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Core set construction and 
association analysis of Pinus 
massoniana from Guangdong 
province in southern China using 
SLAF-seq
Qingsong Bai1,2, Yanling Cai1,2, Boxiang He1,2, Wanchuan Liu3, Qingyou Pan3 & Qian Zhang1,2

Germplasm resource collection and utilization are important in forestry species breeding. High-through 
sequencing technologies have been playing increasing roles in forestry breeding. In this study, specific-
locus amplified fragment sequencing (SLAF-seq) was employed to analyze 149 masson pine (Pinus 
massoniana) accessions collected from Guangdong in China. A large number of 471,660 SNPs in the 
total collection were identified from 599,164 polymorphic SLAF tags. Population structure analysis 
showed that 149 masson pines could not be obviously divided into subpopulations. Two core sets, 
containing 29 masson pine accessions for increasing resin and wood yield respectively, were obtained 
from the total collection. Phenotypic analyses of five traits showed abundant variations, 25 suggestive 
and 9 significant SNPs were associated with the resin-yielding capacity (RYC’) and volume of wood (VW) 
using EMMAX and FaST-LMM; 22 suggestive and 11 significant SNPs were associated with RYC’ and 
VW using mrMLM and FASTmrMLM. Moreover, a large number of associated SNPs were detected in 
trait HT, DBH, RW and RYC using mrMLM, FASTmrMLM, FASTmrEMMA and ISIS EM-BLASSO. The core 
germplasm sets would be a valuable resource for masson pine improvement and breeding. In addition, 
the associated SNP markers would be meaningful for masson pine resource selection.

Masson pine (Pinus massoniana) is a native species that grows throughout central and southern China. Besides 
its wide uses in the wood, pulp and paper industries, this species has long been employed as the main source of 
resin, a hydrocarbon secretion of many plants that is widely used to produce resin and turpentine for the chemical 
industry1. Masson pine is the most important resin tapping tree species in China and should thus be preserved2. 
However, due to its high commercial value, this species has been subjected to over-exploitation during past dec-
ades, leading to a gradual decrease in genetic resources3. Protection and sustainable use of the preserved masson 
pine resource are urgent problems for researchers.

Genetic structure and diversity analyses could help to scientifically simplify the resources. Various types of 
molecular markers, including RAPD, SRAP, SSR, and ISSR, have been used to estimate genetic relationships and 
genetic distances in masson pine4–9. Single nucleotide polymorphisms (SNPs) have been widely reported in recent 
years because they are the most abundant and stable type of genetic marker in most genomes10. Deep sequenc-
ing technology has been rapidly developed to exploit these advantages and has enabled the high-throughput 
identification of SNPs11–13, albeit with the disadvantage of becoming cost-prohibitive when the population 
is large. The genomes of conifer trees such as Pinus taeda are complex and fairly long14. To reduce time and 
labor costs, reduced-representation genome sequencing has been widely used in plant genome sequencing14. 
Considering that whole-genome deep sequencing is still expensive and usually unnecessary11, several simplified 
and cost-effective methods for SNP discovery and high-throughput genotyping have been developed, such as 
reduced representation library (RRL) sequencing15, restriction-site associated DNA sequencing (RAD)16,17, and 
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two-enzyme genotyping by sequencing (GBS)18. In recent years, a new strategy for de novo SNP discovery and 
genotyping of large populations, referred to as specific-locus amplified fragment sequencing (SLAF-seq), has 
been employed19. SLAF-seq is a high throughput, highly fast, highly efficient and cost-effective method for devel-
oping large-scale SNP and InDel markers19. By using enzyme digestion techniques, an SLAF-seq library contain-
ing specific size fragments of DNA can be obtained. Then, we could identify a polymorphic specific SNP locus 
from all of the accessions through software alignment. This high-resolution method has been tested on many 
organisms, including crape myrtle20, cucumber21, rapeseed22, sesame23 and soybean24. Moreover, this method has 
been widely used in GWAS for important traits20,25,26, as well as in the development of core germplasm27.

To better understand the genetic relationship and the genetic architecture of wood and resin yield traits of 
the P. massoniana accessions in Guangdong province, we conduct a genome-wide SNP discovery based on the 
SLAF-seq method. The identified SNPs were used to examine the masson pine population structure. Then, we 
selected a core set of masson pine germplasm resources for improving resin-yielding capacity (RYC) and volume 
of wood (VW). Finally, a genome-wide association study (GWAS) strategy was used to identify the SNP locus 
associated with growth, wood and resin yield traits. The results would be of great value for masson pine selection 
and breeding.

