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It has frequently been reported that some users of conventional neurofeedback systems can experience only a small portion of
the total feedback range due to the large interindividual variability of EEG features. In this study, we proposed a data-driven
neurofeedback strategy considering the individual variability of electroencephalography (EEG) features to permit users of the
neurofeedback system to experience a wider range of auditory or visual feedback without a customization process. The main idea
of the proposed strategy is to adjust the ranges of each feedback level using the density in the offline EEG database acquired from
a group of individuals. Twenty-two healthy subjects participated in offline experiments to construct an EEG database, and five
subjects participated in online experiments to validate the performance of the proposed data-driven user feedback strategy. Using
the optimized bin sizes, the number of feedback levels that each individual experienced was significantly increased to 139% and
144% of the original results with uniform bin sizes in the offline and online experiments, respectively. Our results demonstrated that
the use of our data-driven neurofeedback strategy could effectively increase the overall range of feedback levels that each individual
experienced during neurofeedback training.

1. Introduction

Neurofeedback is a type of biofeedback technology that has
generally been used to train the ability of self-regulation
based on the real-time analysis of neural signals such
as electroencephalography (EEG), magnetoencephalography
(MEG), and real-time functional magnetic resonance imag-
ing (fMRI) [1]. Over the past decades, several experimen-
tal studies have demonstrated that neurofeedback training
can be used effectively for the treatment of patients with
various psychiatric diseases or neurological disorders such
as attention deficit hyperactivity disorder (ADHD), autism,
depression, Tourette syndrome, insomnia, and epilepsy [2–
7]. Furthermore, recent studies have reported that neu-
rofeedback training can temporally enhance the cognitive
performances of healthy individuals [8–10]. Thanks to these
positive effects, neurofeedback has been gaining increased
attention [11].

Among the various neural signal acquisition modalities
including EEG, MEG, and fMRI [12–14], EEG has been
the most widely used for implementing neurofeedback sys-
tems due to its several advantages over other neuroimaging
modalities, such as high temporal resolution, portability, and
reasonable cost [15]. Since the 1960s, when the concept of
EEG-based neurofeedback was first introduced [16], most
of the EEG-based neurofeedback studies used a spectral
power of a specific frequency band [17]. For example, “alpha”
neurofeedback training is known to improve cognitive per-
formance in human subjects [8], and “beta” neurofeedback
training is known to affect attentional processing [18]. Recent
studies have adopted a variety of EEG features, such as the
ratio of two or more spectral powers, to improve the overall
performance of neurofeedback [19].

Despite the recent development of EEG-based neuro-
feedback strategies, however, the EEG-based neurofeedback
systems still suffer from some limitations. One of the most
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Figure 1: A schematic diagram describing our experimental paradigm. A babbling brook sound, a picture of a beautiful valley, and a quiet
pure-tone beep sound (respiration pacemaker) with a period of three seconds were simultaneously provided to each study participant.

representative limitations is the large interindividual vari-
ability of the EEG features that have been used for neuro-
feedback [20–22]. Due to the large variability of individual
EEG signals, it is generally difficult to develop “universal”
neurofeedback systems that can be applied to all users with-
out any time-consuming customization or individualization
processes [23–25]. Therefore, some users of the current
neurofeedback systems may experience only a small portion
of the entire feedback range (e.g., see Figure 3 in advance).
Although the use of a customization or individualization
session before using a neurofeedback system would enhance
the performance of the neurofeedback systems, such time-
consuming and cumbersome sessions might decrease the
satisfaction of the users.Therefore, it is still necessary tomake
an effort to develop EEG features with small interindividual
variations or to increase the feedback ranges that each
individual experiences.

In the present study, we attempted to make the users
of the neurofeedback systems experience a wider range of
auditory or visual feedback. To this aim, we proposed a
new neurofeedback strategy, named as the data-driven user
feedback strategy, which uses nonuniform bin sizes to divide
the entire range of an EEG feature into many bins, each
of which is assigned to a corresponding feedback level,
based on the offline EEG database acquired from a group of
individuals.

2. Methods

2.1. Subjects. Two groups of healthy subjects were enrolled
in our experiments. The first group, consisting of 22 healthy
subjects (17 males and 5 females; mean age 23.73 ± 3.12

years), participated in offline experiments to construct an
EEG database, and, the second group, consisting of five
healthy subjects (fourmales and one female;mean age 25.20±
1.17 years), participated in online experiments to validate
the performance of the proposed neurofeedback strategy.
Subjects who participated in the offline experiment were not
enrolled in the online experiment again because wewanted to
test whether the new subjects could show good performance
using the proposed neurofeedback strategy based on the
other participants’ database. All participants had normal or
corrected-to-normal vision and none had a previous history
of neurological, psychiatric, or other severe diseases that
might otherwise affect the experimental results. Before each
experiment, comprehensive information on the experiments
was given to each participant, and written informed consent
was obtained from each subject.This study was reviewed and
approved by the Institutional Review Board Committee of
Hanyang University.

