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Abstract: This study uses the melt compounding method to produce polypropylene (PP)/short
glass fibers (SGF) composites. PP serves as matrix while SGF serves as reinforcement. Two
coupling agents, maleic anhydride grafted polypropylene, (PP-g-MA) and maleic anhydride grafted
styrene-ethylene-butylene-styrene block copolymer (SEBS-g-MA) are incorporated in the PP/SGF
composites during the compounding process, in order to improve the interfacial adhesion and create
diverse desired properties of the composites. According to the mechanical property evaluations,
increasing PP-g-MA as a coupling agent provides the composites with higher tensile, flexural, and
impact properties. In contrast, increasing SEBS-g-MA as a coupling agent provides the composites
with decreasing tensile and flexural strengths, but also increasing impact strength. The DSC results
indicate that using either PP-g-MA or SEBS-g-MA as the coupling agent increases the crystallization
temperature. However, the melting temperature of PP barely changes. The spherulitic morphology
results show that PP has a smaller spherulite size when it is processed with PP-g-MA or SEBS-g-MA
as the coupling agent. The SEM results indicate that SGF is evenly distributed in PP matrices, but
there are distinct voids between these two materials, indicating a poor interfacial adhesion. After
PP-g-MA or SEBS-g-MA is incorporated, SGF can be encapsulated by PP, and the voids between
them are fewer and indistinctive. This indicates that the coupling agents can effectively improve
the interfacial compatibility between PP and SGF, and as a result improves the diverse properties of
PP/SGF composites.
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1. Introduction

Thermoplastic polymer has formed a new trend in material development, and it has the
advantages of low production cost, great diversity, sufficient sources, light weight, good physical
properties, and chemical resistance, as well as various efficient manufacturing process. Therefore,
there are a great number of plastic products commercially available.

Polypropylene (PP) is the most consumed polymer globally, and it has a comparably light
weight. Because of its good processing features, high chemical stability, and electrical insulation, PP
has been commonly used in the spare parts of vehicles, bicycles, electronic products, civil necessities,
medical instruments, and chemical products. However, it has low mechanical properties and does
not have any functions, which restrict its application ranges [1–5]. Current studies reinforce PP in
order to have greater mechanical properties; reinforcing materials include rigid particles fillers, such
as nanoclay [6–8], calcium carbonate [9], and silicon dioxide [10,11], as well as short fibers, such as
glass fiber, carbon fiber [12–17], and basalt fiber [18]. In particular, short glass fiber causes PP to be
the strongest mechanically.

PP is a nonpolar polymer and has a poor interfacial adhesion with short glass fiber (SGF). This
disadvantage is improved by using a coupling agent [19–26] or increasing the surface roughness
of fibers during the compounding process [27–29]. Wong et al. examined three coupling agents
for the mechanical properties and interfacial compatibilities of composites made of PP and recycled
carbon fibers (CF). The test results showed that the tensile and flexural strengths of the composites
were significantly improved. The interfacial compatibility of PP and CF was dependent on the
acid anhydride group and molecular weight [30]. Broughton et al. used aminosilane and titanate
as the coupling agent for glass flake and PP and found that the improved interfacial adhesion
of the composites resulted in greater tensile, flexural, and impact strengths [31]. In contrast,
Eslami-Farsani et al. added nanoclay to basalt fiber/polypropylene composite in order to increase
the roughness of the fibers. The test results indicated that after the adhesion of nanoclay to the basalt
fibers, the layered structure improved the interfacial adhesion of two materials, and thereby improved
the mechanical properties of the composites [27]; however, the reinforcement was not permanent. In
contrast, using a coupling agent can improve the interfacial adhesion between constituent materials,
and this method forms a chemical reaction between the matrix and fibers, thereby effectively and
permanently improving the mechanical properties of the composites.

This study aims to produce composites that meet the requirements of different products and to
expand the applications of the composites, and compares different characterizations of the PP/SGF
composites produced with two different coupling agents. In this study, short glass fibers that
possess high strength, high modulus, and good thermal stability are synthesized with PP in order
to reinforce the mechanical properties of PP. Two coupling agents (i.e., maleic anhydride grafted
polypropylene, PP-g-MA, and maleic anhydride grafted styrene-ethylene-butylene-styrene block
copolymer, SEBS-g-MA) are used for a greater combination between PP and SGF. PP-g-MA has
the same molecular structure that PP has, and thus enhances the bonding between two materials.
Similarly, SEBS-g-MA, an elastomer, has a structure that includes an ethylene-butylene segment that
is compatible with PP. Therefore, SEBS-g-MA can improve the compatibility between PP and SGF,
and provides the composites with impact resistance. Finally, the influences of these coupling agents
on the mechanical properties, thermal behaviors, spherulite structure, and interfacial adhesion are
examined. This study can thus serve as a reference for the selection of a coupling agent according to
the diverse applications of the composites.