Results
Sequencing quality statistics.  By SLAF-seq, 1759.00 M reads were obtained from this experiment. The 
average Q3 value was 92.78%, and the average GC content was 37.95% (see Supplementary Table S1). A large 
number of 3,232,864 SLAF tags were identified throughout the masson pine genome. The average sequencing 
depth of the tags was 16.98× (see Supplementary Table S2). Subsequently, a total of 599,164 polymorphic SLAF 
tags containing 2,774,976 SNPs were developed for the 149 samples that were used for further analysis. After 
filtering out the invalid SNPs, 471,660 SNPs were remained among the 149 masson pine accessions.

Population structure and linkage disequilibrium analysis.  We applied clustering analysis to the sam-
ples using ADMIXTURE software (Fig. 1a). This method has been used with large sample sizes, exhibiting a 
strong capability to assign individuals into populations. The estimated membership fractions of the 149 accessions 
for different values of K ranged from 1 to 10, and the maximum likelihood revealed by the population structure 

Figure 1.  Population structure, validation, phylogenetic and PCA of 149 masson pine accessions. (a) The 
population structure. The x-axis indicates different accessions. The y-axis quantifies the membership probability 
of accessions belonging to different groups. Colors in each row represent structural components. (b) The 
ADMIXTURE estimation of the number of groups for K values ranging from 1 to 10. The K value with the 
lowest CV error represents the suggested cluster number. (c) The phylogenetic tree of 149 masson pines was 
built by the neighbor-joining method with 1000 bootstrap replications in MEGA 6.0 software. Roman numbers 
indicate the subgroups. (d) The principal component analysis (PCA) of 149 masson pine accessions.
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showed an optimum value of 1 (K = 1; Fig. 1b), indicating that the masson pines in Guangdong could not be 
categorized into different subpopulations. It is important to use population-based methods to separate accessions 
from mixed populations into unstructured subpopulations, as this allows for association analyses between phe-
notypes and molecular bands to be conducted in homogeneous subpopulations28. Population analysis indicated 
that these masson pines were not excessively separated and could be used for association analysis. We also used 
the structure and fastStructure to calculate appropriate K value (see Supplementary Fig. S1). The results showed 
that the highest delta K value was obtained when K of the masson pine population was 2; the highest marginal 
likelihood was obtained when the K value was 6. The geographical distributions of the masson pines were also 
not consistent with the population structure in the two methods. Some more discussions should be added in the 
population structure analysis of masson pines in Guangdong.

Linkage disequilibrium (LD) is the non-random association of alleles at different loci and may indicate the 
genetic forces that structure the genome29. Investigations of genetic diversity and LD are prerequisites for associ-
ation; both aid in the interpretation of results. LD estimates in this study based on the specific length sequences 
indicated a very fast decay. A collection of 515,555,111 pairwise comparisons with relatively high LD (r2 ≥ 0.10) 
was found among the above mentioned SNPs (see Supplementary Fig. S2). The majority of the LD estimates 
(97.0%) presented an r2 value lower than 0.50 (0.10–0.50); only 3.0% displayed very high LD (0.51–1.00). Mean 
r2 values of conifers differ among different species30. The generality of LD distribution across the entire masson 
pine genome remains to be further analyzed, as only a relatively small part of the entire genome was studied here.

Genetic relationship analysis.  Based on the analysis of 471,660 SNPs, a neighbor-joining tree was con-
structed using MEGA software (Fig. 1c). The 149 masson pine accessions were divided into ten subgroups by the 
neighbor-joining analysis. In general, the genetic relationships among these masson pines were not consistent 
with their geographical distributions. Most subgroups had masson pines from more than three districts. In sub-
group VII, masson pines in the west (XY) clustered with the masson pines in the east (BL). However, their geo-
graphic locations showed a relatively far distance. Similar phenomena also happened in subgroup I and VI. This 
indicated that the masson pines in Guangdong may be closely related. Relationship coefficients between the 149 
samples were calculated (see Supplementary Fig. S3). Of the 22,052 pairwise combinations, 21,895 (99.29%) had 
genetic relationship coefficients <0.05. Only a very small fraction of pairwise combinations had genetic relation-
ship coefficients >0.05. PCA was performed using the same SNPs to estimate the clusters within the population 
(Fig. 1d). The PCA result was consistent with the assignments made using ADMIXTURE, i.e., there was one main 
group and several smaller groups with a small quantity of members. Some masson pines appeared to be separated 
from the main group. This may have been due to the uneven variation in the population. Masson pines distributed 
in nine regions in Guangdong province were intermixed, indicating that the masson pines in Guangdong may 
derive from the same provenance. However, from the phylogenetic tree made by MEGA, all of the masson pine 
accessions could be categorized into 10 subgroups, which meant that there were also major distinctions among 
masson pines in Guangdong.

