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Abstract: This paper presents a new sensory system based on advanced algorithms and machine
learning techniques that provides sensory gloves with the ability to ensure real-time connection of all
connectors in the cabling of a cockpit module. Besides a microphone, the sensory glove also includes
a gyroscope and three accelerometers that provide valuable information to allow the selection of
the appropriate signal time windows recorded by the microphone of the glove. These signal time
windows are subsequently analyzed by a convolutional neural network, which indicates whether the
connection of the components has been made correctly or not. The development of the system, its
implementation in a production industry environment and the results obtained are analyzed.

Keywords: sensory gloves; machine learning; convolutional neural networks; smart sensing; auto-
motive industry; industry 4.0; electronics

1. Introduction

Within the demanding automotive sector, it is essential to have high quality standards
and low defective product ratios (NOK—not OK) at the end of a production line (EOL—End
of Line) if adequate levels of competitiveness are to be maintained. In order to comply with
this, companies incorporate in their EOL a final validation and testing process through
electrical checks (E-CHECK) that ensure that all functions and connections of a product are
correct and that there are no defects.

The connection of the wiring is made by means of a click that generates a characteristic
sound that the operator must detect, thus ensuring that the connection (clicking) has been
made correctly. However, this process involves a high degree of dedication of factory
personnel, which increases manufacturing costs. In addition, on many occasions, these
solutions do not ensure a perfect clicking of the connectors, which, with the passage of
time, end up disconnecting and deriving in complaints from clients and the need to repair
the product, deriving in a very high cost.

The aim of this paper is to describe a new sensory system capable of carrying out
the verification of the correct embedding in the cable connection that is done in many
production lines, with success rates of almost 100%. The sensory system will be integrated
into some sensory gloves to carry out the verification of the correct packaging in real
time along the entire production line, without having to resort to the E-CHECK in the
EOL. The system provides a high degree of flexibility, being able to operate in different
environmental conditions within industrial environments increasing the reliability of the
processes of checking the proper clicking connection. The system also aims to simplify
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the E-CHECK in EOL and balance the load along the different assembly stations of a
cockpit module, reducing significatively the total time of assembly and testing of a cockpit
module. The reduction of the number of NOK cockpits at the end of the line by means
of early and autonomous detection (self-assessment) of the incorrect clicking connection
along the whole assembly line will imply a reduction of the manufacturing costs of the
assembly process of the cockpit module, thus offering a product at a more competitive
price. Furthermore, it allows getting an integrated and highly configurable system to adapt
to the needs of the operator and to digitize the production systems by incorporating 4.0
technologies.

2. Related Works

The use of smart gloves is not new at all. As described in [1], “hand movement data
acquisition is used in many engineering applications”. The use of sensory gloves has
been considered for many purposes, such as sign language recognition [2,3], hand posture
monitoring [4,5], computer-generated (typically virtual reality or augmented vision) envi-
ronments [6], tactile sensing [7-10], force-sensing for biomedical purposes [11-13], fitness
exercises tracking [14], Sensing Finger Tapping in Piano Playing [15], teleoperation [16],
rehabilitation [17-19] and many others. However, the use of convolutional neural networks
(CNNs) to provide intelligence to these gloves is indeed a significant improvement in the
recognition capacity of these devices.

A complete and interesting survey of force feedback is proposed in [20], while [21]
classifies wearable haptic interfaces and presents a taxonomy of these interfaces. All this
allows us to understand the contribution that these types of devices and techniques can
make to their successful application in the problem of connection detection that concerns us.

Instrumented gloves may include different sensors as microphones, force sensors,
proximity sensors, accelerometers (ACCs), gyroscopes, flexion (bend) sensors and many
others. Furthermore, a natural feature of these systems is mobility, so they are wireless
devices, with a limited computing capacity (often cloud- or edge-based computing systems)
and with a limited energy autonomy determined by the batteries they are able to carry
(without losing user’s ergonomic). Of course, there are numerous commercial proposals,
as SensoGlove (http://www.sensoglove.com/) (accessed on 5 Marth 2021), ProGlove
(https:/ /www.proglove.com) (accessed on 5 Marth 2021), CyberGlovell (http://www.
cyberglovesystems.com/cyberglove-ii) (accessed on 5 Marth 2021), VRfreeGloves (www.
sensoryx.com) (accessed on 5 Marth 2021) and many others, which provide general purpose
or specific oriented solutions for many kind of problems.

In our case, we propose the use of convolutional neural networks to detect the proper
connection of equipment on the dashboard of vehicles using work gloves that include
a microphone, a gyroscope and accelerometers. Due to the very nature of the vehicle
manufacturing system involving wear and deterioration of gloves, they must be low-cost
and, in addition, ergonomic, lightweight and sensitive to the touch. Then, a wireless sensor
prototype has been developed, which integrates the components mentioned above, and
communicates wirelessly, by means of Blueetooth Low Energy (BLE) with the automatic
clicking recognition system.