2. Experimental Section

2.1. Materials

Polypropylene (PP; YUNGSOX 1080; Formosa Plastics Corporation, Taipei, Taiwan) was a
homopolymer with a melt flow rate of 10 g/10 min (ISO1133). Short glass fiber (SGF; 202P; Taiwan
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Glass Ind. Corp., Taipei, Taiwan) had a length of 3.2 mm and a diameter of 13 µm, and was
treated with a silane coupling agent. Maleic anhydride grafted polypropylene (PP-g-MA; DuPont
Fusabond P613) was purchased from DuPont, Wilmington, DE, USA. Maleic anhydride grafted
styrene-ethylene-butylene-styrene block copolymer (SEBS-g-MA; Kraton FG1901X) was purchased
from Kraton, Houston, TX, US. Physical properties of materials are summarized in Table 1.

Table 1. Physical properties of materials. Polypropylene, PP; Short Glass Fiber, SGF;
Maleic Anhydride grafted Polypropylene, PP-g-MA; Maleic Anhydride grafted Styrene-Ethylene-
Butylene-Styrene block copolymer, SEBS-g-MA.

Material Density
(g/cm3)

Melt Index
(g/10 min)

Diameter
(µm)

Length
(mm)

Graft Weight
(%)

PP 0.900 10 (230 ˝C / 2.16 Kg measured) - - -
SGF - - 13 3.2 -

PP-g-MA 0.903 120 (190 ˝C / 2.16 Kg calculated) - - 0.5
SEBS-g-MA 0.910 22 (230 ˝C / 5 Kg measured) - - 1.5

2.2. Methods

Various amounts of PP, a specified amount of 25 wt % of SGF, and 2, 4, 6, or 8 wt %
of a coupling agent (PP-g-MA or SEBS-g-MA) were mixed to form different PP/SGF/PP-g-MA
blends and PP/SGF/SEBS-g-MA blends. Different blends were dried in an oven at 80 ˝C for
8 h in order to remove moisture, after which they were made into PP/SGF/PP-g-MA pellets and
PP/SGF/SEBS-g-MA pellets via a single screw extruder (SEVC-45, Re-Plast Extruder Corp., Miaoli,
Taiwan), in which the temperatures of the three barrels and the die were 210 ˝C, 220 ˝C, 230 ˝C, and
210 ˝C, respectively, and the screw speed was 36 rpm.

The pellets were then dried in an oven at 80 ˝C for 8 h, followed by being made into composites
by using an injection machine (Ve-80, VICTOR Taichung Machinery Works Co., Ltd., Taichung,
Taiwan), in which the temperatures of three barrels and the nozzle were 210 ˝C, 220 ˝C, 230 ˝C,
and 210 ˝C, respectively. The control group was the pure PP/SGF composites made of 25 wt % SGF
and 75 wt % PP.

2.3. Measurements

2.3.1. Tensile Tests

An Instron 5566 Universal Tester (Instron, Canton, MA, USA) was used to measure the
tensile strength and tensile modulus, as specified in ASTM D638-10. Samples were made into
dumbbell-shapes according to ASTM D638 Type IV. The crosshead speed was 5 mm/min. There
were a total of 5 samples for each specification.

2.3.2. Flexural Tests

The flexural test was performed by using an Instron 5566 Universal Tester (Instron, Canton,
MA, USA), as specified in ASTM D790-10. The load and flexural modulus of the samples was
measured. There were a total of 5 samples for each specification, and each sample had a size of
127 mm ˆ 12.7 mm ˆ 3.2 mm. The test speed was 2 mm/min, and the support span was 50 mm. The
test results were then used to calculate the flexural strength with the following Equation (1):

σfmax “
3PL
2bd2 (1)

where P is the load (N); L is the support span (mm); b is the sample width (mm); and d is the sample
thickness (mm).
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2.3.3. Izod Impact Tests

This test followed ASTM D 256-10. An Izod impact strength tester (CPI, ATLAS, Mount Prospect,
IL, USA) was used to measure the impact strength of the samples. The samples had a 45˝ V-shaped
cut with a depth of 0.25 mm, and were sized as 63.5 mm ˆ 12.7 mm ˆ 3.2 mm. There were a total of
5 samples for each specification.