Development of core germplasm sets.  Genetic distance was estimated to evaluate the genetic diversity 
in all the accessions. Masson pine accessions GW29 and GW28 had the highest genetic distance (0.292). GW37 
and GW112 had the lowest genetic distance (0.008). Genetic distance and population structure were used to 
select core germplasms. In this study, core sets containing 29 accessions were screened out and combined with 
traits VW and RYC, respectively (Table 1), including 24 common accessions for both wood and resin. The 29 
accessions were derived from four regions (DQ, GZ, XY, and YN). Genetic distance and population structure 
were analyzed for the core set. The mean genetic distance in the core set of resin was 0.237 and ranged from 0.015 
to 0.277; the mean genetic distance in the core set of wood was 0.236 and ranged from 0.0165 to 0.273. The mean 
genetic distances of both core germplasm sets were higher than that of the total collection (0.232). The core set 
PCA plots of resin and wood also showed a similar structure with the total collection (Fig. 2). These masson 
pine lines were genetically and geographically distantly distributed. Hence, the core germplasm population is an 
upgraded collection for breeding and could be available for distant hybridization in the future.

Association analysis of growth and economic traits.  In total, a set of 122 masson pine accessions, 
including various levels of height (HT), diameter at breast height (DBH), resin weight (RW), volume of wood 
(VW), and resin-yielding capacity (RYC) were used for association analysis. In addition, 69 clonal lines were 
employed for RYC’ association analysis. The average value and standard deviation of six traits are listed in 
Supplementary Fig. S4. We also calculated the frequency distributions of the phenotypic data. The results showed 
that HT, DBH, VW, RW, and RYC were normally distributed. In addition, these data indicated a high degree 
of diversity in phenotypic traits in the population. The frequency of trait RYC’ was not a complete normal dis-
tribution, but it also demonstrated a high degree of diversity. Hence, these phenotype data would be used for 
genome-wide association analysis.

The GWAS was performed using SNPs and phenotypic data. In our study, a total of 472,348 SNPs remained 
in the 122 accessions, and 476,264 SNPs remained in 69 accessions after filtering out of the invalid SNPs. Thus, 
the genome wide significant and suggestive P-values in 122 accessions were 2.12 × 10−8 (0.01/472,348) and 
2.12 × 10−7 (0.1/472,348), respectively. Among the 69 accessions, the P-values were 2.10 × 10−8 (0.01/476,264) 
and 2.10 × 10−7 (0.1/476,264). The GWAS analysis was carried out by the methods of MLM, FaST-LMM, 
EMMAX, mrMLM, FASTmrMLM, FASTmrEMMA, ISIS EM-BLASSO, pKWmEB and pLARmEB. The results 
showed that some SNPs were detected and associated with VW and RYC’ by multiple methods. A total of 15 RYC’ 
associated SNPs and 2 VW associated SNPs were developed using EMMAX method (Fig. 3a,e), 20 RYC’ associ-
ated SNPs and 5 VW associated SNPs were developed using FaST-LMM method (Fig. 3b,f). In addition, a total of 
9 and 8 significant SNPs were developed by method FaST-LMM and EMMAX in trait RYC’. It is interesting that 
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Accession Location VW RYC
Core set 
for wood