The contribution lies in the very characteristics of the CNNs used. These CNNs
offer high recognition rates, and therefore a considerable reduction of defective product
ratios (NOKs); and on the other hand, can benefit from the use of the gloves in the
production process, since a retraining of the system is proposed, taking advantage of the
non-productive periods of the factory, as described below.

The rest of the paper is organized as follows: Section 3 is devoted to describing the
system proposed and the industrial environment where it will work; Section 4 is devoted to
explain the smart recognition system, including the convolutional neural system developed;
Section 5 describes the implementation of the system; Section 6 describes and discusses the
results obtained; Section 7 shows the conclusions, and finally, references end the paper.


http://www.sensoglove.com/
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3. System Description

This section describes the industrial environment in which the system will work. It
also describes the characteristics of the signals to be measured, the architecture of the
proposed system and the intelligence of the system.

3.1. Industrial Environment

The working environment of the application is usually located in a hostile environment
as far as noise sources are concerned, reaching noise values of 90 dB on a stationary basis. As
described in [22], lighting and noise levels affect to human productivity in the automotive
assembly industry. Typically, workers performing similar tasks and especially noise sources,
generally of an impulsive nature, such as pneumatic screwdrivers, hammers, metal and
plastic tools, robots, forklifts, chains and gears, coexist near the workplace. Figure 1 shows
the industrial environment where the system must work. There is a continuous movement
of components, accompanied by the movement of elements through the assembly line, the
movement of transport trucks, the operators’ own conversations, and many more sources
of noise.

(b)

Figure 1. Assembly line segment (a) and experimental measuring and testing workstation (b).

In order to characterize the work environment, almost 100 h of uninterrupted 24-hour-
a-day work have been recorded at some locations were clicking occurs on the assembly
line, using the same audio sensors that will be described later (microphones on the glove
itself and on the outside). These recordings have included all the work shifts of that
day. The purpose of recording this noise is not only to know the background noise of the
environment, but also to have noise sources to synthetize negative samples for later use
in the training of neural networks and to generate synthetic samples adding laboratory
clicking signals.

3.2. Signals and Their Acquisition

For the recording of the embedding signals, as well as the operator’s movement,
some sensors have been used, such as, microphones, accelerometers, gyroscopes and video
cameras, all of them synchronized in time (see Figure 2a). These elements are described
below, as well as the signals obtained. Figure 2b shows the recording of the embedding
process. In this case with an external microphone. The operator is equipped with a wireless
sensor kit (NRF6936, from Nordic Semiconductor) attached to the top of each hand, as
depicted in Figure 2c. This kit includes a digital MEMS microphone (MP34DB02, from ST
Microelectronics) that records audio signals with a sampling frequency of 8 kHz and 16bits
resolution, an Inertial Measurement Unit-IMU-(MPU-9250 from Inven Sense Inc.) that
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Amplitude
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-4,000

includes an accelerometer and a gyroscope, both with 3 axes, that register simultaneously
at a rate of 100 Hz, with a range of +2 G and a resolution of 16 bits in the case of the
accelerometer and £250°0of range and 16 bits of resolution in the case of the gyroscope.
The registers of both kits are sent by means of a Bluetooth Low Energy (BLE) interface
to a PC, where data collected is stored. At the same time, the sound is registered at the
PC with a capacitive microphone (FIFINE K669B from FIFINE MICROPHONE) located
10 cm from the place where the embedding takes place. Sound is sampled at a frequency of
44,100 kHz with a 16 bits resolution. Simultaneously, a webcam (VF0260, Creative Labs
Inc., Singapore) records the embedding process in order to help determine the exact instant
when embedding occurs. Table 1 summarizes the features of all the described components.

i W
v/ T

(b) (c)

Figure 2. Measurement: (a) equipment used, (b) recording of the embedding process with an external microphone, (c) glove

with the acquisition system.

Table 1. Features of the sensing components.

Sensor Location Range Resolution Sampling Rate
MEMS 120 dBSPL .
microphone Both hands SNR 62.6 dB 16 bits 8 kHz
Acelerometer Both hands +2¢ 16 bits 100 Hz
Gyroscope Both hands +250° 16 bits 100 Hz
Non-capacitive 120 dBSPL .
microphone 10 cm SNR 78 dB 16 bits 44,100 Hz
Video Alm 640 x 480 pixel 30 Hz

Figure 3 shows a sample of an audio signal acquired (a), the three axis (X, Y and
Z) values obtained for the accelerometer (b) and the angular velocity measured by the

gyroscope (c).
6,000 Accelerometer Gyroscope
—— Original signal 30,000
4,000 250
2,000 0 20,000
o -250-
10,000
-500-
-750- 0
-1,0001 10,000
-6,000 -1,250+ I
-8,000 1,500+ -20,000
0 1 2 3 4 5 6 -
Time (s) 0 50 100 150 200 0 50 100 150 200
(a) (b) (c)

Figure 3. Signals: (a) acoustic signal obtained, (b) 3 axis accelerometer values obtained, (c) 3 axis gyroscope values obtained.
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To detect the exact moment of when the clicking is performed, the signal acquisition
process is followed by the calculation of the audio power spectrum of the signal (128 sam-
ples), as depicted in Figure 4b, considering an overlapping of 16 samples for each spectrum.
Then, the sum of the spectral power in the range of 11 kHz is calculated, as shown in
Figure 4c. The maximum relative values, higher than the detection threshold, are detected
and a signal window is obtained. This window begins one millisecond before the trigger,
as shown in Figure 4d. The resulting trimmed signal starts 44 samples before the detected
peak (-frec/1000) and finishes 443 samples after the detected peak.