2.3.4. Differential Scanning Calorimetry (DSC)

Composite samples of 8–10 mg were then placed in the DSC (Q200, TA Instruments, New Castle,
DE, USA). Samples were heated from 40 ˝C to 200 ˝C at 10 ˝C/min increments, and were isothermally
kept at 200 ˝C for 10 min, in order to delete the thermal history. Next, samples were cooled to
40 ˝C with the same increments. During the second cycle, the samples were heated and then cooled
between these two temperatures with the same increments. The crystallinity of composites was
calculated from Equation (2). The enthalpy corresponding to the melding of 100% crystalline PP
is 209 J/g [32,33].

XC “
∆Hm

∆H˝
m ˆ p1´ f q

(2)

where XC is crystallinity; ∆Hm is the apparent enthalpy of crystallization; ∆H˝
m is the enthalpy

corresponding to the melting of 100% crystalline PP; and f is the weight fraction of SGF.

2.3.5. Polarized Light Microscopy (PLM)

The spherulite morphology of the samples was observed by using a PLM (BX51, Olympus,
Tokyo, Japan). A small amount of sample was placed on a glass slide and was then melted to form a
film at 200 ˝C. Samples were then cooled to 130 ˝C at 10 ˝C/min increments, and were kept at 130 ˝C
for the observation of spherulite morphology.

2.3.6. Scanning Electron Microscope (SEM)

Samples were affixed to the sample holder by using carbon paste and were then coated with a
thin gold layer. The fractured surface of the samples was then observed by using an SEM (S3000N,
Hitachi, Tokyo, Japan) at a voltage of 15 kV.

3. Results and Discussion

3.1. Effects of Two Coupling Agents (PP-g-MA or SEBS-g-MA) on Mechanical Properties of
PP/SGF Composites

The tensile properties of various PP/SGF composites are compared to those of pure PP/SGF
composites (i.e., the control group), as indicated in Figure 1 and Table 2. The composites that are
incorporated with 8 wt % PP-g-MA have a tensile strength of 79.0 MPa, in comparison to that of
the control group (67.6 MPa). The tensile strength of the composites is proportional to the amount
of PP-g-MA. In contrast, the composites that are incorporated with 8 wt % of SEBS-g-MA have a
lower tensile strength (50.6 MPa) than that of the control group. The tensile strength is inversely
proportional to the amount of SEBS-g-MA.

The tensile modulus of the PP/SGF composites incorporated with 8 wt % PP-g-MA is 2004 MPa,
which is greater than that of the control group (1998 MPa). However, increasing PP-g-MA hardly
influences the modulus of the composites. Conversely, the tensile modulus of the composites
incorporated with 8 wt % SEB-g-MA is 1683.6 MPa, which is lower than that of the control group.
Furthermore, the tensile modulus has a decreasing trend with increasing SEBS-g-MA.

Figure 2 and Table 2 indicate the flexural properties of various PP/SGF composites that are
in conjunction with different coupling agents. The incorporation of 8 wt % of PP-g-MA results
in a greater flexural strength of the composites (123.4 MPa) in comparison to that of the control
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group (99.3 MPa). The flexural strength increases as a result of the increasing PP-g-MA. However,
the incorporation of 8 wt % of SEBS-g-MA decreases the flexural strength of the composites to
81.3 MPa. Moreover, the flexural strength of the composites shows a declining trend with increasing
SEBS-g-MA content.
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Note. σT is the tensile strength; ET is the tensile modulus; σF is the flexural strength; EF is the flexural modulus;
and IS is the impact strength.

The flexural modulus of the PP/SGF composites increases to 3565.9 MPa as a result of the
incorporation of 8 wt % PP-g-MA, in comparison to that of the control group (3503.4 MPa). The
flexural strength does not fluctuate with increasing PP-g-MA. In contrast, the flexural modulus of
the PP/SGF composites decreases to 2937.6 MPa, in comparison to the control group. The flexural
modulus is inversely proportional to the content of SEBS-g-MA.

