, Train-
ing and Evaluation (APHRODITE) computable phenotype frame-
work, which, although also linked to the OMOP CDM, offers a
level of abstraction at which trained classifiers can be repre-
sented and ported between sites, or a defined workflow can be
used to construct site-specific classifiers, when used in an exe-
cutable form [24].

In the case of NLP, a definition may consist of a simple list of
keywords relating to a given medical concept, or a set of regu-
lar expressions (not tied to any specific programming language),
with a view to these being used as the basis for identifying con-
ditions from free-text in a medical record, when realized in a
computable form. However, like ML, NLP-based phenotype def-
initions are also often associated with complex processes, es-
pecially when used to conduct high-throughput phenotyping.
For example, a PheMap phenotype definition consists of a set
of linked concepts, the presence of which in a patient’s EHR is
used to determine the probability of the patient having the con-
dition represented [25]. The association of a phenotype with dif-
ferent concepts is defined within the PheMap knowledge base,
which is constructed on the basis of a process that uses a spe-
cific set of NLP tools to derive these associations on the basis
of the content of various text-based resources. Therefore, it is
also important to represent this process as a part of any defini-
tion, especially if the knowledge base needs to be reconstructed
within different domains. In instances such as these, it may be
important for the definition model used to include guidance on
the use of specific tools, but it must do so in a manner that re-
tains clarity and generalizability, thus balancing reproducibility

requirements. Modelling languages like CQL have the potential
to link to external tooling, for the purposes of effectively captur-
ing NLP and ML processes such as these.

Support multi-dimensional descriptions
A significant hurdle in porting a phenotype definition from one
setting (institution or dataset) to another—a process we refer to
as localization—is understanding its structure and semantics in
order to derive a local computable form or modify an existing
one. Complex rules and the use of idiomatic clinical terminol-
ogy, although often necessary components of a definition, are
both barriers to this understanding and thus to reproducibility.
To address this issue, a phenotype definition model should allow
an author to express the same logic of a phenotype at differ-
ent levels of technical complexity. This approach aims to com-
municate supplementary information alongside the provision of
the core definition logic. For example, the workflow-based Phe-
noflow model allows an author to use the technical terminol-
ogy and rules required to express a phenotype definition but
then also requires an author to provide longer definitions of this
functionality to improve clarity, and to also classify each unit of
functionality under a given ontology, enabling a high-level un-
derstanding of the functionality to always be accessible. In other
modelling languages like CQL, such information can be commu-
nicated using constructs such as inline comments.

Logging

The development of a phenotype definition is an incremental
process. Capturing and communicating this process is key in en-
suring that a definition can be accurately interpreted and is thus
reproducible. Moreover, this information strengthens the trust-
worthiness of a phenotype and thus its potential applications.
Therefore, phenotype libraries should provide a mechanism for
logging the evolution of a phenotype definition.

Support versioning and data provenance
One way in which a phenotype can evolve is through a series
of iterative refinements. SAIL Databank’s Concept Library stores
phenotypes as sets of codes, with a view to making these phe-
notypes available in different studies and use cases [15]. The
concept library, as the name suggests, focuses on a model un-
der which phenotypes are collections of grouped medical “con-
cepts” or “working sets”. The Concept Library records and com-
municates the evolution of a phenotype definition using meth-
ods akin to standard version control, logging the state of a phe-
notype after each revision, and thus provides an overview of the
definition’s progression. This versioning process often relies on
attributing a universally unique identifier (UUID) to each defi-
nition and each subsequent revision of that definition. Such an
identifier might simply be incremental or convey some details of
the phenotype itself. It should also be independent of other iden-
tifiers to maximize clarity [26]. For example, within APHRODITE
a UUID is derived by committing (each version of) a generated
definition to a GitHub repository and extracting the unique com-
mit hash value, in accordance with the FAIR (Findable, Accessi-
ble, Interoperable and Reusable) principles [27].