Spectogram

Original sound

—— Original signal

4,000
° 2,000
o
2
= 0
£
<
-2,000
-4,000 ‘ B
\ | T i ,!mw.'ﬁW”mu i
5 10 15 20 7 10 12 15 17
Time (s) Time (s)
(@) (b)
Peaks detection Clipped signal
6,000 —— Peaks detection
4,000
5,000
4,000 2,000
o o
E 3
£ 3,000 2 o
Q o
£ £
< 2,000 < 2,000
1,000
l -4,000
0 "y . 1 J ln
5 10 15 20 0 100 200 300 400
Time (s) Time (s)
(c) (d)

Figure 4. Signal processing: (a) original signal trimmed to 20 s, (b) spectrogram of the signal, (c) peaks detection, (d) signal

window selected.

As expected, there is a wide range of devices to be interconnected, with many different
morphologies and connectors, so that the signal characteristics change, and became in
new challenges to determine correct clicks against external noise. For this reason, it is
interesting to analyze different techniques to determine which of them are capable to detect
the proper connection of the different devices in the dashboard of the vehicle. In this article,
we have considered two devices: an electronic climate control (Climatronic) and a light
dimmer (Dimmer).

Figure 5 illustrates the installation of the Dimmer, while Figure 6 shows the observed
difference in the noise levels obtained for two similar signals depending on the environ-
ment. In Figure 6, the image on the left shows the connection of a Dimmer in the production
line (with noise), while the image on the right corresponds to the connection of an RJ45 con-
nector in a laboratory environment (without noise). The Dimmer connection corresponds
to a range of 10 seconds in which two clicks occur (marked with a black dot).
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Figure 5. Dimmer installation: (a) connection wiring, (b) dimmer connection, (c) insertion of the dimmer in the dashboard.

Laboratory enviroment

Noise enviroment 10,000
—— Original signal
10,000 ——— Peaks detection
Peaks detecti 7’500
5,000 >000
o v 2,500
< ©
2 ]
s s ¢
£ =
g < -2,500
-5,000
-5,000
-10,000 7300
y -10,000
50 52 54 ] 56 58 60 0.0 0.1 0.2 0.3 0.4 0.5 0.6
Time (s) Time (s)
() (b)

Figure 6. Noise level measured: (a) connection of a Dimmer in the production line (with noise), (b) connection of an RJ45

connector in a laboratory environment (without noise).

In order to acquire the signal samples, several measurement rounds were carried
out. These captures include noise from the production line (Figure 1a) and samples of real
connections performed on a specific experimental station very close to the line (Figure 1b).
In the case of the actual assembly samples, correct and incorrect assemblies were made in
order to have a complete set of samples to work with. Noise recording from the production
line was used to build synthetic samples.

3.3. System Architecture

The system consists of a glove that houses the sensors (microphone, gyroscope and
accelerometers), which is placed in the dominant hand, and a small industrial micro-
computer that recognizes the acquired signals and provides as output the conformity or
non-conformity (OK/NOK) with the performed component connection made. Since the
user’s mobility takes precedence over any other criteria, the glove and the microcomputer
elements are interconnected through a Bluetooth Low Energy (BLE) link, which offers the
best connectivity /energy-consumption ratio. Figure 7 shows the system architecture.
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Wirelesscommtlnication (BLE)

Figure 7. System architecture: the glove, which includes the accelerometers, gyroscope and microphone (left), the Bluetooth
Low-Energy wireless communication interface (middle) and the personal computer (PC), which includes the peak detection
subsystem, the windowing subsystem, the data collection database and the convolutional neural network (right).

In both cases, glove and microcomputer, a reduced cost is sought. In the case of the
glove, the capture device was secured initially by means of a Velcro fastener to facilitate
the replacement of the glove with a new one when it is worn out. Once the viability of
the prototype has been validated, work is currently being done on miniaturization and
roughing up of the device to avoid any damage while guaranteeing ergonomics.

4. Smart Recognition System

This section is devoted to describe the recognition system, paying special attention to
the description of the techniques used and the problems observed. The final implementa-
tion of the system will be described in the following section.

4.1. Accelerometer-Based Recognition

The use of accelerometers allows detecting the time windows to be sampled and
clipped and then sending them to the convolutional network. Without the help of ac-
celerometers, it would not be possible to identify the samples to be recognized and the
process would be much more costly in terms of time and computation.