The impact strength of the PP/SGF composites that are incorporated with different coupling
agents is indicated in Figure 3 and Table 2. The impact strength increases from 73.6 J/m to 97.5 J/m
when the PP/SGF composites are incorporated with 8 wt % of PP-g-MA. Meanwhile, the impact
strength increases from 73.6 J/m to 90.2 J/m when the PP/SGF composites are incorporated with
8 wt % of SEBS-g-MA. In summary, increasing coupling agent, either PP-g-MA or SEBS-g-MA,
improves the impact strength of PP/SGF composites. Table 3 summarizes the variation in tensile,
flexural, and impact properties as percentages.

The tensile, flexural, and impact strengths of PP/SGF composites are proportional to the content
of PP-g-MA that is incorporated with the composites. The mechanical properties are reinforced
due to the improved interfacial compatibility between PP and SGF. There is esterification between
the hydroxyl groups on the surface of SGF and the acid anhydride groups of PP-g-MA, and
the covalent bond is then formed, as indicated in Figure 4. As a result, PP-g-MA increases the
interfacial compatibility between PP and SGF, and thereby improves the mechanical properties of
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the composites [30,34,35]. However, when PP-g-MA reaches 8 wt %, the aforementioned properties
of the composites first exhibit an initial steep increase, followed by a gradual increase or even a
steady decrease, which is ascribed to a saturated content of acid anhydride groups of PP-g-MA.
In addition, the tensile modulus and flexural modulus of the composites barely change after the
conjunction of PP-g-MA. There are two possible factors. SGF in PP/SGF composites is the major
material that withstands deformation by an externally asserted force. PP-g-MA can only improve the
interfacial compatibility between PP and SGF, but cannot help resist the deformation. Another factor
is that PP-g-MA and PP have similar molecular weights. Therefore, the tensile modulus and flexural
modulus of the composites are not correlated with the conjunction of PP-g-MA. Such a result is in
line with the finding of the study by Wong et al. [30].

The tensile and flexural strengths of PP/SGF composites decrease as a result of the combination
of SEBS-g-MA. This coupling agent is an elastomer, which possesses low tensile and flexural
strengths. A greater content of SEBS-g-MA causes the tensile and flexural strengths to decrease.
However, the improved compatibility between SEBS-g-MA and SGF lends limited reinforcement
to the tensile and flexural strengths of the composites. As indicated in Figure 5, the combination
of SEBS-g-MA results in the chemical reaction between PP and SGF, which in turn improves their
interfacial compatibility. This improved interfacial compatibility allows for elastic deformation of
the composites under an impact, and the deformation can then absorb energy and toughen the
composites, thereby increasing the impact strength. Although the toughness of the composite
increases as a result of the combination of SEBS-g-MA, the tensile and flexural strengths of the
composites decrease. Elastomers improve the toughness of the composites at the cost of sacrificing
their rigidity and dimensional stability [36].
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Figure 2. (a) Flexural strength and (b) flexural modulus of PP/SGF composites.

Materials 2015, 8, page–page 

6 

decrease, which is ascribed to a saturated content of acid anhydride groups of PP-g-MA. In addition, 
the tensile modulus and flexural modulus of the composites barely change after the conjunction of 
PP-g-MA. There are two possible factors. SGF in PP/SGF composites is the major material that 
withstands deformation by an externally asserted force. PP-g-MA can only improve the interfacial 
compatibility between PP and SGF, but cannot help resist the deformation. Another factor is that  
PP-g-MA and PP have similar molecular weights. Therefore, the tensile modulus and flexural 
modulus of the composites are not correlated with the conjunction of PP-g-MA. Such a result is in 
line with the finding of the study by Wong et al. [30]. 

The tensile and flexural strengths of PP/SGF composites decrease as a result of the combination 
of SEBS-g-MA. This coupling agent is an elastomer, which possesses low tensile and flexural 
strengths. A greater content of SEBS-g-MA causes the tensile and flexural strengths to decrease. 
However, the improved compatibility between SEBS-g-MA and SGF lends limited reinforcement to 
the tensile and flexural strengths of the composites. As indicated in Figure 5, the combination of  
SEBS-g-MA results in the chemical reaction between PP and SGF, which in turn improves their 
interfacial compatibility. This improved interfacial compatibility allows for elastic deformation of the 
composites under an impact, and the deformation can then absorb energy and toughen the 
composites, thereby increasing the impact strength. Although the toughness of the composite 
increases as a result of the combination of SEBS-g-MA, the tensile and flexural strengths of the 
composites decrease. Elastomers improve the toughness of the composites at the cost of sacrificing 
their rigidity and dimensional stability [36]. 