A more comprehensive way to capture the evolution of a
definition—and thus contribute to its reproducibility—is to de-
ploy formal data provenance capture tools to capture richer,
real-time information about the evolution of an entity. This
might include information about updates to the structure of
a definition or details of how that definition was validated. It
might also include information about how the definition was de-
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Figure 3: An example data provenance trace showing an update to a dementia
phenotype, using the W3C PROV standard. The initial version of the phenotype
(1) is updated by four edit activities (2), each of which modifies a component of

the definition (e.g., record extract logic, diagnostic codes, previous history) (3),
in order to generate a new version (4), and the process is linked with the author
making these edits (5).

rived if, for example, the definition is a trained model. An exam-
ple of one such tool is the Data Provenance Template server [28],
which allows for the specification of abstract templates, based
on the W3C PROV standard [29], while eliminating the complex-
ity of dealing with low-level provenance constructs.

Using provenance tools, a trace is automatically constructed
that can be queried in order to answer a range of questions, such
as which clinical codes were used to support a definition at a
given time. The Phenoflow library is integrated with the prove-
nance template server, enabling the evolution of the definitions
it hosts to be tracked over time [30]. A fragment of provenance
constructed in this manner is shown in Fig. 3.

Support modular relationships between phenotypes
Another way in which phenotype definitions evolve is through
their reuse in constructing new definitions. For example, a phe-
notype may, either in part or entirely, be defined by other self-
contained phenotypes. For example, bipolar disorder is (in part)
defined by both substance and alcohol abuse, two phenotypes
in their own right [31]. In this way, existing phenotypes become
the building blocks for new phenotypes. Much like a version his-
tory, it is thus important to capture and communicate this in-
formation upon implementation to provide detailed insight into
the formulation of the definition. As such, a phenotype library
should log the relationship between different definitions, and, if
authoring capabilities are supported, a library should allow new
definitions to be constructed on the basis of existing ones. This is
similar to the approach taken by the Concept Library, which re-
lates concepts to each other to create phenotype definitions, and
by Finngen’s Risteys platform, which relates phenotypes tempo-
rally, listing those phenotypes that a patient is likely to exhibit
either before or after exhibiting another (e.g., the onset of de-
pression after exhibiting bipolar disorder) [32]. Establishing this

relationship further contributes to the provenance of a pheno-
type, the precision of its definition, and, consequently, its repro-
ducibility.

Conversely, “sub-phenotypes” may be computationally de-
rived from existing phenotypes by clustering those features (e.g.,
demographic, diagnosis, medication) identified, by a trained
classifier, to be key attributes of those patients exhibiting the
parent phenotype [33]. Such a relationship should also be logged
by a phenotype library, to establish the evolution of a definition,
and track changes and dependencies across phenotype defini-
tions.

Implementation

Our initial desiderata determined that phenotype definitions
should not themselves be executable. While important for re-
producibility, this raises natural issues around the complexity of
realizing a phenotype defined using a modelling language com-
putationally for individual use cases, something that hinders
portability. This issue can be addressed by meeting several re-
quirements, which are explored in the following sections.

Communicate implementation information in the model
One way in which implementation can be supported is through
the definition itself, by communicating information pertinent to
its computable realization. To do this, one might select a pheno-
type definition model based on a modelling language that allows
an author to express additional information at different levels of
abstraction. For example, the Phenoflow model frames the tra-
ditional (rule-based) logic of a phenotype definition as an “ab-
stract” layer and allows an author to complement this layer with
additional layers, each of which gradually communicates more
implementation information: a “functional” layer, introducing
the concept of data types, and a “computational” layer, express-
ing details such as target execution environments. The fact that
these layers sit alongside the traditional, abstract logic layer al-
lows for more concrete implementation to be expressed without
affecting portability.