In order to automate as much as possible the identification and selection of the time
windows of the signal (windowing) to be provided to the network, we try to identify the
waveform of the accelerometers, as well as the peaks of the signal when a click (connection)
is performed, by means of mathematical functional approximation. The identification of
the movement made by the hand of the operator allows the system to identify the phase of
the assembly process in which she/he is and thus to search adequately for the moments of
connection of the connectors. Being able to approximate certain wave functions by means
of mathematical functions makes it possible to significantly speed up the identification of
the signal’s time windows, thus reducing the system’s computation time without having
to over dimension the input matrix (signal) and without requiring continuous processing
of the signals by the convolutional network.

The mathematical modelling of signals from sensors is generally complex due to the
mathematically chaotic behavior of the sensors and to the great diversity of situations
that can occur in the same movement. Mathematical processors based on computational
algebra (such as Wolfram Mathematica (Wolfram Mathematica, https:/ /www.wolfram.
com/mathematica/) (accessed on 3 March 2021), Maxima Maxima, (https://maxima.
sourceforge.io/index.html) (accessed on 3 March 2021) or Maple (Maple, https:/ /www.
maplesoft.com/) (accessed on 3 March 2021)) are not able, most of the time, to identify the
behavior of such signals and connect it with analytical expressions of functions that allow
proper manipulation.
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However, on many occasions it is possible to predict the behavior that a signal will
have by carrying out specific studies, as we will describe below. Figure 8 shows, after
filtering, transferring and scaling them properly, three samples where the operator has
performed a circular twist of the wrist. As can be observed, although the different signals
share a certain similarity in the waveform, the values do not match. That is, we can look
for a pattern of movement that can be mathematically modeled with a function, but we
must be aware that an imperfect matching will be required.

. First movement i Second movement Third movement
2,000 2,000 r 2.000F T
1,500 1,500
1,000 1,000 1,000 F
@ @
5 500 g g s00f
= = 0 5
g0 £
-500 -500F
1,000 -1,000 -1,000 F
-1,500
-1,500 L 0 L L N s " L " L
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 15 20 0.0 0.5 1.0 15
Time (s) Time (s) Time (s)
Figure 8. Three samples of the same circular wrist turn movement, and their variation over time in the three axes.

In order to be able to analyze each of the movements in the best possible way, they are
compared by axis as depicted in Figure 9. Visually there is a clear difference between the
three axes. In the X and Y axes there are big differences in the variation of the slopes of the
curve, with a similar behavior in the three samples. However, in the Z axis the amplitude
of the movement is smaller and it does not follow a clear structure. Mathematically,
the absolute maxima and minima of the three graphs can be calculated and compared
between them.

x-axis y-axis z-axis
2,000 — First movement 1 gl M = First movement 400
1.500 —— Second movement ] 0 b === "Second movement 200
» 1.000 — Third movement =i movement ®
g g oo £
£ 500 =1 =
=3 = [N
2 o0 £ 1,000} 5_200 — First movement
-500 = ~— Second movement
400} — Thi
-1,000 -1.500 Third movement
) N " L L 1 L L 1 L -600 L L I 1
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.0 05 1.0 1:5 2.0
Time (s) Time (s) Time (s)
(a) (b) (c)

Figure 9. Samples overlapped by axis: (a) X-axis, (b) Y-axis, (c) Z-axis. Each graph shows the comparison between the first
movement (blue), the second (green) and the third (red).

e In the first movement on the X-axis:
Maximum = (0.79, 1933), minimum = (0.31, 1220)

The equation of the line connecting these points is y + 1220 = 6568.89(x — 0.314). The
slope of this line is 6568.89.

e In the first movement on the Y-axis:
Maximum = (0.735, 2048), minimum = (0.22, —984)

The equation of the line connecting these points is y + 984 = 5937.63(x — 0.224). The
slope of this line is 5937.63.
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e In the first movement on the Z-axis:
Maximum = (0.81, 2009), minimum = (0.30, —925)

The equation of the line connecting these points is y + 925 = 5749.74(x — 0.3). The
slope of this line is 5749.74.

In this comparison, the absolute highs and lows and the slopes are in the same range
of variation (scaling may slightly influence positioning). Taking these references (as well as
other more punctual and complicated ones that we did not indicate) it can be determined
that the behavior in this axis is predictable and structured. In order to get an accurate
approximation, we look for an analytic function f(x) that adjusts the data as best as possible.
Figure 10 shows this approximation. Taking into account the previous data graphics, we
can observe:

X—-axis
2000 —— First movement
1500 F — Second movement
f — Thid movement
1000 -
7 — Approximation

Amplitude
[@)]
(]
o
T

-500F

1000}

Time (s)

Figure 10. X-axis variation of the three motion cases and the approximation obtained (in brown).

