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ABSTRACT
One puzzling phenomenon in glass physics is the so-called ‘shadow glass transition’ which is an anomalous
heat-absorbing process below the real glass transition and influences glass properties. However, it has yet to
be entirely characterized, let alone fundamentally understood. Conventional calorimetry detects it in
limited heating rates. Here, with the chip-based fast scanning calorimetry, we study the dynamics of the
shadow glass transition over four orders of magnitude in heating rates for 24 different hyper-quenched
metallic glasses. We present evidence that the shadow glass transition correlates with the secondary (β)
relaxation: (i)The shadow glass transition and theβ relaxation follow the same temperature–time
dependence, and both merge with the primary relaxation at high temperature. (ii)The shadow glass
transition is more obvious in glasses with pronouncedβ relaxation, and vice versa; their magnitudes are
proportional to each other. Our findings suggest that the shadow glass transition signals the
thermodynamics ofβ relaxation in hyper-quenched metallic glasses.
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INTRODUCTION
Glasses are disordered materials that lack the long-
range order of crystals but behave mechanically like
solids, and they are usually prepared by fast cool-
ing from liquids to avoid crystallization [1–9]. Com-
pared to their crystalline counterparts, glass materi-
als are at non-equilibrium states [4,10–13]. When
heated from low temperature (e.g. by differential
scanning calorimetry, DSC), they exhibit complex
relaxation processes before the glass transition tem-
perature (Tg) [14,15]. Specifically, by heating of
a rapid quenched glass, it exhibits a pronounced
exothermic (heat-releasing) process as a result of
aging or structural relaxations, which is usually de-
noted as the enthalpy relaxation [6,15–18]. On the
other hand, if the glass is properly annealed, an ad-
ditional endothermic (heat-absorbing) peak might
show up during the DSCmeasurement [15,19–24].
As this process resembles the real glass transition
in several aspects, it is called ‘shadow glass transi-
tion’ or ‘sub-Tg prepeak’ [15,25]. Several previous
works have demonstrated that both enthalpy relax-
ation and shadow glass transition have pronounced
effects on the structure-property relations in glasses

materials relevant to their glass forming ability, me-
chanical andmagnetic properties [6,26–28], anoma-
lous liquid-properties (e.g. liquid–liquid transition
or fragile–strong transition) [15,17,20,29,30], and
the correct assignmentofTg in amorphouswater and
phase-change materials [16,23,25].

While the exothermic enthalpy relaxation might
be understood as the continuous transformation of a
high enthalpy state to a lower one during slow heat-
ing, the endothermic shadow glass transition is in-
triguing: it seems to indicate that during annealing,
some parts of the glass reach lower energy states rel-
ative to the rest of the system and then return to
the higher energy states during DSC up-scan [3,31].
Some researchers proposed that the shadow glass
transition might also imply structural heterogene-
ity of the glass [15,21,31,32]. The basic question re-
mains unclear as to what kind of atomic motions are
responsible for the heating-absorbing shadow glass
transition.

Aside from these non-equilibrium relaxation
phenomena, glasses and supercooled liquids
also have a range of inherent dynamic processes
which can be found in both the thermodynamic
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equilibrium states (the supercooled liquids) and
the out-of-equilibrium glass states [33–42]. Among
them, the most prominent is the so-called primary
(α) relaxation. Its evolution from equilibrium to
out-of-equilibrium during cooling of the liquid
is associated with the thermodynamic signature
of glass transition, as can be measured from the
jump of specific heat, �Cp [15,39,43]. Processes
occurring in addition to the α relaxation at shorter
timescales or lower temperature are referred to
as secondary (β) relaxations [33,36,42,44,45].
Usually the β relaxations are probed by dielectric
or mechanical spectroscopy [36,42,46–55], but
could not be readily detected by ordinary DSC
procedures. Nevertheless, Fujimoi and Oguni re-
ported thermodynamic signatures of β relaxations
by adiabatic calorimetry [56] and Busch et al. by the
temperature-modulated DSC [19,22]. Recently,
Ngai and coworkers, in a series of papers, also
proposed other signatures forβ relaxations [57,58].