The abstract layer of the Phenoflow model is split into in-
dividual modules, each of which represents a distinct unit of
functionality, and which collectively define the process required
for deriving a patient cohort from a set of health records. Each
module in the abstract layer has an equivalent module in both
the functional and computational layers, ensuring a correspon-
dence between each level of representation within the model.
However, these modules also provide another means by which
implementation information can be communicated through a
definition model, in that they provide a clear template for devel-
opment; each module represents a single unit of functionality
that must be implemented by a developer when realizing the
computable form. This reduces the implementation burden on
developers and thus improves portability. Modelling languages
like CQL, which support the definition of individual functions as
a part of an abstract layer, offer similar benefits.

Support tooling that provides multiple programming language im-
plementations
Phenotype implementation tooling automatically takes an ab-
stract phenotype definition and translates it into a computable
form. This naturally improves portability. Examples of this tool-
ing include the “translators” developed by the PhEMA initia-
tive, which are able to take a modelling language definition of a
phenotype—such as definitions expressed in QDM, as produced
by the PhAT, or in CQL—and transform them into executable for-
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mats (e.g., pipelines [10]). In addition, the OHDSI tools provide
ways to take their domain-specific representation and translate
it to SQL queries that execute against multiple database systems
adopting the OMOP CDM. Although all definitions are SQL, the
different dialects used by database vendors are akin to separate
programming languages.

Given these benefits, a phenotype library should provide ac-
cess to implementation tooling. In the simplest form, access
should be provided to this tooling by hosting and indexing it in
a library, in the same way that the definitions themselves are
hosted and indexed. This tooling can then be downloaded, along
with a definition, and executed locally to produce a computable
form. More advanced integrations will provide the functionality
offered by implementation tooling directly through the library,
by running it as a service that can be accessed by users via the
library in order to download the automatically generated com-
putable form of a phenotype. This is the approach taken by the
Phenoflow platform, which allows users to obtain computable
copies of a phenotype definition directly, by running a microser-
vice generation architecture.

The tooling indexed should be able to support implementa-
tions in a variety of different programming languages. While the
programming language used might seem to be of little conse-
quence, in practice, even with the presence of a translator, the
researcher generating a computable form for a new use case is
likely to still have to modify (localize) that computable pheno-
type for local use. Such modifications might include optimiza-
tions to the structure of the implementation to allow the com-
putable form to operate in low-memory environments or to op-
erate as a part of existing infrastructure (e.g., a clinical trial plat-
form [34]). In this instance, having that definition in a language
that the researcher is comfortable with editing is important.
For example, the pipeline-based implementation originally pro-
duced by the PheMA translator only supports the KNIME format.
As such, a researcher has to be comfortable with this format to
make edits. To maximize portability, phenotype libraries should
aim to support implementation tooling capable of producing ex-
ecutable definitions in multiple languages. An example of this
is seen within the Phenoflow platform, where one can generate
a workflow that uses modules from a variety of languages, in-
cluding Python and Javascript, with containerized environments
supporting the straightforward execution of these units locally.

Support tooling that provides connectivity with multiple data stan-
dards
When a phenotype definition is translated by a piece of tool-
ing into an executable form, it is typical for that definition to be
tied to a given data source format, from which the resulting co-
hort is identified. In certain cases, that data format is always the
same. For example, OMOP cohort definitions, when translated
into a computable form (SQL), are always tailored for the OMOP
CDM. While beneficial in the sense that this provides an auto-
mated translation process that works across sites, those sites
must all adopt the OMOP CDM, which is not always feasible. In-
stead, in reality, sites may use a variety of implementation for-
mats, such as i2b2 and FHIR. For these reasons, phenotype li-
braries should index implementation tooling that not only sup-
ports multiple language implementations but also supports the
realization of definitions for different data formats. Naturally,
the more data source formats supported, the more portable the
definitions stored within a library are. For example, the com-
putable forms generated by PhEMA’s translators can be tailored
for a variety of local data formats, including FHIR and the OMOP
CDM itself. Similarly, in the Phenoflow library, interacting with

a data source is considered to be the first step in a phenotype’s
definition, and as such different “connectors” are available when
generating the computable form of a definition. These connec-
tors support a variety of different standards such as OMOP and
i2b2, and plans are in place to support dataset-specific stan-
dards, such as the standard used by UK Biobank (via tooling such
as Funpack [35]).