Core set 
for resin

GW54 DQ 0.42 342.56 ⃝ ⃝

GW111 DQ 0.76 302.02 ⃝ ⃝

GW9 GZ 0.28 177.93 ⃝ ⃝

GW24 GZ 0.45 235.84 ⃝ ⃝

GW29 GZ 0.31 193.82 ⃝ ⃝

GW31 GZ 0.3 206.39 ⃝ ⃝

GW45 GZ 0.3 220.82 ⃝ ⃝

GW30 GZ 0.26 213.42 ⃝

GW51 GZ 0.26 184.64 ⃝

GW106 GZ 0.22 192.44 ⃝

GW2 XY 0.3 252.16 ⃝ ⃝

GW4 XY 0.32 202.59 ⃝ ⃝

GW7 XY 0.34 225.14 ⃝ ⃝

GW8 XY 0.42 248.18 ⃝ ⃝

GW20 XY 0.29 237.42 ⃝ ⃝

GW23 XY 0.35 260.06 ⃝ ⃝

GW32 XY 0.31 186.59 ⃝ ⃝

GW36 XY 0.32 204.42 ⃝ ⃝

GW48 XY 0.29 201.89 ⃝ ⃝

GW71 XY 0.37 237.71 ⃝ ⃝

GW72 XY 0.44 238.97 ⃝ ⃝

GW78 XY 0.44 301.81 ⃝ ⃝

GW85 XY 0.32 180.46 ⃝ ⃝

GW93 XY 0.33 254.26 ⃝ ⃝

GW116 XY 0.38 191.65 ⃝ ⃝

GW118 XY 0.39 255.66 ⃝ ⃝

GW27 XY 0.26 184.92 ⃝

GW50 XY 0.28 218.07 ⃝

GW87 XY 0.42 186.79 ⃝

GW103 XY 0.39 168.39 ⃝

GW109 XY 0.3 164.84 ⃝

GW142 XY 0.33 176.77 ⃝

GW91 YN 0.5 192.2 ⃝ ⃝

GW52 YN 0.32 170.98 ⃝

Table 1.  Phenotypes and categories of core sets for wood and resin.

Figure 2.  The PCA plots of core germplasm sets for resin and wood. (a) The PCA plot of the core set for resin. 
(b) The PCA plot of the core set for wood.

https://doi.org/10.1038/s41598-019-49737-2


5Scientific Reports |         (2019) 9:13157  | https://doi.org/10.1038/s41598-019-49737-2

www.nature.com/scientificreportswww.nature.com/scientificreports/

the SNPs developed by the EMMAX method completely overlapped with the SNPs developed by the FaST-LMM 
method irrespective of trait RYC’ or VW (Table 2). Eight SNPs (Marker643442, Marker650102, Marker530780, 
Marker297054, Marker279561, Marker210060, Marker526082, Marker582947) that significantly associated with 
RYC’ were simultaneously developed by EMMAX and FaST-LMM methods, which indicated that those SNPs 
were very valuable and significant in breeding. However, no SNPs were developed by MLM methods in all the 
traits.

In this study, we also used the multi-locus methods mrMLM, FASTmrMLM, FASTmrEMMA, ISIS 
EM-BLASSO, pKWmEB and pLARmEB in mrMLM.GUI version 3.2 to identify associated SNPs. The result 
showed that 11 SNPs and 11 SNPs were associated with trait RYC’ and VW using mrMLM method, including 8 
significant SNPs (Marker124737, Marker174624, Marker482425, Marker279561, Marker370341, Marker504406, 
Marker271387 and Marker283415) associated with trait RYC’ and 3 significant SNPs (Marker217315, 

Figure 3.  The manhattan plots and Q–Q plots of traits RYC’ and VW using EMMAX and FaST-LMM. Each dot 
in the Manhattan plot represents one SNP. The horizontal dotted red and blue lines indicate the suggestive and 
significant thresholds.
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Trait Marker Position Alleles EMMAX P-value FaST-LMM P-value

RYC’