2.2. Experimental Procedure. To verify the feasibility of the
proposed neurofeedback strategy, we conducted offline and
online experiments. In the offline experiment, each partici-
pant in the first group performed a “meditation” paradigm,
which helped the study participants to relax. The meditation
paradigm consisted of resting, first meditation, and second
meditation periods (Figure 1). During the resting period,
a black fixation cross appeared at the center of an LCD
monitor for 1min, while each subject was asked to gaze at
the fixation cross without moving his or her body. Then,
a babbling brook sound, a picture of a beautiful valley,
and a quiet pure-tone beep sound with a period of three
seconds were simultaneously provided to each subject. The



BioMed Research International 3

study participants were asked to take a slow breath to the
beat of the beep sound, while they consistently watched the
picture on the monitor and listened to the brook sound.
This five-minute session was repeated twice with a short
break time. In the online experiments, each participant in
the second group performed the same meditation task as in
the offline experiment, except that real-time visual feedback
was provided reflecting the participant’s current meditation
state. The size of a circle and the length of a bar displayed
on a monitor varied according to the level of the participant’s
meditation state.

2.3. EEG Recording and Preprocessing. EEG signals were
recorded using a multichannel EEG acquisition system
(ActiveTwo, BioSemi, Amsterdam, Netherlands). Two EEG
electrodes (Fp1 and Fp2) were mounted on the prefrontal
area of the subject’s scalp according to the international
10–20 system, assuming a headband-type portable EEG
neurofeedback system. The ground electrode was replaced
with two electrodes, a common mode sense (CMS) active
electrode and a driven right leg (DRL) passive electrode, both
of which were located in the posterior region. The EEG data
were sampled at 2,048Hz, and then the spectral power of
the alpha band (8–12Hz) was calculated using a fast Fourier
transform.

2.4. Data-Driven Neurofeedback Strategy. As aforemen-
tioned, neurofeedback can be used to enhance cognitive
performance of an individual or treat patients with
neuropsychiatric diseases and neurological disorders.
Although there is no formal procedure for the conventional
neurofeedback training, the entire dynamic range of an EEG
feature is usually evenly divided into multiple segments,
each of which is then assigned to a corresponding level
of auditory or visual feedbacks. In this case, some users
who have narrow dynamic ranges of the EEG feature might
accordingly experience relatively narrow ranges of feedback
compared with other users who have broad dynamic ranges.
The dynamic range of the EEG feature of an individual
can be recorded before the neurofeedback training and set
differently for each individual, which is referred to as the
customization session; however, this customization session
generally needs to be conducted every time a user wants to
try the neurofeedback system because of the high intertrial
variability of EEG data [26, 27]. In the present study, to enable
most users to experience a wider dynamic range of feedback
during neurofeedback training without a customization
process, we used nonuniform bin sizes to divide up the entire
EEG feature range.The size of each bin was determined based
on the grand distribution of the EEG feature (in this study,
alpha band power averaged over Fp1 and Fp2 was used to
evaluate meditation states). The fundamental concept of the
proposed method was introduced in our preliminary study
[28]. This paper is the extended version of the preliminary
study, and we additionally confirmed its online performance
using other EEG dataset in this study. The proposed method
will be explained in detail in the next paragraph.

In the first step, a database of an EEG feature was
constructed, while a group of participants was performing a