The connector approach also provides a natural point at
which to conduct any necessary (automatic) translation be-
tween the coding system adopted by a target data source and the
coding system expected by the implemented definition. For ex-
ample, if the target datasource adopts Read codes but the com-
putable phenotype relies on sets of ICD codes, a connector might
not only ingest data but also perform code mappings accord-
ingly.

Despite these benefits, the requirement to produce a new
translator, or new connector, for each new data source format
is a natural drawback to each of these approaches. However, the
advantages over manual translation are still clear.

Validation

Validating a phenotype definition involves confirming its accu-
racy. To do this, the cohort identified by a computable pheno-
type is typically compared to a reference standard, such as the
cohort identified by manual review of medical records from the
same patient population (a “gold standard”). The extent to which
the two cohorts overlap determines the validity of the definition.
While reference standards are a common means of phenotype
validation, other techniques exist and are listed in Table 2. Phe-
notype definitions that are shown to be accurate are considered
to be of a higher quality. Therefore, phenotype libraries should
facilitate the validation process.

Support a defined validation process
To support the validation of stored definitions, a phenotype li-
brary should have a clear and scalable process for the submis-
sion of existing validation information by a user, across a variety
of the mechanisms listed in Table 2. This information can then
be stored and presented alongside each definition. For example,
the CALIBER library stores phenotypes as code sets (342, at the
time of writing), with a view to providing a framework for the
definition of consistent phenotypes, which can then be reused
by care service providers for nationwide EHR-based observa-
tional research [13]. Each definition in CALIBER appears along-
side algorithmic information about the relationship between the
code sets and key validation information. Specifically, the CAL-
IBER library offers up to 6 different techniques, which are used to
validate a single definition. Similarly, the OHDSI gold standard
phenotype library is so-called because there is a well-defined
process proposed for the submission of phenotypes based on
different user roles. Specifically, the submission of a computable
phenotype definition to the library (which can occur using the
APHRODITE framework) will require definitions to be submitted
by those in the “author” role, vetted by “librarians”, validated by
users who act as “validators”, and used by standard “users” [36].

Automate multiple validation techniques
When new definitions are submitted without validation infor-
mation to a library, it should seek to automatically validate these
definitions by comparing them, or their outputs, against assets
that are hosted alongside the definitions, such as gold standard
datasets. For example, in [11], Kukhareva et al. present “elec-
tronic phenotyping validation”, a framework for the automated
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Table 2: Phenotype validation mechanisms

Mechanism Description Example

Disease registries Compare the phenotype cohort with those
present in the registry

Comparison of a diabetes phenotype
cohort with those patients present in a
diabetes registry (e.g., T1D exchange)

Chart review Compare the phenotype cohort with the
patients identified by manual review of

medical records

Comparison with a diabetes gold standard,
produced by double manual review of

patient medical records
Cross-EHR concordance Compare percentage of cases identified by

a phenotype across different sources, and
identify any overlap

Comparison of the percentage of patients
identified by a diabetes phenotype in

primary and secondary care EHRs, and the
identification of any case overlap

Risk factors Compare the magnitude of the phenotype
cohort with standard risk calculations

Comparison with the output of a Cox
hazards model

Prognosis Compare the magnitude of the phenotype
cohort with external prognosis models