1.  Variation must be insignificant at the beginning and the end of the movement, that
1s,xgr£wf(x) =0.

2. It's clear (see Figure 10) that there are two time moments where the movement
is minimum and other one where the movement has its maximum value, that is,

f(x) must have two minimums x = 4; and x = a3, and one maximum x = ap

between them.

With these preliminaries, we choose f(x) = Kle’b(x’”Z)zp(x), withK; € R,b >0
and p(x) a function smaller than e~t(* ~02)* when x is large, which mathematically means
p(x) =o e_b(x_”2)2> when |x| — oco. In this way, the simplest functions verifying this
characteristic are the polynomials and that is what we will try to find. Now, we consider
the derivative of f(x):

F(x) = Kie ? a2 (p/ (x) = 2b (x — a2) p(x)).

And, in order to verify condition 2, we impose that this derivative vanishes three
times at x = a4, ap and a3

p'(x) =2b (x —a2) p(x) = (x — a1) (x — a2) (x — a3) @

We also require K; > 0 with the end that Ky (x —a7)(x —ap)(x —a3) < 0 ( f'(x) <
0 ) and then f(x) decreases in (—co, a1) U (a2, a3) and Ky (x —a1)(x —ap)(x —az) >
0 ( f'(x) > 0) and then f(x) increases in (a7, ay ) U (a3, +o0). In other words, condition
2 is satisfied. Solving the differential Equation (1) we get
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- - b(x—m)* \/
p(x) = Cy et _ 1+0b(x ZZ;)(JC as) ¥ (20 —ay — ‘13)64—bznbErf(‘/” b(ay — x))
With C; € R and Erf(z) the Error Function [23], a well known special function in
the field of applied mathematics. On the one hand, we choose C; = 0 and condition 1 is
satisfied. On the other hand, from experiment data we can observe that both minimum a;
and a3 are located symmetrically with respect to the maximum ay, that is, we can consider

2&12 — a] —az = 0

_ 14b (x—a1)(x—a3)

With this assumption, the desired polynomial can be write as p(x) ~ >

and our approximation function reads

Fla) ~ Ke "2 (14 b (x — a) (x — 282 + 1))

Ky
—2b
base) value of f(x) at x = ay (minimum) and x = ap (maximum):

where we are recalled K =

> < 0. To determine K and b we can use the known (by data

Fla) = K(1~blaa —m)?) = My >0 — b:(azial)z (1—1\?) S0 @

flar) = Ke @2 =y <0 ®)
Putting Equation (2) into Equation (3) we get K S mj and solving this tran-
scendent equation we obtain K and subsequently the value of b from Equation (2) in terms
of f(a1) = my and f(ap) = Mj. With this procedure, we have completely determined an
expression for f(x), which approaches the movement in the X axis and whose result has
been shown in Figure 10.
This development just corresponds to the X-axis of the aforementioned movement.
For the Y- axis we have followed a similar method, but the maximum is wider and the
graph is shifted downward. In the case of the Z-axis, it is observed that there is no pattern
worthy of mathematical modeling. All graphics in this section, as well as the necessary
numerical approximations, have been made with Wolfram Mathematica 12.2.

4.2. Data Sources

During the development process, we experienced additional difficulties when trying
to acquire samples in the production plant including industrial noise. If it is usually already
difficult and costly in time and effort to obtain permits to visit the plant to measure during
the production process (obtaining a limited set of samples), the restrictions derived from
the COVID19 pandemic caused a significant delay and forced us to build synthetic samples.
For such reason, we carried out intense laboratory work to synthesize these samples, for
which we used RJ-45 connectors and a network hub as shown in Figure 11.

In order to validate the proposed system, we proceeded to build an abundant set of
synthetic samples from the connection of RJ-45 connectors. These samples included correct
and incorrect clicking connections (incomplete connections, connections with broken
connectors) in many different noise conditions. Environmental noise previously recorded
in the production line was added to the laboratory samples, thus being able to build a
set of samples with and without industrial noise. This allowed us to train the CNNs and
validate their operation, and thereby validate the proposal as a step prior to training the
CNNs with the samples acquired in the real production plant environment. Noise addition
was performed by means of the Audacity (Audacity, https://www.audacityteam.org/
(accessed on 5 March 2021)) open-source audio editor.
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Figure 11. RJ-45 connection test bench: microphone, R]-45 connector, sensory glove and network hub.

Synthetic samples were created from the original ones through using different tech-
niques such as:

1. Smoothing. The points of the signal are modified in such a way that those points that
are higher than the adjacent ones (may be due to noise) are reduced, and those points
that are lower than the adjacent ones are increased leading to a smoother signal. We
obtain a sharper signal by means of a Savitzky—Golay filter, maintaining the original
maximums and minimums.

2. Decimation. A new signal is generated, with a lower number of points than the
original one. In our case, we set a constant decimating factor of 50%.

3. Deletion. Similar to signal decimation, but the elimination factor works under a
user-imposed probability. A 30% in the case of the example depicted in Figure 12.

4. Interpolation. Method opposite to decimation, which constructs new data points
within the range of the discrete set of known data points (probability of 50).