In light of these studies, it is of interest to know
whether the shadow glass transition is connected to
β relaxations, just as the (real) glass transition is to
α relaxations. This question is of crucial importance
for both revealing theorigin of the shadowglass tran-
sition and β relaxation in glassy materials, as well as
improvingourunderstanding about thenatureof the
glass. We note that there are some previous studies
that attempted to establish connections between the
β relaxation and the (heat-releasing) enthalpy re-
laxation [6,18,32,59–61]. For instance, the enthalpy
relaxation has been considered as a proxy of β re-
laxation [18], and the activation energy of enthalpy
relaxation and β relaxation reported to be nearly
equal in some glasses [60]. Logically, on the other
hand, by comparing the real glass transition and
the α relaxation, one may envisage that if the β re-
laxation has thermodynamic consequence, it might
show an endothermic (heat-absorbing) feature.The
shadow glass transition might be such a candidate
[62]. Some authors have inferred that the shadow
glass transition might be related to the β relaxation
based on the activation energy [19,22,25,63]. As
these studies depend on the dedicated annealing
treatments and as the accessible observation time
window is narrow as it is limited by the heating rates
of DSC (typically 0.1–1 K/s) [15,18,24,61], it is
still difficult to make direct comparisons between
the shadow glass transition and the β relaxation.
Consequently, whether the shadow glass transi-
tion and β relaxation are connected is still not
elucidated.

In this work, we use a chip-based fast scanning
calorimetry (FSC) [64–74] to investigate the dy-
namics of the shadow glass transition in awide range
of heating rates (3–20 000 K/s) in two dozen differ-

ent metallic glasses (MGs). We show that the FSC
can clearly capture the shadow glass transition with-
out the need for annealing at high heating rates for
rapidly quenched MGs. We illustrate that the dy-
namics of the shadow glass transition quantitatively
match the β relaxation as independently measured
bymechanical relaxations. Interestingly, we find that
the shadowglass transition ismoreobvious in glasses
with pronounced β relaxation, while it is hard to
observe in glasses with weak β relaxation. Our re-
sults provide clear evidence on the correlation be-
tween the shadow glass transition and the β relax-
ation. These findings suggest that the shadow glass
transition signals the thermodynamic freezing of β
relaxation, analogous to the glass transition and the
freezing of α relaxation.

RESULTS
Figure 1a compares two typical heat flow curves of a
La50Ni15Co2Al33 MG measured by a conventional
DSC (at a heating rateQ= 0.333 K/s or 20 K/min)
and an FSC (Q = 500 K/s), respectively. The con-
ventional DSC curve only exhibits an exothermic
process (the enthalpy relaxation) before Tg. In
contrast, the FSC curve exhibits a clear endother-
mic peak, which is the shadow glass transition, in
addition to the enthalpy relaxation and the glass
transition. We define Tg, shadow as the temperature
corresponding to the maximum point of this en-
dothermic peak. We consider that the shadow glass
transition is not a true glass transition, and it does
not have a step-like heat-capacity jump. Instead, the
shadow glass transitionmight be better viewed as an
activation processes, and thus the peak temperature
might be more suitable for analysis than the onset
temperature, as is the case for many other activation
processes. We note that previous studies of the
shadow glass transition have resorted to dedicated
thermal annealing procedures [19,20,22,23]. Thus,
the FSC enable us to directly investigate the shadow
glass transition without the need of annealing.

