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Abstract Aldehyde oxidase (AOX) is a molybdoenzyme that is primarily expressed in the liver and is

involved in the metabolism of drugs and other xenobiotics. AOX-mediated metabolism can result in un-

expected outcomes, such as the production of toxic metabolites and high metabolic clearance, which can

lead to the clinical failure of novel therapeutic agents. Computational models can assist medicinal chem-

ists in rapidly evaluating the AOX metabolic risk of compounds during the early phases of drug discovery

and provide valuable clues for manipulating AOX-mediated metabolism liability. In this study, we devel-

oped a novel graph neural network called AOMP for predicting AOX-mediated metabolism. AOMP in-

tegrated the tasks of metabolic substrate/non-substrate classification and metabolic site prediction, while

utilizing transfer learning from 13C nuclear magnetic resonance data to enhance its performance on both

tasks. AOMP significantly outperformed the benchmark methods in both cross-validation and external

testing. Using AOMP, we systematically assessed the AOX-mediated metabolism of common fragments

in kinase inhibitors and successfully identified four new scaffolds with AOX metabolism liability, which

were validated through in vitro experiments. Furthermore, for the convenience of the community, we
(Mingyue Zheng).

s to this work.
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established the first online service for AOX metabolism prediction based on AOMP, which is freely avail-

able at https://aomp.alphama.com.cn.

ª 2024 The Authors. Published by Elsevier B.V. on behalf of Chinese Pharmaceutical Association and Institute

of Materia Medica, Chinese Academy of Medical Sciences. This is an open access article under the CC BY-NC-

ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Over 75% of the therapeutic agents currently on the market un-
dergo phase 1 metabolism mediated by the cytochrome P450
(CYP450) enzyme1. Due to genetic polymorphism and suscepti-
bility to induction and inhibition, P450 enzymes can cause indi-
vidual medication differences and drugedrug interactions2e4. In
contrast, drug interactions and individual medication differences
caused by non-P450 oxidases are less frequently reported5,6. In
recent years, more compounds that can potentially be metabolized
by non-CYP450 enzymes have been designed and synthesized, and
the role of the non-CYP450 metabolic enzymes in drug discovery
has also become increasingly important7,8. Human aldehyde oxi-
dase (hAOX, EC1.2.3.1) is an important non-CYP450 enzyme
responsible for the biotransformation of numerous xenobiotics and
therapeutic drugs. hAOX, which is mainly present in liver cytosol,
uses molybdenum, flavin adenine dinucleotide, and FeeS clusters
for its catalytic function9. It has a wide range of substrate speci-
ficity and the capacity to catalyze multiple distinct metabolic re-
actions, including oxidations of aldehydes, oxidations of N-
heterocycles, hydrolysis of amides, and various reductions10.
Among these, the transformation of N-heterocycles to the corre-
sponding oxo-N-heterocycles is the most concerning AOX-
mediated metabolic reaction in drug discovery. It has contributed
to the clinical failure of many novel agents, such as carbazeran,
BIBX1382, FK3453, JNJ-38877605, and Lu AF0953511e13. These
drugs are mainly kinase inhibitors, as their structures generally
include nitrogen-containing heterocycles as important binding
motifs, making them more likely to be liable to AOX-mediated
metabolism14e16. Given the enormous losses caused by clinical
development failures, it is essential to thoroughly evaluate AOX-
mediated metabolism in the early drug discovery process17.
However, in vitro and in vivo studies of AOX-mediated metabolism
are costly and not applicable to compounds not yet synthesized.
Therefore, in silico methods to predict AOX metabolism are ur-
gently needed, allowing medicinal chemists to quickly assess the
risk of compounds being metabolized by AOX in the early stage of
drug discovery.

There are relatively few existing AOX metabolism prediction
methods, and they have certain limitations18. In 2018, Gabriele
et al. developed a computational method that predicts AOX
metabolism based on molecular dynamics simulation, molecular
docking, and quantum chemical calculation. This method was
integrated into commercial software called MetaSite19. In 2020,
we used deep neural networks to classify AOX substrates and non-
substrates and decision tree models to predict site-of-metabolism
(SOM). However, these machine learning (ML) models also
relied on the molecular descriptors calculated by quantum
chemistry20. The tedious and time-consuming molecular docking
and quantum chemical calculation process greatly hinder the
application of the above two methods in large-scale screening. In
2019, Marco et al. reported a method to determine the site-of-
metabolism of AOX, where the aromatic carbon atom with the
largest 13C nuclear magnetic resonance (NMR) chemical shifts
calculated by ChemDraw was predicted as the most likely meta-
bolic site. This method can quickly determine the metabolic sites
on a known AOX metabolic substrate, with an AUC of 0.90, but it
cannot predict whether a compound is an AOX substrate. There-
fore, there are still significant limitations in its application20,21.