Comparison with a survival analysis

Genetic associations Compare whether the presence of a patient
in a phenotype cohort is consistent with

their genetic profile

A patient is more likely to be a valid
member of a diabetes cohort if they have

the HLA-DR3 gene

comparison of a definition with the results of a manual review
of medical records. In the absence of such assets, a portal might
host tooling designed to derive these assets automatically. For
example, PheValuator trains a linear model based upon cases
and controls identified using some of the techniques already dis-
cussed, such as the presence (or absence) of a large number of
clinical codes relating to a certain condition within a patient’s
record [37]. This model is used, in turn, to construct an evalu-
ation cohort, which matches each individual in the cohort to a
probability value indicating the likelihood of them having the
condition of interest. This cohort can then act as a silver stan-
dard against which phenotype definitions can be validated, in
this case by using the matched probabilities to construct totals
from which sensitivity, specificity, and positive predictive value
are calculated.

There is also an argument for the automated combination
of different validation approaches to avoid the shortcomings of
each individual approach. For example, using a disease registry
approach alone as a gold standard for phenotypes related to that
disease is not scalable or feasible for patient cohorts focusing
on multi-morbidities and complex demographic criteria. Sim-
ilarly, validating using clinical notes review, where phenotype
patient matches are manually reviewed, is not sustainable for
large learning health system infrastructures. While the manual
text extraction of phenotypes can be effective in smaller sce-
narios, it is heavily dependent on the human expert and the
sample being analysed and is not well suited to cross-site stud-
ies with differences in clinical and operational procedures and
opinion between sites. As such, phenotype libraries should of-
fer novel hybrid approaches to validation that encompass struc-
tured data, free text, and ancillary sources for both structured
and unstructured data.

Enable feedback
To facilitate any (informal) user-based validation of stored def-
initions, a phenotype library should support social interactions
between the authors and researchers that use it, with a view to
providing authors with feedback and allowing them to address
this feedback accordingly. Social functionality is supported by
the Phenotype Knowledge Base (PheKB), which currently hosts
∼70 phenotype definitions [12]. For example, within the library,
users can post comments or questions against different pheno-

types. A researcher can also request collaboration on the devel-
opment of phenotype definitions.

However, those users permitted to interact with a phenotype
definition within a portal may be restricted. Within PheKB, only
users with certain organizational affiliations (e.g., the eMERGE
network or the Phenome-Wide Association Studies [PheWAS]
community [38]) are provided with access by default, with other
users required to request an account prior to providing feed-
back on definitions. Other portals may restrict access to different
countries or regions.

In many cases, these restrictions are necessary during the
development of a phenotype. For example, APHRODITE’s def-
inition repositories are kept private while they are still under
development. However, once developed, definitions can be ac-
cessed through the repository via any web browser or through
an R Shiny app. Based on practices such as these, phenotype li-
braries should limit the restrictions they place on those who can
engage with the definitions in phenotype libraries, once devel-
oped. By eliciting comments on the validity of hosted definitions
from a wider audience, one is likely to gain a greater understand-
ing as to the quality of a definition.

Sharing and warehousing

Once a phenotype definition is appropriately reproducible,
portable, and validated, it should then be accessible for use by
others. While the traditional and default role of a phenotype li-
brary is to provide such access, this can be optimized, as dis-
cussed in the following sections.

Expose a standard API
To maximize accessibility, a phenotype library should facilitate
user interactions via multiple interfaces. The definitions in a
library are usually available via a single interface: a graphical
front end. While this provides a reasonable baseline for acces-
sibility, it does not maximize it. For example, a user cannot in-
struct a piece of software to interact with the library, to include
definitions directly within a piece of code, resulting in potential
inconsistencies arising from manual entry. Similarly, existing
software systems, such as decision-support systems, cannot au-
tonomously access phenotypic information. Perhaps most im-
portantly, a lack of programmatic accessibility means that one
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Figure 4: Overview of the services that constitute the HDR UK phenotype library.

library cannot easily access the functionality of another in order
to provide complementary functionality.