Marker643442 96 T/C ⃝ 3.12E-09 ⃝ 3.12E-11

Marker650102 85 A/G ⃝ 2.22E-10 ⃝ 1.15E-10

Marker530780 30 G/T ⃝ 2.06E-10 ⃝ 1.70E-10

Marker297054 111 T/G ⃝ 1.82E-08 ⃝ 7.07E-10

Marker279561 86 G/A ⃝ 1.30E-09 ⃝ 1.04E-09

Marker210060 123 C/T ⃝ 8.90E-09 ⃝ 4.87E-09

Marker526082 61 C/T ⃝ 1.28E-08 ⃝ 1.24E-08

Marker582947 199 G/A ⃝ 1.52E-08 ⃝ 1.51E-08

Marker231539 255 T/G ⃝ 2.37E-08 ⃝ 1.63E-08

Marker441368 48 C/T ⃝ 2.76E-08 ⃝ 2.63E-08

Marker437366 105 C/T ⃝ 5.29E-08 ⃝ 5.23E-08

Marker507605 70 C/A ⃝ 5.81E-08

Marker411469 183 T/C ⃝ 1.58E-07 ⃝ 5.96E-08

Marker591100 241 G/C ⃝ 8.08E-08 ⃝ 7.84E-08

Marker394053 201 G/A ⃝ 1.57E-07 ⃝ 8.36E-08

Marker1560613 202 T/C ⃝ 9.35E-08

Marker373316 73 C/T ⃝ 1.03E-07

Marker475399 42 C/T ⃝ 1.38E-07 ⃝ 1.20E-07

Marker607165 200 T/C ⃝ 1.68E-07

Marker611740 8 G/T ⃝ 1.91E-07

VW

Marker335582 178 T/C ⃝ 1.04E-07

Marker613704 194 C/T ⃝ 1.47E-07 ⃝ 1.23E-07

Marker1179037 157 G/C ⃝ 1.35E-07 ⃝ 1.31E-07

Marker103424 115 C/T ⃝ 1.71E-07

Marker188304 115 G/A ⃝ 2.09E-07

Table 2.  RYC’ and VW associated SNPs using EMMAX and FAST-LMM. Note:⃝means that the SNP could be 
developed by that model.

Figure 4.  The manhattan plots and Q–Q plots of traits RYC’ and VW using mrMLM. The horizontal dotted red 
lines indicate the suggestive thresholds.
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Marker163256 and Marker164392) associated with trait VW (Fig. 4 and Table 3). The associated SNPs developed 
by FASTmrMLM were totally identical to the SNPs developed by mrMLM according to the P-value. We did not 
obtain associated SNPs from FASTmrEMMA, ISIS EM-BLASSO, pKWmEB and pLARmEB. After comparing the 
differences among the SNPs developed by different methods, we found that Marker279561 was simultaneously 
developed by methods EMMAX, FaST-LMM, mrMLM, FASTmrMLM and ISIS EM-BLASSO. The remaining 
SNPs developed by methods mrMLM and FASTmrMLM were different from methods EMMAX and FaST-LMM.

According to the association results of trait HT, DBH, RW and RYC, 12, 4, 14 and 136 suggestive SNPs were 
developed using the methods in procedure mrMLM (see Fig. 5 and Supplementary Table S3). A total of 6, 4 and 
76 significant SNPs were developed in trait HT, RW and RYC. It is interesting that all the developed SNPs in trait 
RW were simultaneously developed in trait RYC. According to the LOD value, 5, 4, 2, 2 and 1 SNPs were signifi-
cantly associated (LOD ≥ 3) with trait RYC’, VW, HT, DBH and RW by at least two methods (see Supplementary 
Table S4).

Gene identification of associated SNPs.  Until now, there is no available public P. massoniana genome 
database on the website. We screened out the SNPs located SLAF sequences. After BLASTN analysis with pub-
lic database, most results were located on the non-coding regions in genomic DNA. Among all the associated 
SNPs, 26 SLAF sequences were directly located on the conserved domain of functional genes (see Supplementary 
Table S5). The genes were involved in RNase_H_like super family, RT_like super family, RVT_2 super family, 
FusA super family, pepsin_retropepsin_like super family, ribokinase_pfkB_like super family and rve super family.

Discussion
It takes a long time to evaluate the growth and economic traits in a conventional breeding program, and mark-
ers that facilitate selection of trees with high yields of resin and wood will have a major impact on masson pine 
breeding13. Traditional breeding methods are usually inefficient for forestry species. In recent years, genomic data 
have provided research workers novel insight into P. massoniana genetic diversity and evolution5,7,9,31,32. With the 
development of next-generation sequencing, sequencing technologies, such as GBS, RAD-seq, and SLAF-seq, 
are now available for the identification of abundant SNPs in a wide range of plant species17,22. Therefore, devel-
opment of SNP markers using SLAF-seq can currently meet the needs of GWAS in masson pine19. In this study, 
149 masson pine accessions collected from different regions of Guangdong in China were employed to develop 
SLAFs for SNP detection. The genetic structure of diverse masson pine accessions was estimated using 471,660 
SNPs. Long-term selection gain of forestry trees requires large numbers of resources with genetic variability. 
Therefore, the examination of the population structure and genetic diversity are both important for the a breeding 
program33. In this study, we received different population numbers using cross-validation, delta K analysis and 
fastStructure analysis. The cross-validation support the result of K = 1. Moreover, the result of PCA also indicated 
one principal component with several separated individuals. The clustering analysis also did not show obvious 
separations. Through the clustering analysis, some masson pine accessions from far geographical distances clus-
tered in the same subgroup, which indicated that the masson pines in Guangdong are not genetically distantly 