Figure 1b presents the heat flow curves for
five different glassy ribbon samples with thickness
ranging from 10 to 60 μm that are produced by
different roller speeds during spinning quenching.
Consequently, they have different cooling rates, and
the thinner the sample, the higher the cooling rate.
Figure 1b indicates that the cooling rate influ-
ences the shadow glass transition, as Tg, shadow
decreases with cooling rates. Quantitatively, we
estimate the cooling rates of the samples according
to the energy matching method of Liu et al. [18].
Figure 1c shows the Tg, shadow as a function of the
estimated cooling rate. It reveals that for samples
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Figure 1. Shadow glass transition of La50Ni15Co2Al33 MG. (a) Comparison of heat flow curve at low heating rate (conventional
DSC) and high heating rate (FSC). (b) FSC heat flow curves of the La50Ni15Co2Al33 alloy for ribbon thickness range from 10 um
to 60 um, measured with a heating rate of 500 K/s. (c) The effect of cooling rates on Tg, shadow.

prepared with faster cooling rates, the shadow
glass transition can shift to a lower temperature.
Interestingly, when the cooling rate is faster than
∼106 K/s, Tg, shadow gradually approaches a value
of constant, as further increasing of the cooling
rates does not lead to lowering Tg, shadow within the
experimental sensitivity. Thus, the Tg, shadow could
be used as a materials property only if the samples
are prepared by a cooling rate higher than 106 K/s,
that is the hyper-quenched glasses. In the following
experiments, all the samples are prepared by the
highest cooling rates (i.e. with thickness ∼10 μm,
or cooling rates larger than 106 K/s).

Figure 2a presents the typical FSC curves show-
ingheat flowversus temperature at a rangeof heating
rates from10 to 10 000K/s for the La50Ni15Co2Al33
MG. The dynamic behavior of the shadow glass
transition is similar to the real glass transition
process, moving to higher temperatures at higher
heating rates, which demonstrates that the shadow
glass transition is of kinetic nature. Meanwhile,
dynamic mechanical spectra (DMS) were carried
out at different testing frequencies to investigate
its inherent relaxation dynamics. Figure 2b shows
the temperature dependence of the normalized loss
modulusE”/E”max at different testing frequencies for
La50Ni15Co2Al33 MG. The MG shows pronounced
β relaxation peak, in addition to the α relaxation.

Figure 2c shows the FSC heat flow curve
(300 K/s) and the normalized loss modulus
E”/E”max (2 Hz). These two curves are selected due
to the glass transition probed by FSC at this heating
rate and the α relaxation of DMS at this frequency
have nearly the same temperature (∼528 K here).
FromDMS, one can see a distinctβ relaxation peak
which locates about 410 K (i.e. the β relaxation
peak temperature, Tβ = 410 K). At the same time,
we find the FSC curve also exhibits a pronounced

endothermic peak in the same temperature range
due to the shadow glass transition. In Fig. 2d,
we summarized the β and α relaxations from
DMS, the shadow glass transition and the (real)
glass transition from FSC in a relaxation map for
La50Ni15Co2Al33 MG.We note that the timescale is
represented by two different quantities in the two
experiments, namely, the testing frequency (Hz or
s−1) in DMS and the heating rate (K/s) in FSC. To
translate the frequency in DMS to heating rates in
FSC, we assume there is a linear relation between
them and we vertically shift the DMS data in Fig. 2d
to make the α relaxation maximally overlap with
the Tg data (at different heating rates) by FSC. The
shift-factors are given in the online supplemen-
tary data. Importantly, we find that, as shown in
Fig. 2d, once the α relaxation is overlapped with
Tg (by FSC) by this manipulation, the β relaxation
coincides nicely with shadow glass transition as well.