5. Modification of the amplitude. For each existing value, with a probability of 50%, its
amplitude is modified a certain percentage delimited by the user. It can be expanded
or reduced.

Table 2 shows the datasets used to train the CNNSs. Ten sets of samples have been
built. Two of them correspond to the RJ45 connectors obtained in the laboratory, while
the remaining eight correspond to the Dimmer (four of them) and the Climatronic (the
remaining four). The samples obtained at the laboratory correspond to the clicking of
the connectors without ambient noise, while the synthetic laboratory samples include
the environmental noise of the production line. On the other hand, we have the samples
obtained at the production plant, at an assembly station close to the production line (see
Figure 1b) in order to avoid any interference with the production process, but measuring
under the same working conditions of the production line. Finally, the set of samples
directly obtained on the assembly line during an actual production shift. All the datasets
also include negative samples due to both ambient noise and bad connection because
they actually occur during the process of sample acquisition and because they are of
interest for CNN learning. Since the set of training samples is several thousand, which is
relatively lower than the required values, we have increased the size of the training set
using sample data augmentation from the samples obtained at the production line and also
at the laboratory. The diversity of the data available for training models is then increased
without having to collect new data.
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Figure 12. Example of synthetic signal generation.

Table 2. Sample sets obtained for the convolutional network training.

Samples Synthetic Samples Taken at Synthetic
Connector Obtained at the Laboratory the Production Production Line
Laboratory Samples Plant Samples
RJ45 2295 1792 - -
Climatronic 1659 10,951 357 6257
Dimmer 1021 10,601 1164 10,775

The RJ45 datasets have just been used to train the network and check the system’s
validity, measure the recognition capability and validate the network architecture described
below. These laboratory samples have allowed us to properly calibrate the operating range
of the glove sensors (microphone, gyroscope and accelerometers). Once proved the viability
of the clicking recognition with the CNN, the network was trained with both the synthetic
and real samples from the production plant.

4.3. Convolutional Neural Network (CNN)

The design and development of the convolutional neural network-based machine
learning (CNN-based ML) has been carried out following the well-known criterion that
80% of the data bank goes to CNN training, while the remaining 20% is used in the final
operation test. It should be noted that this is a supervised learning process that requires
pre-tagging of samples. The tagging of the production line samples has been performed
with the help of video cameras with capacity of temporary synchrony. With this, it has
been possible to properly identify whether or not each detected event corresponds to a
clicking event, and if this has been done, correctly.
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A common convolutional neural network architecture has been built for both connec-
tors (Dimmer—see Figure 5—and Climatronic—see Figure 13). Two different instances of
the CNN have been developed, one for each device, following this architecture, and trained
separately to acquire different weights. Each of the developed CNNs consists of three
convolutional layers with max-pooling layers and four fully connected layers. Between
them, a few layers have been added to avoid overfitting the model, a problem that happens
when not having a large set of samples. Cross-entropy is used to estimate the loss function,
as we are interested in penalizing erroneous predictions and obtaining good results with
just two classes. Its optimization is performed using Adam’s algorithm [24] because this
expression is optimal for image networks processing in cases like the one described above.

(b)

Figure 13. Climatronic: (a) devices and connectors, (b) back side, (c) connector.

Table 3 summarizes the structure of the convolutional neural network designed. In
the fully connected dense layers, an activation function must be added. This has been
done using: (a) the ReLU layer, a rectified linear unit which allows to cancel the nega-
tive values from an activation map, increasing the nonlinear properties of the decision;
and (b) the SoftMax function or normalized exponential function in the last dense layer,
which finally returns the result. The SoftMax function is a generalization of the logistic
function to multiple dimensions and it is typically used to normalize the output of the
network and then located at the end of the network as the latest activation function. This
causes a “compression” that gives very good results in combination with the cross entropy
mentioned above.

Table 3. Architecture of the convolutional neural networks designed.

. . . Number of
Type Input Size Output Size Kernel Size Parameters
Conv2D 161 x 165 x 1 161 x 165 x 32 3x3 320
Max_Pooling2D 161 x 165 x 32 80 x 82 x 32 2x2 0
Conv2D 80 x 82 x 32 78 x 80 x 32 3x3 9248
Max_Pooling2D 78 x 80 x 32 39 x 40 x 32 2x2 0
Conv2D 39 x 40 x 32 37 x 38 x 32 3x3 0
Max_Pooling2D 37 x 38 x 32 18 x 19 x 32 2x2 0
Flatten 18 x 19 x 32 10,944 - 0
Dense 10,944 64 - 700,480
Dropout 64 64 - 0
Dense 64 32 - 2080
Dropout 32 32 - 0
Dense 32 16 - 528
Dropout 16 16 - 0
Dense 16 2 - 34
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In order to determine the number of training epochs to be used in the neural network,
a study was carried out with the samples of the laboratory set of the Dimmer connector.
Figure 14a shows the variation between the percentage of success with respect to the
number of epochs, while Figure 14b shows the evolution of classification loss with the
epoch number for the validation set. Results obtained for the Climatronic network are
very similar.
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Figure 14. Dimmer Training Epoch Number: (a) Classification Accuracy, (b) Classification Loss.