To address these issues, phenotype libraries should offer
API-level web services that (at a minimum) duplicate the func-
tionality available in a user interface. In doing so, several con-
siderations should be addressed. First, the level of API access
needs to be considered, including whether to provide access
only to trusted partners, and thus provide suitable authenti-
cation mechanisms (e.g., OAuth), or whether to make the API
publicly accessible. The selection of the type of API-level ac-
cess provided to the functionality of the web resource should be
subject to the policy of the organization developing the library.
Second, the protocol used to facilitate communication with the
API should be considered, such as Remote Procedure Call (RPC),
Service Object Access Protocol (SOAP), and Representation State
Transfer (REST). REST is a simple and widely adopted specifica-
tion model [39] and is thus the technology that is likely to be
most attractive when constructing a library API. Next, to support
programmatic access and enable definitions to be differentiated
automatically, a formal identification system should be estab-
lished for each definition. The most straightforward way to this
is to leverage the UUID attributed to each phenotype version.

The functionality of the API itself also needs to be consid-
ered. In [1], Richesson et al. propose that an API service should
be used to construct phenotype definitions for the purpose of
defining inclusion and exclusion criteria for clinical research tri-
als. Building on this outline, we consider several additional API-
level use cases, including searching phenotype definitions, ex-
tracting a specific phenotype definition, submitting a new phe-
notype definition, submitting a new use case for an existing phe-
notype definition, or validating an existing definition and link-
ing a phenotype definition with a data source, and vice versa.
Examples of specific functionality that an API-level phenomics
resource should support within each of these use cases are given
in Table 3.

The benefits of API functionality are evident in the CALIBER,
Phenoflow, and Concept Library libraries, all of which commu-
nicate together to collectively form, along with a dataset Gate-
way, the HDR UK phenomics resource. As shown in Fig. 4, each
library operates as a service, and collectively these services are
able to deliver the functionality of a single library to a user. The
services at the core of this library are the Concept Library and
the CALIBER library, each of which stores phenotype definitions.
Using provided APIs, the Concept Library is able to import defini-
tions from the CALIBER library, enabling phenotypes to be both

formally stored and validated across both services, respectively.
Similarly, the Phenoflow service—also capable of automatically
importing and representing definitions using a workflow-based
model, and generating a corresponding computable form for
execution against a local dataset—is able to import definitions
from both the Concept Library and CALIBER. Finally, the Gate-
way service provides access to a comprehensive collection of
datasets, which are linked to by services such as CALIBER, when
a given phenotype definition is present in one of the hosted
datasets. Similarly, the Gateway links back to CALIBER when a
phenotype is present in a dataset, to facilitate searches based
upon these definitions.

Offer advanced search capabilities
The accessibility of existing phenotypes within a library relies
on its search capabilities. Searches based on given name or
identifier and version should enable simple use cases. For ex-
ample, PheKB offers comprehensive search functionality, with
users able to perform searches not only against the defini-
tions themselves using given keywords but also against support-
ing definition content, such as articles, implementations, and
datasets. Alternatively, the library has the option to list all phe-
notype definitions—including phenotype definitions under de-
velopment, if the user is logged in—where a user can instead
filter the definitions returned after the fact, based on properties
such as the authoring institution.

While the search functionality offered by PheKB is helpful,
more advanced search capabilities should be supported to fa-
cilitate both more complex cases and improved information re-
trieval. This includes searches based on specific codes, or groups
of codes, or an approximate pattern matching, based on regu-
lar patterns or even text similarity. Synonyms (including abbre-
viations and acronyms) may also be used as a mechanism to
improve search results over keyword searches. For example, a
search for “diabetes” would likely fail to find a phenotype that
refers to “T2DM” throughout, although “T2DM” is a recognized
abbreviation that can be semantically linked via the UMLS.