Meanwhile, both the β relaxation peak and
shadow glass transition peak can be fitted by an
Arrhenius equation at low temperatures. However,
with the further increase of heating rate theTg, shadow
does not follow an Arrhenius behavior for temper-
atures above Tg, but it follows a super-Arrhenius
behavior at a higher temperature and eventually
merges into α relaxation (real glass transition) at
heating rates above 10 000 K/s. These behaviors
are indeed similar to the β relaxation in general.
Due to the limited frequency range of our DMS,
the β relaxation at higher frequency (or higher
temperature) could not be measured in MGs. Nev-
ertheless, several experiments based on dielectric
spectroscopy have shown that the β relaxation in
molecular glasses merges with the α relaxation
in a super-Arrhenius manner. Thus the shadow
glass transition behaves like the β relaxation in
dynamics.
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Figure 2. Shadow glass transition and β relaxation in La50Ni15Co2Al33 MG. (a) Shadow glass transition of glass ribbon
measured at different heating rates. (b) Temperature dependent normalized E”/E”max at different testing frequencies. (c)
Temperature dependence of the DMS normalized loss modulus (2 Hz) versus FSC heat flow (300 K/s). (d) Relaxation map
showing theβ relaxation,α relaxation, shadow glass transition and real glass transition as a function of inverse temperature.
The Tg20 (i.e. glass transition temperature at a heating rate of 20 K/min, as usually set in experiments) is marked by the vertical
gray dashed line. The black solid line is the Arrhenius equation fitting to the β relaxation.

Similar experiments were also performed for
a Pd40Cu40P20 MG. As shown in Fig. 3a, the
FSC curve exhibits a clear shadow glass transi-
tion at a temperature below the enthalpy relax-
ation and the Tg. Figure 3b and c shows the
heat flow curves of Pd40Cu40P20 MG measured by
FSC over a range of heating rates Q from 10 to
10 000 K/s. The DMS loss modulus (2 Hz) and
the FSC heat flow (200 K/s) are shown in Fig. 3d.
Figure 3e shows the dynamic behavior of α relax-
ation and β relaxation at different test frequencies.
The corresponding relaxation map are reported in
Fig. 3f which summarizes Tg,shadow from FSC and
Tβ from DMS at different testing frequencies.
Again, one can see that the shadow glass transition
andβ relaxation agree with each other and they also
agree with an Arrhenius equation at low tempera-
tures (or heating rates lower than ∼4 000 K/s). As
heating rate Q increases, the shadow glass transi-
tion progressively shifts to a higher temperature at a
faster speed, thus, the shadowglass transition follows
a super-Arrhenius behavior at a higher heating rate
Q ≥ 4000 K/s, until it eventually merges with α re-

laxation near 10 000 K/s. This observation demon-
strates again an intrinsic correlation between the
shadow glass transition and β relaxation in metallic
glasses.

To further verify the above findings, we
investigate another six different MGs with pro-
nounced β relaxations as probed by DMS.
These are Au49Ag5.5Pd2.3Cu26.9Si16.3 (Fig. S2),
La65Ni20Al15 (Fig. S3), La65Cu20Al15 (Fig. S4),
Ce65Ni18Cu2Al15 (Fig. S5), Pd40Ni10Cu30P20
(Fig. S6) andCe65Ni10Al25 (Fig. S7(a)). As detailed
in Figs S2–S7, they all exhibit the same behaviors
with La50Ni15Co2Al33 (Fig. 2) and Pd40Cu40P20
(Fig. 3). Thus, a similar conclusion can be obtained
for these MGs, which is that there is an intrinsic
correlation between the shadow glass transition and
theβ relaxation in these hyper-quenchedMGs.

Previous studies have shown that the behaviors
of β relaxation are materials specific and sensitive
to chemical compositions [36,42,75]. In someMGs,
β relaxations manifest as distinct peaks, while in
some other systems, β relaxations appear to be ab-
sent and, instead, excess contributions to the tails
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Figure 3. Shadow glass transition and β relaxation in Pd40Cu40P20 MG. (a) Comparison of heat flow curves between conventional DSC and FSC.
(b, c) Effect of heating rates on shadow glass transitions. (d) The DMS loss modulus (2 Hz) versus FSC heat flow (200 K/s). (e) The loss modulus curve
evolves with different test frequencies. (f) Relaxation map showing the β relaxation, α relaxation, shadow glass transition and real glass transition as
a function of inverse temperature.