Trait Marker Position Alleles mrMLM P-value FASTmrMLM P-value

RYC’

Marker174624 234 C/T ⃝ 1.14E-10 ⃝ 1.14E-10

Marker482425 206 C/T ⃝ 3.06E-10 ⃝ 3.06E-10

Marker279561 86 G/A ⃝ 1.57E-09 ⃝ 1.57E-09

Marker370341 258 C/T ⃝ 2.46E-09 ⃝ 2.46E-09

Marker504406 117 C/G ⃝ 4.04E-09 ⃝ 4.04E-09

Marker124737 43 G/T ⃝ 5.79E-09 ⃝ 5.79E-09

Marker271387 80 A/G ⃝ 6.79E-09 ⃝ 6.79E-09

Marker283415 234 C/T ⃝ 1.42E-08 ⃝ 1.42E-08

Marker248105 192 G/T ⃝ 8.77E-08 ⃝ 8.77E-08

Marker278935 7 C/T ⃝ 1.01E-07 ⃝ 1.01E-07

Marker278935 256 A/C ⃝ 1.31E-07 ⃝ 1.31E-07

VW

Marker217315 18 G/A ⃝ 5.16E-10 ⃝ 5.16E-10

Marker163256 68 C/A ⃝ 8.3E-09 ⃝ 8.3E-09

Marker164392 258 T/C ⃝ 1.21E-08 ⃝ 1.21E-08

Marker103247 160 T/C ⃝ 2.55E-08 ⃝ 2.55E-08

Marker147979 68 T/G ⃝ 2.55E-08 ⃝ 2.55E-08

Marker167996 196 A/G ⃝ 3.74E-08 ⃝ 3.74E-08

Marker417759 73 G/A ⃝ 4.83E-08 ⃝ 4.83E-08

Marker211769 144 G/A ⃝ 1.13E-07 ⃝ 1.13E-07

Marker271496 74 C/G ⃝ 1.13E-07 ⃝ 1.13E-07

Marker308123 258 T/G ⃝ 1.52E-07 ⃝ 1.52E-07

Marker490183 52 C/T ⃝ 1.99E-07 ⃝ 1.99E-07

Table 3.  RYC’ and VW associated SNPs using mrMLM.
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related. Guangdong is surrounded by numerous mountains and has an independent geographical environment. 
Thus, the gene exchanges of masson pines may be limited in the whole province. Furthermore, masson pine has a 
long period of cultivation history; the breeding work and provenance tests started in Guangdong province in the 
last century. The plus families of masson pine were planted across Guangdong province. The intermixed relation-
ships among some masson pines collected from different regions may be induced by the cultivation history. By 
using clustering analysis, the masson pines were divided into different subgroups by the genetic distance, which 
meant that there are great differences among these germplasm resources. In future study, masson pines derived 
from other regions should be collected and compared to the current resources.

Molecular markers have been employed to develop core germplasm sets in multiple tree species, e.g. west-
ern white pine34, olive28,35, litchi36, pear37, and Chinese fir38 have been examined using SNPs developed by 
reduced-representation genome sequencing. A core set percentage of 20~30% of the total collection was once 
suggested at a general scale of the population27. The fixed size of the core set depends on the purpose of the study, 
and different kinds of plants require different sampling percentages39. Long-term selection gain requires genetic 

Figure 5.  The manhattan plots and Q–Q plots of traits HT, DBH, RW and VW using mrMLM. The horizontal 
dotted red lines indicate the suggestive thresholds.
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variability; thus, it is important to examine not only population structure but also genetic diversity33. Across the 
149 masson pine accessions examined in this study, we observed a mean genetic distance of 0.232, with a range 
from 0.008 to 0.292. Furthermore, genomic characterization revealed high genetic diversity within the 149 mas-
son pine accessions; therefore, we decided to identify a core germplasm set to improve masson pine breeding 
efficiency. It is important and meaningful to select a fully representative germplasm set from a large masson pine 
collection. In this study, the core sets of wood and resin showed higher genetic distances than the total collection. 
In addition, the core set of wood showed a high level of genetic gain expectation (41.78%) for trait VW; the core 
set of resin showed a high level of genetic gain expectation (40.75%) for trait RYC. The core germplasm sets, for 
the purpose of improving resin and wood yield, were scientifically simplified resources that would be useful for 
masson pine breeding.