In this study, we proposed AOMP, a novel AOX metabolic
prediction model based on graph neural networks (GNN)22e24.
AOMP is designed to support high throughput screening and
utilizes only 2D molecular topological graphs as input, without
relying on computationally expensive descriptors. Unlike some
previous work on drug metabolism prediction that regards
substrate/non-substrate classification and SOM prediction as two
independent tasks20,25, AOMP unifies the two tasks into a single
model, avoiding error accumulation and conflicting results. Spe-
cifically, AOMP first regards the prediction of SOMs as a graph
node classification task. If at least one node on the molecular
graph is predicted to be a SOM, the molecule is predicted to be a
substrate of AOX oxidative metabolism. Otherwise, the molecule
is predicted to be a non-substrate. The AOMP model is jointly
trained on both molecular level task (substrate/non-substrate
classification) and atomic level task (SOM prediction). Unifying
these two tasks through this method enables more efficient utili-
zation of information in the dataset, as atomic-level labels (SOM/
non-SOM) are incorporated in the training of molecular-level
(substrate/non-substrate) classifiers. Further test results confirm
that this method leads to improved model performance.

Currently, the lack of training data is a significant obstacle to
building an empirical model that can predict AOX metabolism.
The publicly available AOX metabolism data comprises only a
few hundred compounds. To overcome this difficulty, we adopted
a transfer learning strategy based on previous research findings.
These findings indicated that the 13C-NMR chemical shift values
of aromatic carbon atoms are related to their susceptibilities to
AOX metabolism11,21. We pre-trained the AOMP model with
chemical shift data and then fine-tuned it with AOX metabolism
data (Fig. 1A). Our results demonstrated that this transfer learning
strategy significantly improved the performance of the model. To
our knowledge, this was the first instance of experimental NMR
spectra data being used in the pre-training of molecular repre-
sentations. Given the richness of NMR spectral data and its
inherent correlation with the chemical environment of atoms, the
pre-training strategy used in this study should have the potential to
be extended to various molecular property prediction tasks.

To further demonstrate the performance of the proposed model
and expand our knowledge of the chemical motif with high AOX
susceptibility, we evaluated the AOX metabolism liability of
common fragments in kinase inhibitors using AOMP. We also
verified the calculation results by in vitro experiments. Ultimately,
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Figure 1 Overview of this work. (A) Schematic representation of the transfer learning pipeline. First, the large 13C-NMR chemical shift dataset

was used to train the graph neural network. This model was called the pre-trained model. Then, the AOX metabolic dataset was used to fine-tune

the pre-trained model to establish the AOMP model. (B) Identification of novel AOX metabolic sensitive fragments through AOMP prediction and

in vitro experiment verification. (C) Snapshot of the web-server interface of AOMP.
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we revealed four novel N-heterocycles susceptible to AOX
oxidative metabolism (Fig. 1B). These results suggest that special
attention should be given to evaluating their susceptibility to AOX
metabolism when designing kinase inhibitors containing such
structures. Moreover, to enhance the accessibility of the AOMP
model to the community, we have provided a web service for the
AOMP model that is freely available at https://aomp.alphama.
com.cn (Fig. 1C).
2. Results and discussion

2.1. Overview of AOX metabolism data set

Our training set consists of 203 substrates and 296 non-substrates
of AOX oxidative metabolism, taken from the article of Gabriele
et al.19 The physicalechemical properties of molecules, such as
LogP or LogD, are important determinants of their susceptibility
to the CYP450 enzyme26,27. However, as shown in Fig. 2A and
Supporting Information Fig. S1, there was no significant differ-
ence between the simple molecular properties of the substrate and
non-substrate of AOX in the training set. This indicates that pre-
dicting AOX metabolism is a challenging task. The metabolic sites
of all substrates in the training set are known, and there is a total
of 324 SOMs. Based on the reaction mechanism and previous
AOX oxidative metabolites19,28, potential SOMs are defined as the
para and ortho positions of the nitrogen atom in a six-membered
aromatic heterocycle and the ortho position of the nitrogen atom
in a five-membered aromatic heterocycle (Fig. 2B). Atoms within
a molecule that belong to potential metabolic sites but are not
SOMs are defined as non-SOMs, leading to a total of 755 non-
SOMs in our training set. In addition to the training set, we
compiled an external test set by combining data from 11 articles,
which contain 47 substrates and 52 non-substrates of AOX
oxidative metabolism. There are no identical molecules between
the external test set and the training set. The maximum similarity
of more than 70% of the molecules in the external test set to the
training set molecules is less than 0.5 (Fig. 2C). Among the 47
substrates in the external test set, the metabolic sites of 27 sub-
strates are known. There are a total of 30 SOMs and 187 non-
SOMs in the external test set. Fig. 2D shows the potential
SOMs of compounds in the training and external test set. The
training and external test set data are available as Supporting
Information.