of α relaxations show up [36,37,42,54,76,77].These
so-called excess wings have been observed in many
systemswithoutwell-resolved peaks ofβ relaxations
[36,42,77]. Since the above experiments were con-
ducted in MGs with pronounced β relaxations, it is
of interest to study the effect of the unobvious β re-
laxation (e.g. shoulder or excess wings) on shadow
glass transition. We therefore investigate the FSC
and DMS on Ni78P22, Al86Ni9Sm5 and 13 different
Zr-based MGs (Table 1). What is common to these
MGs is that they do not have pronounced β relax-
ations. They either show excess wings or shoulder-
like features as probed by DMS. Figure 4 shows the
temperature dependence of the DMS loss modulus
(1 Hz) and the FSC heat flow (500 K/s) for these
MGs. One can see that none of them exhibits a clear
shadowglass transition as probedbyFSC.This result
suggests that the magnitudes of shadow glass transi-
tion and the β relaxation evolve hand in hand with
each other, providing more evidence as to correla-
tion between them.

The results for all the studied MGs are collec-
tively shown in Table 1, where the MGs are classi-
fied into different groups by two features: the behav-
ior of the β relaxation in each row and the shadow
glass transition in each column. We can see that the

shadow glass transition is always found in the hyper-
quenched MGs with pronounced β relaxation. On
the other hand, the MGs without obvious β relax-
ation are less likely to show shadow glass transition
as probed by FSC.

To quantitatively correlate the distinct be-
haviors of β relaxation and the shadow glass
transition, the relative heights of β relaxation and
shadow glass transition can be determined respec-
tively as E”β/E”α and �Cp@Tg,shadow/�Cp@Tg.
Here, E”β/E”α is the ratio between peak height
of β relaxation and α relaxation. Similarly,
�Cp@Tg,shadow/�Cp@Tg is the ratio between
the peak height of shadow glass transition
�Cp@Tg,shadow and the heat capacity jump of
real glass transition �Cp@Tg. Here, we first
use the Pd-based MGs system as a typical
example to illustrate the relation between the
shadow glass transition and β relaxation. One can
see a trend that the�Cp@Tg,shadow/�Cp@Tg increase
with the addition of the Cu into Pd40Ni40P20 MG
to replace Ni atom for Pd40Ni40-xCuxP20 (x = 0,
30 and 40) MGs system, as shown in Fig. 5a. At
the same time, when Cu is added into Pd40Ni40P20
to replace Ni, the peaks of β relaxation also shift
gradually to lower-scaled temperatures and become
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Table 1. Cross-correlation between the behavior of theβ re-
laxation and shadow glass transition for 24 differentmetallic
glasses.

Shadow T g

βrelaxation Observed Not observed

Peak or
pronounced
hump

Pd40Cu40P20
La50Ni15Co2Al33
La65Ni20Al15
Pd40Ni10Cu30P20
Au49Ag5.5Pd2.3Cu26.9Si16.3
Ce65Ni10Al25

Shoulder La65Cu20Al15 Al86Ni10Sm4

Pd40Ni40P20 Ni78P22
Ce65Ni18Cu2Al15 Zr70Ni30

Zr60Ni40

Excess wing Zr78Ni22
Zr50Cu40Al10
Zr65Cu27.5Al7.5
Zr65Cu20Al15
Zr47Cu46A7

Zr45Cu46Al7Y2
Zr63Cu20Al15Y2
Zr70Pd30
Zr65Pd35
Zr60Ni25Al15
Zr46Cu39Al8Ag7

more pronounced as shown in Fig. 5b. In other
words, alloying influences in the same way to the
relative strength of β relaxation and the shadow
glass transition.