The number of iterations in training was set to 10, after empirically verifying that the
network behaves better when trained with 10 iterations as opposed to its training with
5 or 20 iterations. There is a 0.03 point increase in hit percentage and 0.1 point increase
inaccuracy compared to 20 epochs. This shows that training with a higher number of
epochs, and therefore more computationally expensive, does not offer a relevant benefit.

In order to validate the system and compare the different approaches used, five metrics
have been considered and measured: accuracy, precision, recall, F1-score and specificity.
The final confusion matrix is also extracted to analyze the network behavior. As it is
well-known, accuracy is the ratio of correctly predicted observation to total instances,
precision is the fraction of relevant instances among retrieved instances (true positive +
false negative), recall is the fraction of retrieved relevant instances among all relevant
instances (true positive + false positive), Fl-score is the weighted average of precision
and recall, and specificity is the fraction of negatives instances that are correctly identified
among false positives.

4.4. Peaks Detection

So far, we have studied the prediction of true or false clicking samples, but in a real
situation, these signals must also be found within the entire sampling period of the audio
signal. That is, it is necessary to adjust the search window to locate the signal segment to be
analyzed in order to validate the correct clicking. For this purpose, we have considered one
minute of duration samples, in which ten correct connections are presented and a detection
algorithm has been developed.

We start from the samples preprocessed by the same method discussed above. From
there, we have defined basic rules that determine whether it is a connection or not. With
the help of the mathematical approximations described above, we compare the signal
values with the mathematical model that characterizes each searched peak and check if
the observed signal is close enough to the searched model. For this purpose, we use a
set of empirically determined thresholds and validate them with if-then-else conditions.
A first set limit is the minimum amplitude that a peak must have to be considered valid.
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For example, for the connector described in Figure 14, it is a margin greater than 1000 am-
plitude, so all peaks detected below it are automatically discarded. From there, relative
maximums have been calculated, since this is a feature that all successful connections meet.
Subsequently, the nearest indexes to those points have been removed. This is because on
certain connectors the peak is not clearly defined and has small local highs around its
maximum value.

To verify the accuracy and precision of this algorithm, all connections made have been
manually tagged. In this way, precise time margins have been created in which a peak
should exist. This allows to check whether the peak exist at that time, which would be
a correct peak, or non-present, which would be an undetected peak. Furthermore, those
detected outside the margins would be directly incorrect. Figure 15 shows a 40 s audio
sample, in which we can observe five correct peaks. Other peaks are observed that do not
meet the conditions of detection, and then they are not labeled as clicks.

20,000 Noise enviroment

—— Original signal
r Peaks detection

15,000
10,000

5,000

0

Amplitude

-5,000
-10,000
-15,000

-20,000~
60 65 70 75 80 85 90 95 100

Time (s)

Figure 15. 40 s audio sample and its corresponding peak detection.

5. System Implementation

As previously described, the system consists of two main elements: a wireless smart
glove, responsible for signal acquisition and detection of a possible clicking connection, and
a microcomputer, in charge of determining whether or not the connection has been made
correctly. Both elements communicate with each other with a BLE wireless connection, and
the computer interacts bi-directionally with the company’s logistics system.

The recognition system has been developed following 4 phases:

e  Phase 1: Start of assembly. The logistics system indicates to the microcomputer the
type of connector to be detected and, if necessary, its parameterization. In turn, the
required information for detection is sent to the glove. The glove starts acquiring
data from sensors. In anticipation of possible interruptions in the assembly process,
a maximum period is set in which the signal will be captured. If this time limit is
reached, an error is returned to the system and the recording made is discarded.

e  Phase 2: Detection of possible clicking connection. The glove will sample continu-
ously all analog signals (ACCs, gyroscope and audio), and will process in real time
until a trigger of a possible clicking is detected. If this trigger occurs, the glove will
send the clicking signal to the microcomputer. After that, the glove continues to
sample uninterruptedly while waiting for more clicking.

e  Phase 3: Clipping validity. The microcomputer will process the clicking, validating it
or not, and notify the result of the event to the logistic system.

e  Phase 4: End of registration. The device will end the registration when receiving the
message from the computer of a successful ticketing, or by timeout, in that case a
message will be sent to the microcomputer, indicating the latter to the logistic system
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that no clicking has been detected. In both cases, both the microcomputer and the
glove wait to receive a new order from the logistics system.