2.2. Overview of AOMP model

The AOMP model was developed to unify the substrate/non-
substrate classification and SOM prediction tasks. The architec-
ture of the model is shown in Fig. 3. The model begins by
describing each molecule as an undirected graph with atoms as
nodes and bonds as edges. The representations of the graph are
initialized with eight kinds of atom features and four kinds of
bond features (Supporting Information Table S1). The initialized
molecular graph is then input into the graph neural layers for
message passing across atoms. AOMP includes two different

https://aomp.alphama.com.cn
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Figure 2 Overview of datasets. (A) The scatter plot of cLogP versus MolWt for the molecules in the training set. (B) Examples of oxidative

metabolic substrates and metabolites of AOX are shown, with potential metabolic sites defined by empirical rules (marked by green circles). Only

some of these sites are actually observed to be oxidized (marked by arrow). (C) The distribution of the maximum similarity of molecules in the

external test set to molecules in the training set. (D) The distribution of the number of potential metabolic sites of molecules in the training and

external test set.

Figure 3 The architecture diagram for AOMP model.
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message passing stages. The first stage is the message passing
between neighbor atoms, which is designed to learn the local in-
formation of atoms. The second stage is the message passing
between all atoms in the molecule, which is designed to capture
the interaction between two atoms that are relatively distant on the
graph. After the message passing stage, the feature vectors of all
atoms are fed into a fully connected (FC) layer to predict their
probabilities of being metabolized. The maximum probability of
atoms in a molecule being SOMs is taken as the probability of this
molecule being a metabolic substrate. Based on this framework,
AOMP can simultaneously perform substrate/non-substrate clas-
sification task and SOM prediction task. To train the proposed
model, we formulate a mixed loss (losst). It consists of two parts
(lossv and lossm): one for SOM/no-SOM classification and the
other for substrate/no-substrate classification tasks, respectively.
To further enhance the model, the transfer learning strategy was
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adopted. The AOMP model was first pre-trained with the 13C-
NMR chemical shift data of 25,000 molecules obtained from
nmrshiftdb2 and then fine-tuned on the AOX metabolism data (for
more details about the model architecture and transfer learning
strategy, see Experimental Section).

2.3. Performances of AOMP on cross-validation

To evaluate the performance of AOMP, four conventional ML
models and a GNN model (Attentive FP) were implemented as
baseline methods29. The performance of AOMP and other models
was first evaluated on the training set using 5 times 5-fold cross-
validation. As shown in Table 1, AOMP outperformed all other
baseline models in terms of AUC, accuracy, and sensitivity on the
task of substrate/non-substrate classification. Although the preci-
sion of the RF model is slightly higher than that of AOMP, its
sensitivity is significantly lower than AOMP. In addition to clas-
sifying substrates and non-substrates, AOMP can accurately
distinguish metabolic sites from non-metabolic sites. This not only
provides an explanation for the results of substrate/non-substrate
classification, but also offers useful guidance for medicinal
chemists to manipulate AOX-mediated metabolism liability for
structure optimization or prodrug design. To better comprehend
the exceptional performance of AOMP, ablation experiments were
performed to evaluate the performances of the AOMP model
without chemical shift data pre-training (AOMP_noPretrain) and
the AOMP model trained without information on metabolic sites
(AOMP_noAtomLabel). The results revealed that the pre-training
with chemical shift data considerably improved the performance
of the model. Additionally, training with atomic level labels dur-
ing model fine-tuning was not only beneficial to the performance
of the model on SOMs prediction, but also to the substrate/non-
substrate classification. This indicates that the information of
metabolic sites is crucial and helpful for substrate/non-substrate
classification. However, this information was typically over-
looked in previous studies on the substrate/non-substrate classifi-
cation of various metabolic enzymes20,25,30.

2.4. Performances of AOMP on external test

To verify the generalizability of AOMP, we further test it on the
external test set. As shown in Table 2, AOMP outperformed other
baseline models and ablation models in all evaluation indicators
and tasks. We further conducted a grouped analysis of the
external test set. We divided the external test set into three
subsets based on their maximum similarity to the molecules in
the training set. As shown in the Supporting Information Fig. S2.
Table 1 Performances of AOMP and other models on the five-fold