specific mental task (a meditation task in this study). Using
the database, a grand histogram was obtained. The grand
histogram could show overall distribution of the EEG feature
values. In this study, we used frontal alpha band (8–12Hz)
power as the EEG feature [29–31]. Alpha band powers were
evaluated for 60 EEG epochs with a length of 2 seconds.
Each epoch was randomly sampled from artifact-free periods
of resting EEG (20 epochs) as well as EEG recorded during
the first- and second-meditation tasks (20 epochs each). The
initial bin size of the histogram was set arbitrarily; we first
divided the entire dynamic range into seven bins (please
see step 1 of Figure 2), where each bin represents evenly
divided frequency bands. In the second step, a scale factorwas
introduced, which determined the number of subdivisions of
each initial bin. Basically, when the number of EEG epochs
included in an initial bin range is large, the bin is divided
into relatively more subdivisions. For example, if the scale
factor of an initial bin is 0.1, the size of the subdivisions
of the bin becomes 0.1 times the original bin size; that is,
the bin is divided into 10 subdivisions. The scale factor was
modeled with a third-order polynomial, 𝑓(𝑥) = 𝑎𝑥3 + 𝑏𝑥2 +
𝑐𝑥 + 𝑑, where 𝑥 is the number of EEG epochs included
in an initial bin range and coefficients 𝑎, 𝑏, 𝑐, and 𝑑 are
unknowns that need to be determined. The order of the
polynomial was selected empirically after confirming that
the third-order polynomial could model the overall shape of
the scale factor fairly well. We also limited the maximum of
the scale factor to 50 to avoid an excessive increment of the
number of subdivisions. The coefficients of the polynomial
were determined using an optimization procedure with an
objective function defined as the average increment in the
number of feedback levels that each individual experiences.
More specifically, the following equation was used as the
objective function of the optimization:

Increasing Rate (%) = (𝑁prop − 𝑁conv) × (
1

𝑁conv
)

× 100,

(1)

where 𝑁conv and 𝑁prop represent the average numbers of
feedback levels that each individual experiences when con-
ventional and proposed neurofeedback strategies are used,
respectively. In calculating the objective function, the total
number of feedback levels of the conventional neurofeedback
strategy, 𝑁conv, was set to be always identical to that of
the proposed neurofeedback strategy,𝑁prop. Contrary to the
proposed strategy, the entire range of the EEG feature was
evenly divided in the case of the conventional neurofeedback
strategy. A Nelder-Mead simplex direct search algorithm
implemented in a MATLAB optimization toolbox (Math-
Works, Natick, MA, USA) was used for the optimization.
The algorithm was designed to solve classical unconstrained
optimization problems of minimizing a given nonlinear
function without a need for the calculation of derivatives
[32]. We selected this algorithm because it is simple to use
and could quickly yield reliable results. In the final step, each
initial bin was divided into smaller subdivisions based on the
optimized scale factor, and, accordingly, the total number of
feedback levels was also adjusted.
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Figure 2: A schematic illustration of the overall procedure of the proposed neurofeedback strategy.
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Figure 3: Changes in the EEGmeditation feature of each individual
participant acquired during resting and meditation periods.

3. Results

To evaluate whether study participants performed the given
meditation task well, a statistical analysis was performed. A
paired 𝑡-test was applied to confirm a statistically significant
difference in the alpha band powers in the resting andmedita-
tive states.The result of the statistical analysis showed that the
alpha power was significantly increased during meditation
periods (2.19±0.69) compared to resting periods (1.88±0.76)
(units: 𝜇V2; 𝑝 value: 0.03). This result is in line with the
findings in many previous studies that consistently reported
increased frontal alpha band activity during meditation tasks
[29–31].

Figure 3 shows the distributions of the frontal alpha
powers of each participant, which were recorded during both
resting and meditation conditions. As seen in the figure,
large interindividual variability was observed. Specifically,
some participants (subject numbers 11, 16, 21, and 22) showed
relatively small dynamic ranges of the alpha powers, while
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Figure 4: Results of offline experiments. The number of feedback
levels that each subject experienced was increased in most partici-
pants. A red bar shows the average rate of increase.
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Figure 5: Results of online experiments. The average number of
feedback levels that each participant experienced increased to 144%
of the original results with uniform bin size. A red bar shows the
average rate of increase.

other participants (subject numbers 2, 7, 10, 15, 17, and 20)
showed relatively large dynamic ranges.

Figure 4 shows the increasing rate of each individual
participant’s feedback levels after the optimized scale fac-
tor was applied. The average number of feedback levels
that each individual experienced increased to 139% of the
original results with uniform bin sizes when the proposed
neurofeedback strategy was applied. Twenty participants
experienced increased numbers of feedback levels, while only
two participants experienced reduced numbers of feedback
levels, and the rate of decrement for those subjects was only
about 20%.

Figure 5 shows the results of the online experiments for
validation. In the online experiments with real-time feed-
back, the scale factor optimized using the offline datasets was
directly applied without modification. When the proposed

neurofeedback strategy was used, the average number of
feedback levels that each participant experienced increased to
144%of the original results with uniformbin sizes. Four out of
five participants experienced increased numbers of feedback
levels, while one participant experienced a reduced number
of feedback levels, with a decrement of less than 5%.