The GWAS analyses of complex traits in forestry conifer trees, especially conifer trees with large genomes, 
require an enormous density of SNP markers40. The decay of LD over physical distances in a population deter-
mines the density of the marker coverage needed to perform a GWAS41. The faster LD decays, the more markers 
are likely needed in GWAS analysis for complex traits. LD estimates in this study based on the specific length 
sequences indicated a very fast decay. Excavation of favorable markers is necessary for improving masson pine 
breeding efficiency using molecular assisted selection (MAS). GWAS offers increased opportunities for detecting 
susceptible loci for complex traits. Masson pine is an economic tree species for resin and wood. In the breeding 
project of masson pine, both resin and wood yields are important breeding targets. Therefore, discovering SNPs 
related to resin and wood producing capacity is important for improving masson pine breeding efficiency.

In the present study, we focused on the GWAS of quantitative traits, including growth traits and the resin 
and wood yield in masson pine. The phenotypes of complex traits often result from the combined actions of 
multiple genes and environmental factors, all of which can easily lead to lost heritability42. Therefore, only those 
traits with high heritability can be stably detected. The traits in masson pines, especially RYC and VW, have been 
demonstrated to have high heritability43. Furthermore, more extensive linkage disequilibrium has been found 
in conifer trees44,45. In our study, the number of SNPs identified from 149 masson pine germplasm resources is 
large enough, and GWAS can be feasible in masson pine even though the genome may be generally large13. RYC 
and VW are important traits for representing masson pine producing capacity and economic value and have an 
important value in breeding43. In this study, five traits (HT, DBH, RW, VW, and RYC) were selected for GWAS 
analyses. All of the traits showed large phenotypic variation, supporting the suitability of GWAS for these traits. 
Thus, we presented GWAS analyses of these important traits in masson pine. In our study, the suggestive SNPs 
associated with traits RYC’ and VW were different from the SNPs identified using EMMAX and FaST-LMM. 
Only one common SNP (Marker279561) was developed in trait RYC’ and VW using these methods, which meant 
that different types of GWAS methods can provide complementary results with each other and provide us with 
more sufficient results. Moreover, no SNPs were developed in trait HT, DBH, RW and RYC using EMMAX and 
FaST-LMM, while a large number of SNPs were detected using multi-locus methods in mrMLM. The multi-locus 
GWAS methods in mrMLM.GUI provide more possibilities in detecting associated SNPs. Hence, a group of var-
ious types of GWAS methods should be applied in future studies.

High correlations between these traits were identified, and strong positive correlations existed among the 
traits DBH, RW, VW, and RYC (see Supplementary Table S6). The SNPs developed in trait RW were totally 
detected in trait RYC which meant that these SNPs have significance in the selection of high resin yield masson 
pines. However, the other trait did not show correlation ships, indicating that it is also necessary to develop 
additional SNPs at higher levels in the future. In recent years, MAS and genome selection (GS) have been the 
most popular methods in plant breeding46,47. GWAS and GS can each compensate for the other’s deficiencies, and 
both approaches are likely to be useful in conifer breeding. The developed SNP markers in GWAS can be directly 
used for both MAS and GS, and both approaches are likely to be useful in conifer breeding. Genotyping based on 
reduced-representation genome sequencing (RRGS) has become popular in a wide range of plant species17,48. The 
various types of RRGS methods, among which SLAF-seq is also widely used, have overcome the cost problem and 
have simplified the problem of identifying a large number of DNA markers in conifer species with large genomes 
as well as the large number of samples in the scientific research of forestry breeding.

P. massoniana has not been completely genome sequenced. By using BLASTN with the public database and 
conserved domain search, several SNPs were located on the conserved domain in some unusual genes. The other 
SNPs were mainly distributed on the noncoding region of genome DNA. Further annotations and functional 
analysis of those SNPs are necessary. Future studies of masson pine should not merely focus on RRGS methods, 
a various types of methods such as exon capturing and comparative transcriptome sequencing should be also 
considered for detecting SNPs and functional genes. The SNPs developed from exon-seq and RNA-seq are usually 
distributed on the transcript sequences and has been successfully used in conifer species49.