Task Method AU

Substrate/non-substrate

classification

KNN 0.74

SVM 0.85

RF 0.86

ANN 0.83

Attentive FP 0.83

AOMP 0.90

AOMP_noPretrain 0.86

AOMP_noAtomLabel 0.89

SOM/non-SOM

classification

AOMP 0.91

AOMP_noPretrain 0.86

AOMP_noAtomLabel 0.84
AOMP model performed well in different similarity
subsets, indicating its good generalizability and robustness. Since
the 13C-NMR chemical shift calculated by ChemDraw was
regarded as a useful indicator to distinguish SOMs from non-
SOMs of AOX, we also evaluated it on the external test set.
According to Youden’s index31, the threshold of the chemical
shift to classify an atom as either SOM or non-SOM was
determined to be 145.9 ppm. In addition, we also tried to
distinguish the substrate from the non-substrate by using the
maximum chemical shift of potential metabolic sites on mole-
cules. The results showed that the chemical shift calculated by
ChemDraw achieved an AUC of 0.790 in distinguishing meta-
bolic sites from non-metabolic sites, but performed poorly in
determining the propensity of the compound to be an AOX
substrate, which is consistent with our previous reports20.
Moreover, we evaluated the performance of the chemical shift
calculated by our pre-trained model, which was only trained with
the chemical shift dataset and not fine-tuned with the AOX
dataset. In the SOM/non-SOM classification task, the chemical
shift predicted by our pre-trained model performed comparably
with that by ChemDraw, and in the substrate/non-substrate
classification task, the chemical shift predicted by our pre-
trained model was slightly better than that by ChemDraw.

In addition, we compared AOMP to our previously reported
model on the external test set consisting of 27 molecules20. As
shown in Supporting Information Table S2, AOMP and our pre-
vious model exhibited comparable performance, correctly pre-
dicting the AOX metabolism liability for 25 and 24 molecules,
respectively. Upon examination of the quantitative metabolic data
of these molecules, we found that the three molecules incorrectly
predicted by AOMP all exhibited very weak metabolic activity
(Fig. 4). This suggests that the identification of these molecules as
either substrates or non-substrates may be ambiguous depending
on the detection method used and the selected threshold. Hence,
the misclassification of those molecules by the computational
model should be acceptable. However, this also indicates the
limitation of the binary classification model in predicting
borderline molecules between metabolic classification groups.
Developing quantitative metabolic prediction models is thus an
important research direction for the future.

2.5. Influences of pre-training and fine-tuning

To better understand the influence of pre-training and fine-tuning
on our model, we compared the predicted metabolic probability
with AOMP and the calculated 13C-NMR shift with our pre-
trained model for all potential metabolic sites in the external
cross-validation (bold represents the best result).

C Accuracy Sensitivity Precision

9 0.740 0.596 0.725

2 0.804 0.757 0.766

6 0.795 0.660 0.804

5 0.776 0.700 0.740

0 0.760 0.763 0.689

9 0.847 0.858 0.790

2 0.803 0.805 0.745

0 0.823 0.819 0.768

8 0.877 0.814 0.784

6 0.825 0.674 0.728

6 0.787 0.758 0.617



Table 2 Performances of AOMP and other models on the external test set (bold represents the best result).

Task Method AUC Accuracy Sensitivity Precision

Substrate/non-substrate

classification

KNN 0.635 0.616 0.553 0.604

SVM 0.810 0.727 0.723 0.708

RF 0.831 0.721 0.613 0.754

ANN 0.739 0.689 0.570 0.717

Attentive FP 0.817 0.756 0.736 0.744

AOMP 0.881 0.816 0.774 0.827

AOMP_noPretrain 0.854 0.786 0.736 0.798

AOMP_noAtomLabel 0.849 0.766 0.702 0.782

NMR shift (ChemDraw) 0.648 0.636 0.830 0.582

NMR shift (Ours) 0.682 0.646 0.830 0.591

SOM/non-SOM

classification

AOMP 0.892 0.882 0.907 0.544

AOMP_noPretrain 0.789 0.849 0.707 0.470

AOMP_noAtomLabel 0.815 0.835 0.787 0.450

NMR shift (ChemDraw) 0.790 0.714 0.767 0.295

NMR shift (Ours) 0.780 0.691 0.733 0.272

Figure 4 Three molecules incorrectly predicted by AOMP. The percentages refer to the ratio of metabolites measured by in vitro experiments,

and the time refers to the incubation time of metabolic measurements16,32. The red arrows denote the SOMs determined by in vitro experiment,