Even more advanced capabilities might include searches us-
ing semantic similarity between a given set of concepts and the
stored phenotypes supported by phenotype ontologies [40]. This
could enable the discovery of semantically identical or closely
related concepts within the library. Similarly, similarity metrics
between phenotype definitions, facilitated by the adoption of a
formal phenotype model, are likely to assist in scalable searches
across different repositories, whereby a partial match may indi-
cate a usable cohort definition to investigate.

Include comprehensive metadata
The search and browse features described must be supported by
appropriate metadata, which can be used to describe both the
subject and format of phenotypes in ways that make them find-
able to users with specific research or clinical needs. Such defini-
tions we might refer to as “FAIR Phenotypes” [41]. To achieve this,
each phenotype definition should include structured data that
describe the subject (i.e., clinical condition) and intent (screen-
ing, etc.) of the definition, as well as the source, date, pub-
lisher, and so forth, similar to the tagging of resources in tra-
ditional libraries. Additionally, each component of the pheno-
type model (e.g., underlying data model, data elements, value
sets, code lists, coding language) must be specified with an as-
signed code or value so that users can search on these features
or have them displayed when browsing a phenotype library or
repository. Examples of existing libraries that look to attribute
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Table 3: Suggested library API functions with all requests made in, and responses returned in, YAML+Markdown/JSON/XML formats

Function User access level Description

Search Simple search Public A free text search, examining the entire
contents of the portal and returning a list of
phenotypes that match the search criteria

Advanced search Public A free text search, examining specified
sections of the portal (e.g., main content,
just metadata) and returning a list of
phenotypes that match the search criteria

Phenotype extraction Extracting specific
phenotype(s)

Public Given a phenotype ID supplied by a user (or
generated by the platform), the API returns
the phenotype definition

Extracting all phenotypes Public Return a full list of phenotypes
Adding new phenotype(s) Authorized users Only authorized users should be allowed to

submit either a single or group of
phenotype definitions

Updating a phenotype
definition

Updating the contents of a
specific phenotype

Authorized users Each aspect of a phenotype
definition—including constituent code
lists, links to datasets where that
phenotype appears, and other
metadata—can be updated by passing a
phenotype ID and the names of the fields
to update and their new values. Each
update should mark a version number to
keep record of any updates over time

Updating a complete
phenotype with multiple
features

Authorized users Update a phenotype’s contents by passing
a phenotype ID and submitting an updated
phenotype definition file to replace the
previous version for public view

Submission of a new
validation case study for an
existing phenotype

Authorized users Adding a new use case to validate an
existing phenotype (identified by a
phenotype ID) by passing a file

Deletion of a
phenotype

Removing a phenotype from
public view (soft delete)

Private to portal
administrators

An administrator of the portal can hide a
phenotype definition by providing a
phenotype ID

Removing a phenotype from
the library (hard delete)

Private to portal
administrators

An administrator of the portal can delete a
phenotype definition entirely by providing
a phenotype ID

appropriate metadata to stored definitions include CALIBER and
PheKB (Fig. 5).

In addition to supporting search, the use of metadata is im-
portant for a number of other reasons. First, metadata can make
clear characteristics of phenotypes related to their accessibility,
interoperability, and reuse. To this end, as part of the Mobiliz-
ing Computable Biomedical Knowledge (MCBK) initiative, Alper
et al. have proposed 12 categories of metadata that are required
to fully represent knowledge objects, including phenotypes, for
FAIR principled criteria [42]. In addition, metadata fields that de-
scribe the versioning aspects of a definition can be populated to
further formalize the provenance of the phenotypes in a collec-
tion. Next, as the intent, development, and validation of pheno-
types are essential for potential implementers to understand in
order to trust the quality and appropriateness of a phenotype
for a new purpose, representing aspects of the pheontype de-
velopment and validation process formally is critical. To do this,
the Trust and Policy Work Group of the Patient–Centered Clinical
Decision Support Learning Network defined an extensive set of
metadata for trust [43]. Finally, metadata can be used to formally
represent many aspects of the implementation and tooling de-
scribed, enabling potential implementers to search on these fea-
tures, such as language, and possibly support automated trans-
lations.