 
Figure 2. (a) Flexural strength and (b) flexural modulus of PP/SGF composites. 

 
Figure 3. Impact strength of PP/SGF composites, as related to various coupling agents. 

Table 3. Variations in tensile, flexural, and impact properties in percentage (%). 

Coupling 
Agent (wt %) 

PP-g-MA SEBS-g-MA 
σT (%) ET (%) σF (%) EF (%) IS (%) σT (%) ET (%) σF (%) EF (%) IS (%) 

PP/SGF25 0 0 0 0 0 0 0 0 0 0 
2 wt % 14 −3 21 −9 38 −8 −8 −2 −8 5 

Figure 3. Impact strength of PP/SGF composites, as related to various coupling agents.

8284



Materials 2015, 8, 8279–8291

Table 3. Variations in tensile, flexural, and impact properties in percentage (%).

Coupling
Agent (wt %)

PP-g-MA SEBS-g-MA
σT (%) ET (%) σF (%) EF (%) IS (%) σT (%) ET (%) σF (%) EF (%) IS (%)

PP/SGF25 0 0 0 0 0 0 0 0 0 0
2 wt % 14 ´3 21 ´9 38 ´8 ´8 ´2 ´8 5
4 wt % 15 ´2 24 ´4 41 ´14 ´11 ´9 ´8 12
6 wt % 18 1 28 1 41 ´21 ´14 ´15 ´13 17
8 wt % 18 0 24 2 33 ´25 ´15 ´18 ´16 23
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the composites are incorporated with 8 wt % of PP-g-MA. For PP/SGF composites, SGF exists in
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PP, and is thus able to increase the crystallization temperature of PP. The subsequent combination of
PP-g-MA enables SGF to be effectively distributed in and be compatible with PP. As a result, SGF has
a greater surface area in PP matrices, which induced the nucleation of PP, and eventually augments
the crystallization of PP [37].

The Tm of PP/SGF composites that are incorporated with PP-g-MA remains at 165.4 ˝C.
Furthermore, the melting temperature does not pertain to the amount of PP-g-MA. Namely, the
conjunction of PP-g-MA is not correlated with the crystal structure and thermal stability of PP.

Similarly, in comparison to the Tc and Tm of pure PP matrices and PP/SGF composites,
the PP/SGF composites that are incorporated with SEBS-g-MA have a slightly greater Tc and a
similar Tm.

The Tc of PP/SGF composites increases from 116.4 ˝C to 118.8 ˝C when they are incorporated
with 8 wt % of SEBS-g-MA. For PP/SGF composites, the Tc of PP increases as a result of the
conjunction of SGF. SEBS-g-MA that is subsequently combined with the composites serves as a
nucleating agent, which causes nucleation of PP and thus augments the Tc of PP/SGF composites.
In addition, the Tm of the PP/SGF composites increases from 166.21 ˝C to 167.51 ˝C when the
composites are incorporated with 8 wt % of SEBS-g-MA. According to the Tm results, the Tm of
PP/SGF composites remains at 166.4 ˝C, which indicates that SEBS-g-MA does not correlate with
the crystal structure and thermal stability of PP.

3.3. Effects of Two Coupling Agents (PP-g-MA or SEBS-g-MA) on Spherulite Morphology of
PP/SGF Composites

The PLM images of PP/SGF composites as related to various coupling agents are indicated in
Figure 7. Figure 7a shows that when SGF is combined with PP, SGF serves as its nucleating agent.
The distribution of SGF in PP matrices results in an increasing amount of spherulites, which in turn
prevents the spherulites from being formed completely. As a result, the spherulite morphology is
incomplete, and spherulites have a smaller size.

When 8 wt % of PP-g-MA or SEBS-g-MA is incorporated with SGF/PP composites, SGF is evenly
distributed in PP matrices, as indicated in Figure 7b,c. A phenomenon that is similar to that observed
in Figure 7a is found; namely, the spherulites have an incomplete structure and a smaller size with
the identical reason addressed for Figure 7a [36,38].