and the red and blue circles denote the SOMs and non-SOMs predicted by AOMP.
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test set (Fig. 5A). It can be noted that the potential sites whose
calculated chemical shifts are less than 135 ppm are hard to
metabolize. This is because the AOX-mediated oxidative meta-
bolism relies on the electrophilicity of the carbon at the site of
reaction, while the 13C-NMR chemical shift values can well
reflect the electrophilicity of carbons33,34. The embeddings in the
last hidden layer of the pre-trained model were extracted and
submitted to principal component analysis (PCA). As shown in
Fig. 5D, the embeddings of the SOMs are more distributed on
the lower left of the figure compared with the embeddings of the
non-SOMs. In contrast, in the randomly initialized model, the
distributions of SOMs and non-SOMs are highly consistent
(Fig. 5C). The above finding explains why the chemical shift can
be used as an indicator to evaluate the susceptibility of the po-
tential SOMs to AOX and why the pre-training with the NMR
shift data is beneficial to our AOMP model. However, for a
carbon atom to be a SOM, it is not enough to only possess large
electrophilicity (chemical shift). The atom should also satisfy
many other conditions such as being accessible to the molyb-
denum catalytic center of AOX. Therefore, although the calcu-
lated NMR shift of some atoms is very high, they are still non-
SOMs. We believe that the AOMP model can learn other factors
affecting the metabolism liability of atoms in the fine-tuning
stage to make more accurate predictions than the pre-trained
model. Some specific examples are shown in Fig. 5B.
Although the pre-trained model predicted high NMR shift values
for these sites, the AOMP model after the fine-tuning still
correctly predicted them as non-SOMs. Fig. 5E also showed that
after fine-tuning, the embeddings of SOMs and non-SOMs were
more significantly separated.

2.6. Assessing AOX metabolism liability of common fragments
in kinase inhibitors

Kinase inhibitors are a crucial class of therapeutics, accounting for
a quarter of all current drug discovery research and development
pipelines35e37. Most kinase inhibitors possess nitrogen heterocy-
clic structures, which bind with the hinge region of the kinase,
making them vulnerable to AOX metabolism. To evaluate the
AOX metabolism risk of kinase inhibitors and provide guidance
for drug design and development, we used AOMP to systemati-
cally analyze the common hinge region-binding fragments of
existing kinase inhibitors.

The kinase hinge-binding fragments set used in this study was
summarized by Zhang et al., and it contained a total of 767
fragments38. Fragments that contained multiple ring systems were
removed, leaving 670 fragments, of which 409 had potential AOX
oxidative metabolic sites. Since many fragments are highly similar



Figure 5 Analysis of the role of pre-training and fine-tuning. (A) A scatter plot that shows the predicted NMR shift vs. predicted probability for

the external test set. (B) Examples of molecules in the external test set, along with the prediction results of the pre-trained model and AOMP. The

red numbers represent the predicted chemical shift, and the blue numbers represent the predicted probability of being SOMs. (CeE) A visual-

ization of the atomic embeddings of the randomly initialized (C), pre-trained (D), and fine-tuned model (E) with principal component analysis.
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and share the same heterocyclic cores, we only retained 156
unique heterocyclic cores with potential SOMs. Of these, 24
heterocyclic cores (about 15%) were reported to be liable to AOX
metabolism.

Using AOMP, we evaluated the AOX metabolism liability of
the remaining 132 heterocyclic cores that had not been reported to
be metabolized by aldehyde oxidase, corresponding to a total of
248 fragments. Since AOMP could not directly predict the
metabolism liability of fragments, we first matched these frag-
ments with the existing kinase inhibitors in BindingDB39, and then
predicted whether these kinase inhibitors would be metabolized by
AOX at the matched fragments. The prediction results were pre-
sented in Supplementary Information. A fragment was considered
to have a high metabolic risk when more than 30% of kinase in-
hibitors containing the fragment were predicted to be metabolic
substrates. A fragment was disregarded if it appeared less than 20
times in the kinase inhibitors. Finally, we discovered 23 high-risk
fragments containing 15 unique heterocyclic cores. These frag-
ments could serve as structural alerts, providing guidance for drug
screening and design. Based on the accessibility of compounds,
we selected seven fragments for experimental verification and
identified four new AOX metabolic-sensitive fragments that didn’t
exist in any known aldehyde oxidase substrate (Fig. 6A).

Fig. 6B shows the structures of the seven fragments, along with
the proportion that kinase inhibitors containing these fragments
are predicted as AOX substrates. The four newly identified AOX
metabolic-sensitive fragments are highlighted in red. It is worth
noting that these four fragments also have the highest predicted
metabolic probability among the seven. We selected four repre-
sentative molecules for in vitro experiment for the three fragments
with lower predicted metabolic probability, but their metabolites
were not detected. This result demonstrates the good ranking and
uncertainty evaluation abilities of AOMP, as the confidence in the
prediction decreases with a less reliable prediction result. How-
ever, this result does not exclude the possibility of AOX meta-
bolism in these three fragments due to the small sample size for
experimental evaluation.