While more and robust metadata are beneficial from a library
perspective, populating these metadata accurately and consis-
tently requires resources, and the extent and detail of metadata
will depend upon a balance to adequately meet the needs at the
expense that the library sponsor will bear. One potential solu-
tion to this issue is to automatically generate metadata, which
is the approach taken in data management platforms [44]. Over-
all, time will show how the community of phenotype users can
develop consensus on a minimum set of metadata, library, or in-
dexing best practices to complement and formalize the desider-
ata described here, and also build a compelling value case for
their use to support high-quality phenotyping across countries.

Conclusions

While making significant advances, computable phenotyping is
still at an early stage where methods and repositories are emerg-
ing to meet the needs of a range of medical research domains,
with little methodological consensus. As tooling gradually ma-
tures beyond the realm of early adopters to become usable for
a broad spectrum of researchers and implementers, the focus
needs to move away from one-size-fits-all “perfect” phenotype
definitions to acknowledging the diversity of phenotype appli-
cation areas, the resultant explosion in the numbers and varia-
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Figure 5: Metadata structure adopted by CALIBER (left) and PheKB (right).

tions of phenotypes to be stored—in particular the arrival of ad-
vanced probabilistic and NLP-based phenotypes to sit alongside
traditional rule-based definitions—and the challenges of deploy-
ing them in the real world, especially in the presence of high-
throughput requirements. Portability and reproducibility are es-
sential in addressing this scaling-up, with techniques needed to
move phenotype definitions between both data sources and dif-
ferent health settings.

Phenotype libraries offer a natural meeting point of these
multiple use cases and domains to support high-quality phe-
notype definitions. In terms of designing phenotype libraries as
technical entities that enable the storage and retrieval of def-
initions, there is a clear need to track the evolution of pheno-
type definitions as they are authored, support advanced search
techniques that enable these definitions to be located by others,
and establish a collaborative process through which the validity
of definitions can be critiqued. All of this functionality should
be accessible within a library via multiple channels, in partic-
ular comprehensive, standards-based API functionality to en-
sure interoperability. Authoring and storing phenotype defini-
tions according to a standard model is another aspect through
which phenotype libraries can contribute to definition repro-
ducibility. The model adopted by a phenotype library should
exist at the correct level of abstraction, prioritizing modelling
languages over executable programming languages, and offset
this, in terms of implementation, by incorporating key imple-
mentation information and improving clarity through multi-
dimensional descriptions. Finally, a phenotype library should
encourage the use of phenotype definitions in new use cases
by supporting the validation process, both automatically and
through the definition of a structured validation process.

The impact of supporting the development and implemen-
tation of high-quality phenotype definitions is significant, par-
ticularly because these definitions provide efficient access to ac-
curate cohort data by overcoming many of the complexities as-
sociated with patient datasets. Cohort data support not only re-

search studies (e.g., the identification of predictors for a certain
condition) but also the provision of decision support (e.g., ac-
cess to the medical histories of one or more individuals) and
clinical trials (e.g., the establishment of trial cohorts). The use
of computable phenotypes to determine cohorts from complex
datasets for these purposes can be complemented by using tra-
ditional big data techniques to manage scale, by an increased fo-
cus on multi-morbidities—the complex interactions of diseases
in patients—which are a crucial factor in personalized decision
support systems, and by N-of-1 clinical trial design.

Overall, running through these desiderata is the awareness
that cross-domain sharing of phenotype definitions can only oc-
cur through curated libraries that evolve in a controlled manner.
Such libraries have to be (i) clinically and scientifically valid, (ii)
technically realizable, and (iii) usable by researchers in different
domains. Through the use of our desiderata, we believe the cur-
rent and future phenotype libraries will deliver on these three
fronts.
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