The optical microscopic images of PP/SGF composites that have been treated with different
coupling agents are shown in Figure 8. PP is at a melting state when at a temperature of 200 ˝C, after
which the majority of spherulites start to crystallize along the fibers at a temperature of 130 ˝C, which
exemplifies that SGF is the nucleating agent for PP. Nevertheless, SGF is evenly distributed in PP as
a result of the combination of PP, and thus there are more nucleating points created. The majority of
PP’s spherulites are formed surrounding the fibers, and at the same time increases the crystallization
temperature of PP, as indicated in Figure 6b and Table 4.
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Table 4. Thermal behaviors of PP/SGF composites.

Coupling Agent
(wt %)

PP-g-MA SEBS-g-MA
∆Hm (J/g) Tm (˝C) Tc (˝C) Xc (%) ∆Hm (J/g) Tm (˝C) Tc (˝C) Xc (%)

PP 93.1 166.0 111.4 44.5 93.1 166.0 111.4 44.5
PP/SGF25 61.5 165.2 116.4 39.2 61.5 165.2 116.4 39.2

2 68.4 165.7 116.8 44.8 66.0 166.6 117.2 43.2
4 67.1 164.8 116.9 45.1 59.2 166.2 118.2 39.8
6 75.5 165.4 118.1 52.1 62.6 167.1 118.5 43.2
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Note. ∆Hm is the melting enthalpy, Tm is the melting temperature, Tc is the crystallization temperature, and Xc
is the crystallinity.
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3.4. Effects of Two Coupling Agents (PP-g-MA or SEBS-g-MA) on Spherulite Morphology of
PP/SGF Composites

Figure 9 illustrates the SEM images of PP/SGF composites that are made with different amounts
of coupling agent. The increasing amount of coupling agent, regardless of it being PP-g-MA or
SEBS-g-MA, decreases the pull-out of SGF and the interstices between SGF and PP. In addition, the
incorporation of a coupling agent also results in a rugged surface of PP/SGF composites. Therefore,
PP-g-MA and SEBS-g-MA can effectively improve the interfacial compatibility between PP and SGF.
Figure 10 shows the same images as those in Figure 9, but has a greater magnification. Figure 10
indicates that increasing PP-g-MA or SEBS-g-MA can distinctively decrease the interstices between
SGF and PP. Meanwhile, the PP remarkably adheres to SGF, and SGF does not exhibit a pull-out
phenomenon [30,34,35,37]. These results signify that the interfacial compatibility between PP and
SGF has been improved, and the composites thus have greater mechanical properties, as exemplified
in Figures 1–3 and Table 2. These results confirm the findings of the study by Tjong et al. [34,35,37].
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coupling agent; (b) 2 wt %; (c) 4 wt %; (d) 6 wt %; and (e) 8 wt % of PP-g-MA; as well as (f) 2 wt %;
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4. Conclusions

This study successfully improves the compatibility between PP and SGF for their composites
by using PP-g-MA and SEBS-g-MA, and thereby augments the tensile strength, flexural strength,
impact strength, thermal behavior, and compatibility. The test results have proven that SGF is a
good reinforcing fiber, and the conjunction of 25 wt % of SGF improves the tensile, flexural, and
impact strengths of PP. In addition, the incorporation of 8 wt % of PP-g-MA as a coupling agent
provides the composites with 18% greater tensile strength, 24% greater flexural strength, and 33%
higher impact strength; however, it does not benefit their tensile modulus or flexural modulus.
Moreover, the incorporation of 8 wt % of SEBS-g-MA as a coupling agent provides the composites
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with 23% greater impact strength, but 25% lower tensile strength, 16% lower tensile modulus, 18%
lower flexural strength, and 16% lower flexural modulus.

The test results also indicate that for PP/SGF composites, SGF serves as the nucleating agent,
which increases the crystallization temperature of PP, but decreases the size of the spherulites of PP.
Using PP-g-MA or SEBS-g-MA as the coupling agent allows for an even distribution of SGF, which
at the same time provides more nucleating points for PP. As a result, the crystallization temperature
of PP is increased and the spherulite size of PP is decreased. Hence, using these two coupling agents
positively improves the interfacial compatibility, which is exemplified by the facts that the PP matrices
enwrap the surface of SGF, and the mechanical properties of the PP/SGF composites are enhanced.
The PP/SGF composites proposed by this study can also provide feasibilities for different practical
applications by adjusting the amounts of PP-g-MA and SEBS-g-MA in order to render the composites
with desired synthetic properties and diverse uses.
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