Fig. 6C shows the 14 representative molecules that were
selected for in vitro metabolism experiments. The susceptibility of
these compounds to AOX was determined using a human liver
cytosol assay. All compounds were incubated in an environment
containing AOX (liver cytosol) and monitored for substrate loss
and the formation of oxidative metabolites. As shown in Table 3
and Supporting Information Figs. S3eS13, ten molecules (A-
1e3, B-1e5, C-1, and D-1) demonstrated both parent loss and
oxidative metabolite formation, suggesting that they might be
AOX substrates. To eliminate interference from xanthine oxidase
(XO), another enzyme presented in the liver cytosol, specific
enzyme inhibitors were added to the incubation system. The AOX
inhibitors, raloxifene and hydralazine, inhibited over 71.5% of
oxidative metabolites formation of the above potential substrate
molecules, while the XO inhibitor, allopurinol, displayed limited
inhibition (less than 23.9%). Therefore, A-1e3, B-1e5, C-1, and
D-1 were confirmed to be AOX substrates.

2.7. AOMP web service

For the convenience of no-code users, we have developed a web
server that wraps the AOMP model at https://aomp.alphama.com.
cn. This web server accepts various types of inputs, including

https://aomp.alphama.com.cn
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Figure 6 Assessing AOX metabolism liability of common fragments in kinase inhibitors by AOMP. (A) The overall workflow of discovering

new metabolic-sensitive fragments for AOX. (B) Seven fragments were selected, metabolic and non-metabolic fragments are colored red and blue,

respectively. The fractions refer to the proportion that kinase inhibitors containing these fragments are predicted as AOX substrates. (C)

Representative compounds containing the selected fragments, where the substrates are shown in red and non-substrates in blue.
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drawing a molecule from the embedded molecular editor, pasting
SMILES, or uploading a molecule structure file with txt/mol/sdf
formats. The AOMP web service provides batch calculation func-
tionality, with a maximum of 5000 molecules that can be submitted
at one time. On ourweb server, the prediction of 5000molecules can
be completedwithin 20min. The calculation results from theAOMP
website can be displayed online and downloaded. These results
include a molecule image labeled with atom indexes and a table
recording the predicted metabolic probabilities and 13C-NMR shift
values. Up to 30 molecules can be displayed online simultaneously.
With its high accuracy, rapid processing, and user-friendly interface,
AOMP can serve as a convenient and practical tool to assist in drug
screening and design work.

The AOMP web’s implementation is based on the standard
B/S architecture, which separates the front and back ends. For
the back end, MySQL is used for persistent data storage, Redis
acts as an in-memory data store, RabbitMQ is deployed as the
message broker, and a Spring Boot platform is created for all
modules to interact. As for the front end, apart from the Vue. js
module, we also use the Element UI toolkit for building the web
components.
The AOMP web service is freely accessible to all users without
any login privileges required. To ensure the security and privacy of
users’ data, the AOMP web server does not retain any data from
users and provides only the AOMP computing service.

3. Conclusions

In this study, we introduced AOMP, a novel graph neural network
model for predicting AOX-mediated metabolism. AOMP not only
classifies metabolic substrates and non-substrates but also predicts
metabolic sites. Unlike previous methods that relied on time-
consuming molecular docking or quantum chemical calculations,
AOMP only requires molecular graphs as input, allowing for
large-scale screening and molecular design. The AOMP model has
three main innovative features. First, it represents a new learning
paradigm that unifies atomic-level classification tasks with related
molecular-level classifications, and can serve as a universal
framework for predicting various enzyme metabolisms. Secondly,
it has demonstrated the potential of NMR shift data in enhancing
neural networks’ understanding of molecular properties, thereby
pointing out a promising new direction for the development of



Table 3 Identification of hAOX substrates using a liver cytosol assay (oxidative transformation).

Compd. t1/2 (h) Presence of

[O]-metabolite

Raloxifene

inhibition

ratio (%)

Hydralazine

inhibition

ratio (%)

Allopurinol

inhibition

ratio (%)

A-1 0.102 Y 94.2 77.8 7.15

A-2 0.263 Y 98.4 92.5 2.74

A-3 0.347 Y 96.5 95.8 1.90

B-1 4.69 Y 98.7 97.3 4.84

B-2 9.11 Y 99.3 98.9 23.9

B-3 0.824 Y 76.8 76.7 14.0

B-4 0.343 Y 71.5 85.7 21.9

B-5 0.758 Y 99.4 96.4 1.27

C-1 0.129 Y 99.6 99.5 2.04

D-1 6.01 Y 99.3 99.0 22.1

E-1 13.4 N e e e
F-1 8.46 N e e e

G-1 26.5 N e e e

G-2 15.7 N e e e

O6-Benzylguanine

(positive control)

1.44 Y 99.4 98.8 21.1
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molecular representation learning and small molecule pre-training
models. Finally, the AOMP model can be accessed through a web
server (https://aomp.alphama.com.cn), serving the community for
accurate, fast, and convenient prediction of AOX metabolism. We
evaluated the AOX metabolism liability of prevalent fragments in
kinase inhibitors with AOMP model. The results were validated
through in vitro experiments, leading to the discovery of four
novel N-heterocycles prone to AOX metabolism. This discovery
expands our understanding of chemical motifs with high AOX
susceptibility and can provide guidance for the design and
modification of kinase inhibitors.