Figure 5c presents the quantitative relationship
between the β relaxation and the shadow glass
transition by plotting �Cp@Tg,shadow/�Cp@Tg
against E”β/E”α . It is noteworthy that
�Cp@Tg,shadow/�Cp@Tg is nearly a proportional
(i.e. y = x) function of E”β/E”α for these MGs. It
indicates that the stronger shadow glass transition
with higher �Cp@Tg,shadow/�Cp@Tg corresponds
to a more pronounced β relaxation peak and vice
versa. This corroborates that the strength of shadow
glass transition and the behaviors ofβ relaxation are
correlated.

DISCUSSION
These results inspire the physical mechanism that
a β relaxation induced connectivity percolation
happens before the glass transition and leads to
the sub-Tg endothermic peak. The β relaxation in
MGs has been identified to reflect the string-like
collective atomic arrangement based on molecular
dynamics simulations [51,78,79]. Previous exper-

iments also found that the fraction of liquid-like
regions (or ‘flow units’) was above 0.25 after the
full activation of β relaxation [62,80,81]. The value
between 0.25–0.3 happens to be the threshold
volume fraction of connectivity percolation for a
3D continuum system [82–84]. The connectivity
percolation means that the expansion of activated
liquid-like regions with increasing temperature en-
ables the appearance of at least one connected flow
unit chain to penetrate through the sample. Unlike
the ‘real’ glass transition, where we believe a rigidity
percolation happens and the sample behaves with a
macroscopic softness, the ‘shadow’ glass transition
is rather confined with no additional macroscopic
degree of freedom. Therefore, an endothermic peak
which reflects the local to cooperative transition can
be observed but with a smaller value compared to a
‘real’ glass transition. However, it is a kinetic process
in the real world and the competition between the
activation process and structural relaxation will
weaken the endothermic process if the heating rate
is slow. This explains the reason why the shadow
glass transition peak is difficult to detect by using
traditional calorimetry equipment. If the sample is
heated up fast enough, the connectivity and rigidity
percolation may be reached simultaneously and the
shadow glass transition will merge into the main
glass transition as shown in Figs 2d, and 3c and f.

Besides, the energy status of sample or chem-
ical influence also plays an important role in the
activation process. Generally, the low cooling rate
and annealing treatment will lower both the system
energy and the diversity of structural heterogeneity,
which means the connectivity percolation can only
be reached at a higher temperature. From our FSC
results, lower cooling rate indeed leads to a higher
shadow glass transition as predicted from themodel.
Chemical influence on shadow glass transition is as
strong as on β relaxation, where no clear shadow
glass transition can be probed even by FSC in sys-
tems with weakβ relaxation behaviors.The physical
mechanism for the phenomenon might also be
related to the percolation state. The unobvious β

relaxation shoulder or excess wing is believed to
result from the indiscernibility between the two re-
laxations, where deducedTβ is close to 0.9Tα (here,
Tα is the peak temperature of the α relaxation) and
thereforeβ peak hidden in the flank of α peak [85].
Weak β relaxation behavior together with fewer
flow unit regions will result in an undistinguished
shadow glass transition, which was observed in
those Zr-, Ni- and Al-basedMGs (Fig. 4).

We have shown that the shadow glass transi-
tion and β relaxation follow a same temperature-
time dynamic and their magnitudes are propor-
tional with each other. These results are enabled by
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Figure 4. Shadow glass transitions are hardly to be probed in MGs without pronounced β relaxation. (a–I) Temperature dependence of the DMS loss
modulus E” (dark yellow, left axis) and FSC heat flow (blue, right axis) measured with a heating rate of 500 K/s for 12 different MGs with compositions
indicated.