Although the process may accumulate a certain delay, the result must be obtained in
less than 5 s, which is the maximum delay accepted by the assembly line managers

The CNN implementation has been performed using two well-known open source
libraries: Keras (Keras, https:/ /keras.io/) (accessed on 5 March 2021), which acts as an
API that allows the definition of the neural networks, and TensorFlow (TensorFlow,
https:/ /www.tensorflow.org/) (accessed on 5 March 2021), which is an automatic learning
system (Deep Learning). Both libraries have been used with Python scripts over a couple
of TTL TEKNO PRO computers equipped with 16 GB of DDR4 RAM memory, an Intel
15-8400 (2.11 GHz) processor with 4 kernels, 256 KB of L1 cache, 1 MB of L2 cache, and
6 MB of L3 cache memory. Both computers are devoted to the network training and run a
Ubuntu 18.04 operating system.

6. System Validation: Experimental Results

The results of the final networks are shown below, both the original data set and the
addiction of the synthetic samples.

In order to evaluate the contribution of each of the sample sets in the training of both
networks (Dimmer and Climatronic), we have evaluated the results provided by both
networks for each of the training sets. To do this, we have measured five key performance
indicators (accuracy, precision, recall, F1 score, and specificity) for each CNN by validating
with real samples obtained from the assembly line that have not been previously used at
the training process.

First of all, we train the CNN with the samples captured in the laboratory (first row
at Table 4), and then we add the synthetic samples generated from this same set but
including real noise recorded from the assembly line and re-train the CNN (second row).
We then re-train the CNN with the samples captured at the plant (third row), add again
the corresponding synthetic set (fifth line), and finally we train the CNN with the four sets
of samples (fourth row). We then obtain five different CNNs for each of type of device
(Climatronic and Dimmer).

Table 4. Results obtained for both devices (Dimmer and Climatronic) for each of the training sets.

Dataset for Training

Dimmer Climatronic
TN FP FN TP NOK OK TN FP FN TP NOK OK

Laboratory
Laboratory + synthetic
Laboratory + plant
Labor + synth + plant
Plant + synthetics

516 49 12 587 565 599 172 8 1 177 180 178
536 29 27 572 565 599 180 0 9 169 180 178
558 7 8 591 565 599 179 1 0 178 180 178
549 16 9 590 565 599 180 0 1 177 180 178
528 37 1 598 565 599 178 2 0 178 180 178

Table 4 shows the datasets of samples obtained for both devices (Dimmer and Cli-
matronic). The table includes, for each training subset, the number of true negatives (TN,
false clickings that the system recognizes as not performed), false positives (FP, something
that is not a clicking but the system recognizes it as), false negatives (FN, a clicking not
recognized as by the system) and true positives (TP, true clicking recognized as by the
system). We can distinguish among the samples correctly catalogued (TN and TP), the
samples incorrectly catalogued (FN and FP), the samples catalogued as OK (TP + TF) and
the samples catalogued as NOK (FP + FN).

It is important to note that the validation over the CCN is just performed with the
samples captured at the production plant.

Tables 5 and 6 summarize, respectively, the key performance indicators of both Dim-
mer and Climatronic CNNs. As it can be observed, the Climatronic CNN offers better
results than the Dimmer CNN, although the differences are rather small. Analyzing by
connectors, best results correspond to the network trained with real samples (laboratory +
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plant) in the case of Dimmer, and in the case of Climatronic, best results correspond to the
network trained with real samples (laboratory + plant) and the network trained with the
full set of samples (Laboratory + synthetic + plant).

Table 5. Results of the Dimmer CNN.

Dataset Used for Training Accuracy  Precision  Recall F1 Specificity
Laboratory 0.9476 0.9230 0.9800 0.9506 0.9476
Laboratory + synthetic 0.9519 0.9517 0.9549 0.9533 0.9519
Laboratory + plant 0.9871 0.9883 0.9866 0.9875 0.9871
Laboratory + synthetic + plant 0.9785 0.9736 0.9850 0.9793 0.9785
Plant + synthetic 0.9674 0.9417 0.9983 0.9692 0.9674

Table 6. Results of the Climatronic CNN.

Dataset Used for Training Accuracy  Precision  Recall F1 Specificity
Laboratory 0.9749 0.9568 0.9944 0.9752 0.9749
Laboratory + synthetic 0.9749 1.0000 0.9494 0.9741 0.9749
Laboratory + plant 0.9972 0.9944 1.0000 0.9972 0.9972
Laboratory + synthetic + plant 0.9972 1.0000 0.9944 0.9972 0.9972
Plant + synthetic 0.9944 0.9889 1.0000 0.9944 0.9944

7. Conclusions

It has been proved for both samples captured at the laboratory and for real sam-
ples from a production plant that it is feasible, given a quality audio record, to deter-
mine whether the connections (clickings) performed have been made correctly (OK) or
not (NOK).

It is appropriate to use synthetic signal samples while not having a large data set,
and thus accelerate the process of knowledge. However, the use of real samples allows to
obtain better final recognition results.

Automating the process of recognizing the clicking connections improves the quality
of the final product and reduces production costs. Therefore, the results obtained show the
viability and convenience of the use of the proposed system.

As future works, we identify the miniaturization and ruggedization of the glove, and
the re-training of the networks as more samples are acquired during the operation of the
system itself.
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