4. Experimental

4.1. Model architecture

AOMP is a variant of Attentive FP that we previously developed29.
It has seven GNN layers, with the first six layers are used for the
message passing in Stage 1 and the last layer is used for the
message passing in Stage 2 (Fig. 3). They can be written as Eqs.
(1) and (2):

Stage 1:

hkvZGRUk�1

 X
u˛NðvÞ

Mk�1
�
hk�1
u ;hk�1

v

�
;hk�1

v

!
ð1Þ

Stage 2:

hkþ1
v ZGRUk

 X
u˛EðvÞ

Mk
�
hku;h

k
v

�
;hkv

!
ð2Þ

where hiv is the feature vector of target atom v after k iterations,
NðvÞ represents all neighbor atoms of atom v, and EðvÞ represents
all atoms in the molecule except atom v. Mk�1 is the message
function at iteration k � 1, which is the same as the message
function in Attentive FP. GRUk�1 is a gated recurrent unit used as
the update function at iteration k� 1.

Following the GNN layers, a FC layer is implemented to
predict the metabolic probabilities of atoms, which is activated by
a sigmoid function. The metabolic probabilities of non-potential
metabolic sites are then masked with zero. Next, the maximum of
the metabolic probabilities of all atoms is calculated, and taken as
the probability of this molecule being a metabolic substrate. For
an atom v with features hKv and in molecule G, the above process
can be written as Eqs. (3)e(5):

pvZSigmoid
�
FC
�
hKv
�� ð3Þ

pvZ

8<
:

pv; pv˛Q

0; pv;Q
ð4Þ

pmZmaxðfpvjv˛GgÞ ð5Þ
where FC is referred to a fully connected neural network layer, Q
is the potential metabolic sites, pv is the probability of atom v
being a SOM, and pm is the probability of molecule G being an
AOX substrate.

Both the SOM/no-SOM classification task and the substrate/
no-substrate classification task in the AOMP model use binary
cross-entropy as the loss function (lossv and lossm). To optimize
the model, the mean of the two binary cross-entropy losses is used
as the total loss (losst). For the ablation model
AOMP_noAtomLabel, the loss only consists of lossm and can be
regarded as a multi-instance learning model that learns the labels
of atoms through training against the labels of molecules40e42.
The computational methods of lossv, lossm, and losst are shown as
Eqs. (6)e(8):

lossvZ� 1

N

XN
iZ1

yi$logðpvÞ þ ð1� yiÞ$logð1� pvÞ ð6Þ

lossmZ� 1

M

XM
jZ1

yj$logðpmÞ þ
�
1� yj

�
$logð1� pmÞ ð7Þ

losstZ
lossv þ lossm

2
ð8Þ

where N and M refer to the number of potential metabolic sites
and molecules in training samples, respectively, while yi and yj
refer to the corresponding labels.
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4.2. Transfer learning strategy

The 13C-NMR chemical shift data used for pre-training was ob-
tained from nmrshiftdb2 (https://nmrshiftdb.nmr.uni-koeln.de/).
After pretreatment, there were 32,470 molecules and 345,836
13C-NMR shift values. Of these, 25,000 molecules were randomly
split into the training set and the remaining 7470 molecules were
kept as the validation set. Since the chemical shifts of atoms
mainly depend on the local environment around them, only
message passing between neighbor atoms (Stage 1) was carried
out to extract atomic features during the pre-training. The learned
atom features were then fed into a fully connected layer to predict
their chemical shift values. The mean absolute error of our pre-
training model on the validation set is 0.139 (Supporting Infor-
mation Fig. S14), which is equivalent to the performance of the
previously reported model for 13C-NMR shift prediction43. During
fine-tuning, the weights of the AOMP model in the first message
passing stage (Stage 1) and readout stage were initialized with the
weight of the pre-trained model, while the weights in the second
message passing stage (Stage 2) were randomly initialized. The
AOX metabolic data set was used to train our model and generate
the final prediction model.