the combined experiments of dynamical mechani-
cal analysis and, especially, the recently developed
fast-scanning calorimetry with heating rates of hun-
dreds/thousands kelvin per second. Our findings
establish a correlation between the two seemingly
different processes, which provides an example of
settling long-standing attempts to relate glass dy-
namics to thermodynamic responses. Meanwhile,
the progress in the understanding of β relaxation

couldbe suggestive of ultimately resolving themech-
anisms of shadow glass translation. The emerging
physical picture implies that the shadow glass tran-
sition is a thermodynamic signature of β relaxation
in hyper-quenched glasses, analogous to the glass
transition and the freezing of α relaxation. The re-
sults presented above thus open new challenges and
opportunities for furthering our understanding of
glass relaxations.
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METHODS
Sample preparation
We selected 24 different MGs for experiments
based on their different relaxation behaviors.
The chemical compositions of them are listed in
Table 1. The initial Pd40Cu40P20, Pd40Ni40P20,
Pd40Ni10Cu30P20 and Ni78P22 alloy ingots were
prepared by induction melting of high purity
elements under an argon-purged atmosphere; Pd
(99.99 at%), Ni (99.99 at%), Cu (99.99 at%) and
red phosphorus powder (98.5 at%). The resulting
Pd40Cu40P20, Pd40Ni40P20, Pd40Ni10Cu30P20
and Ni78P22 alloys were treated with B2O3 flux
for 3 h. Ingots of the Au49Ag5.5Pd2.3Cu26.9Si16.3,
La65Ni20Al15, La65Cu65Al15, La50Ni15Co2Al33,
Ce65Ni10Al25, Ce65Ni18Cu2Al15, Al86Ni10Sm4 and
other Zr-based alloys were prepared by melting
high purity elements (purity ≥ 99.95 at%) under
a Ti-gettered argon atmosphere in an arc-melting
furnace. The ingots were re-melted five times to
ensure compositional homogeneity. Amorphous
ribbons, about 20 um thick and 3 mm wide, were
prepared by re-melting the alloys using rf induction
and injecting the melts onto the surface of a single
copper roller with the speed of 50–65 m/s for these
different alloy compositions. Amorphous ribbons
of different thicknesses are achieved by varying the
rotational speed of the rollers at speeds between
20 and 70 m/s for La50Ni15Co2Al33 MG. The
glassy nature of all the ribbons was verified using
X-ray diffraction (XRD, Bruke D2 phaser) with
monochromatic Cu Kα radiation (λ = 0.1542 nm)
and DSC (Mettler Toledo DSC 3).

Dynamical mechanical analysis
The dynamical mechanical spectra of these MGs
were measured on a TA Q800 dynamical mechan-
ical analyzer. For these amorphous ribbon samples,
film tension mode was used in an isochronal mode
with a heating rate of 3 K/min, strain amplitude of
6 um and discrete testing frequency of 0.5, 1, 2, 4, 8
and 16 Hz.

Calorimetry measurements
The present calorimetry was performed using a
combination of Flash DSC (Mettler Toledo Flash
DSC 2+) and conventional DSC (Mettler Toledo
DSC 3). The heat flow curves of MGs at a relatively
low heating rate (0.083–1.33 K/s) is obtained by
continuous heating on a conventional DSC using a
refrigerated cooling system with a N2-gas DSC cell
purgeunder a 50ml/minnitrogengas flow.Thesam-
ple masses were 8–15 mg. In order to ensure the

reliability of themeasurement, eachcrystallized sam-
ple was heated again to obtain a baseline. The con-
ventional DSC was calibrated by using pure In and
Zn standard. The heat flow curves of MGs at higher
heating rates were obtained by continuous heating
on a Flash DSC under 80 ml/min argon gas flow.
The twin-type chip sensor based onMEMS technol-
ogy is made of a sample and a reference. The FSC
chip sensors were preconditioned and calibrated fol-
lowing themanufacturer recommendation.TheFSC
samples were prepared by cutting the melt-spun rib-
bons into small pieces under a stereomicroscope
and then transferred using an electrostatic manipu-
lator hair onto a temperature-corrected MultiSTAR
UFS1 sensor or UFH sensor. Samples were placed
on the sensitive area of a MEMS chip sensor for a
range of heating rates from 3 to 20 000 K/s.
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Supplementary data are available atNSR online.
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