To demonstrate further the practicality of the proposed
neurofeedback strategy, we asked participants to stare con-
tinuously at the real-time feedback (a varying circle and
a varying vertical bar) as well as the picture of a valley
during the online experiment. The size of the circle and the
length of the bar varied with respect to the changes in the
EEG meditation feature, but the feedback levels were set
differently according to the conditions (conventional or pro-
posed neurofeedback strategy).The supplementarymovie file
demonstrates that the user of the neurofeedback system could
experience wider ranges of feedback without any training
sessions or predata acquisition sessions (see supplementary
movie file in Supplementary Material available online at
http://dx.doi.org/10.1155/2016/3939815).

4. Discussion

It has been frequently reported in the literature and also
shown in this study that some neurofeedback users can
experience only a small portion of the total feedback range
due to the large interindividual variability of EEG features.
Most previous EEG-based neurofeedback studies focused on
developing an individual customization strategy with the aim
of addressing the large interindividual variability issue [23–
25]. However, the customization strategy still has several
difficulties, because it necessarily requires time-consuming
and cumbersome calibration sessions before the neurofeed-
back training. Even after an individual customization session,
the dynamic range of the EEG features of an individual
can vary day by day, and, thus, repetitive training sessions
are often required. In our present study, to enable most
users to experience a wider range of feedback levels without
any customization processes, an improved neurofeedback
strategy was proposed. In contrast to the general neurofeed-
back strategy that uses a uniform bin size, the proposed
neurofeedback strategy used nonuniform bin sizes to divide
the entire range of EEG features based on the EEG database
recorded from a group of individuals. The number of subdi-
visions in each bin was determined through an optimization
process using a simplex search algorithm with an objective
function to maximize the average number of feedback levels
that each individual experienced. In this study, the EEG
feature database was constructed using EEG data recorded
from 22 healthy participants, while they were performing
a meditation task paradigm. Then, the performance of the
proposed neurofeedback strategy was confirmed through
online experiments with five additional participants. The
results of the proposed neurofeedback strategy exhibited
increments in the numbers of feedback levels as high as 139%
and 144% of the original results with a uniform bin size for
the offline and online experiments, respectively.

Although the proposed neurofeedback strategymight not
be the ultimate solution to circumvent the general limitations
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Figure 6: Grand and individual histograms of EEGmeditation features.The red graph (upper left) shows the grand histogram, and the black
graphs (the other four histograms) indicate the histograms of four individual participants.

of the current neurofeedback approaches, that is, the large
interindividual variability issue, this strategy can enhance
the performance of the neurofeedback systems without the
need for customization or individualization sessions. If the
optimized scale factor to adjust the sizes of nonuniform bins
is predetermined using a large EEG database, most new users
can use the neurofeedback training programs directly and
experience increased feedback ranges. In this study, we only
used a meditation task paradigm that can be used to train
users to stay in a relaxed state; however, our neurofeedback
strategy can also be generally used for other neurofeedback
applications such as the treatment of patients with ADHD or
depression. In other words, the proposed strategy can be used
with various EEG features such as frontal alpha asymmetry
and coherence between different channels if prerecorded
databases are available. Notably, our strategy showed fairly
good performance despite the fact that only a small number
of EEG datasets were used to construct the feature database.
In our present study, the database was constructed using
EEG data recorded from only 22 subjects, but it showed an
increment of feedback levels of around 50% in the online
experiments.We expect that the performance of the proposed
neurofeedback strategy would be further enhanced if a larger
database could be used.

In both the offline and online experiments, few study
participants (subjects 10 and 20 in the offline experiments;
subject 5 in the online experiments) experienced reduced
numbers of feedback levels after applying the proposed
neurofeedback strategy (see Figures 4 and 5). We found that
the participants who did not show good performance had

histogram distributions significantly different from that of
the grand histogram. In Figure 6, two participants, subjects
9 and 14, showed distributions similar to that of the grand
histogram and thus showed the best and second-best incre-
ments in the numbers of feedback levels. In contrast, the other
two participants included in Figure 6 (subjects 10 and 20,
who showed the worst performances) showed distributions
considerably different from that of the grand histogram.
Nevertheless, about 90% of all study participants showed
enhanced performance, and, thus, the proposed neurofeed-
back strategy is expected to be effective for most users. We
expect that these exceptional cases can be potentially reduced
if a larger EEG database is used and a better modeling of
the scale factor is possible, which is a topic we would like
to pursuit in future studies. In addition, further experiments
need to be conducted in future studies in order to investigate
the test-retest reliability of our method, considering the high
intertrial variability of EEG features.
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