4.3. Model implementation and evaluation

The AOMP and Attentive FP model were implemented with
PyTorch framework and DGL package. The DGL-LifeSci pack-
age44 was used to calculate the initial features of molecular
graphs. Four machine learning models, including support vector
machine (SVM), random forest (RF), artificial neural network
(ANN) and K-nearest neighbor (KNN) were implemented using
the Scikit-learn package. The input of machine learning model
was the 2048-bit Morgan2 fingerprints calculated using the RDKit
package. To find their optimal parameter settings and assess their
internal validity, the AOMP model and other baseline models were
first trained by performing five times five-fold cross-validation in
the training set. Then, all models were retrained with the whole
training set under optimal hyperparameters determined in five-fold
cross-validation and evaluated on the external dataset through five
independent runs. The performance metrics for evaluating the
model are AUC (area under the ROC curve), Accuracy, Sensi-
tivity, and Precision. AUC is the area under the receiver operating
characteristic curve, where the true positive rate against the false
positive rate is plotted. The other three metrics are calculated with
Eqs. (9)e(11):

AccuracyZ
TNþTP

TNþTPþ FPþ FN
ð9Þ

SensitiveZ
TP

TPþ FN
ð10Þ

PrecisionZ
TP

TPþ FP
ð11Þ

where TN, TP, FN, and FP are the numbers of true negatives, true
positives, false negatives, and false positives, respectively.

4.4. Data collection and preparation

Our training data was extracted from the dataset of Gabriele
et al.29, which contained 513 molecules with AOX oxidative
metabolism data. We removed 15 of these molecules due to
inconsistent experimental results with other reports or a lack of
potential metabolic sites. The external test set was manually
collected from 11 articles, and only experimental data from human
hepatocytes was adopted. For molecules that were not explicitly
marked as substrate or non-substrate in the original literature, we
divided them into substrate and non-substrate using a half-life of
500 min as a threshold. For some substrate molecules, certain
atoms were topologically equivalent. In such cases, if one atom
underwent oxidative metabolism, all atoms were labeled as
metabolic sites (Supporting Information Fig. S15). To obtain ki-
nase inhibitors, we downloaded the BindingDB database and used
a list of UniProt IDs of kinase proteins to retrieve kinase inhibitors
from it. We found a total of 187,371 kinase inhibitors (Supporting
Information). The structures of all molecules were standardized by
removing salts, neutralizing charge, and normalizing tautomer.
4.5. Metabolic stability study

We used parent compound depletion in human liver cytosolic
incubation to measure metabolic stability. The tested compounds
were purchased from TopScience (Shanghai, China) and Bide-
pharm (Shanghai, China) without further purification. The human
liver cytosol (mixed sex; a pool of 50 donors; catalog no.
H0610.C, lot no. 1610027; 30 males and 20 females) was pur-
chased from Sekisui XenoTech. The incubation mixture had
a total volume of 200 mL and consisted of human liver
cytosol (2 mg/mL final protein concentration), 2 mmol/L MgCl2,
1 mmol/L test compound, and 100 mmol/L potassium phosphate
buffer, pH 7.4. The final DMSO concentration used in the assay
was less than 0.1% (v/v). We pre-warmed the mixture at 37 �C for
5 min in a low-speed shaking thermomixer before adding the test
compound. After incubation, we removed a 30 mL sample aliquot
at 0, 0.25, 0.5, 1, 2, and 3 h, and quenched it with 300 mL
acetonitrile. We immediately mixed each sample and then
centrifuged it at 13,000 rpm for 10 min at room temperature. We
diluted the supernatant with acetonitrile/water (1/1, v/v) and
transferred it into a 96-well plate for analysis by LCeMS/MS. The
control samples were prepared with no test compound or with
inactivated enzymes. The LCeMS/MS analysis method is
described in Supporting Information.
4.6. Molybdenum hydroxylase inhibition study

In this study, aldehyde oxidase selective inhibitors raloxifene and
hydralazine, and xanthine oxidase selective inhibitor allopurinol
were used to investigate the involvement of human aldehyde ox-
idase in the oxidative metabolism of the test compounds. The
incubation system was similar to the one used in the metabolic
stability study described above. Specifically, it contained human
liver cytosol (2 mg/mL final protein concentration), 2 mmol/L
MgCl2, 1 mmol/L test compound, 100 mmol/L inhibitor, and
100 mmol/L potassium phosphate buffer, pH 7.4. The test com-
pounds and inhibitors were dissolved in DMSO, respectively, and
the final concentration of DMSO in each incubation (100 mL total
volume) was less than 1.1% (v/v). The mixtures were preincubated
for 5 min at 37 �C, and each reaction was initiated by adding a test
compound. After incubating for 3 h at 37 �C, the reactions were
terminated by adding 1000 mL of acetonitrile. The mixtures were
centrifuged and the supernatants were diluted with a certain pro-
portion of acetonitrile/water (1/1, v/v) and transferred into a 96-
well plate for analysis by LCeMS/MS. Controls without
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inhibitors were also prepared. The inhibition ratio of formation of
oxidative metabolite was calculated using Eq. (12):

Inhibition ratioZ1�AW

AO
ð12Þ

where AW and AO refer to the peak area of oxidative metabolite in
human liver cytosol with inhibitor and without inhibitor,
respectively.
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