Conclusion
In this study, SLAF-seq technology was used to develop 471,660 filtered SNPs from 149 P. massoniana accessions 
in Guangdong. The population structure and genetic relationship analyses of these masson pines showed a cha-
otic genetic relationship but various genetic distances. We obtained core germplasm sets including 29 masson 
pine accessions for increasing wood and resin production, respectively. Multiple methods were used in GWAS 
of five traits and the results provided us different associated SNPs. The application of various GWAS methods 
can enrich the number of associated SNPs. The core germplasm resources and identified SNPs have meaningful 
application values in P. massoniana selection and breeding.
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Materials and Methods
Experimental materials.  A total of 149 masson pine accessions were selected for obtaining SNP markers 
(see Supplementary Table S1). The masson pines were collected from Boluo (BL), Chaoan (CA), Deqing (DQ), 
Dongyuan (DY), Gaozhou (GZ), Lianzhou (LZ), Xinyi (XY), Yingde (YD), and Yunan (YN) in Guangdong prov-
ince in southern China; in the latitude 21°55′N– 23°87′N, longitude 110°47′E– 114°41′E, and at elevations from 
35 m to 458 m. Those lines were planted in a masson pine seed orchard in 1989 by the grafting method. For each 
accession, 0.5 g of clean conifer needles was selected from each accession for further DNA extraction.

DNA extraction and SLAF-seq.  Total masson pine genomic DNA was extracted using the DP320 DNA 
secure Plant Kit (TIANGEN China); the quality and quantity of DNA were then inspected using 0.8% gel elec-
trophoresis. The quantified DNA was diluted to 20 μg·μL−1 and was stored at −20 °C before use. The masson pine 
genomic DNA was analyzed according to the SLAF-seq method19. To obtain evenly distributed SLAF tags and to 
avoid repetitive SLAF tags for maximum SLAF-seq efficiency, simulated restriction enzyme digestion was car-
ried out in silico. Sequencing libraries of each accession were constructed through digestion with the restriction 
enzymes EcoRV and ScaI to obtain the SLAF tags, and Oryza sativa genome DNA was used as a control to assess 
the normal rate of enzyme digestion. A single nucleotide (A) overhang was added to the digested fragments using 
dATP at 37 °C, and then duplex tag-labeled sequencing adapters were ligated to the A-tailed DNA with T4 DNA 
ligase. The PCR products were purified and pooled. The pooled samples were separated via electrophoresis on a 
2% agarose gel. Fragments with indices and adaptors from 264 to 414 bp were excised and purified. Finally, the 
purified gel product was sequenced using the Illumina HiSeq2500 system (Illumina, Inc., San Diego, CA, USA) at 
the Biomarker Technologies Corporation in Beijing.

Genotyping and quality control.  After sequencing, reads with double ends were compared with similar 
sequences that could be labeled as candidate SLAFs to proceed with the next step. The SLAF tags were defined 
as the group with the most samples. The samples with the most tags were used as references, and GATK and 
SAMTOOLS were employed for SNP calling50,51. SNPs were removed if the integrity <0.8 and minor allele fre-
quency (MAF) ≤0.05. After these steps, the remaining SNPs were developed to calculate genetic structure, and 
the relationships were retained for genome-wide association study (GWAS).

Structure, phylogenetic and genetic kinship among accessions.  SNPs were used to calculate 
pairwise kinship relationships among the 149 accessions by using SPAGeDi software52. Negative kinship values 
between two accessions indicate a poorer relationship than expected, and this was corrected to 053. ADMIXTURE 
was employed to investigate population structure based on the maximum-likelihood method54. The prede-
fined K, which indicates the number of groups in a population, varied from 1 to 10 in ADMIXTURE models. 
Cross-validation, delta K and marginal likelihood against K were used to select the most probable value of K55. 
A phylogenetic tree based on the neighbor-joining method was constructed in MEGA 6.0 using the developed 
SNPs56. A PCA with Cluster software was used to cluster the masson pine population57. Genetic distance and 
population structure were used to develop an initial core germplasm set by CoreHunter software58. The results 
combined with phenotypic data VW and RYC were used to confirm the final core set.

Phenotypic data collection and analysis.  Phenotype data, including height (HT), diameter at breast 
height (DBH), resin weight (RW), volume of wood (VW) and resin-yielding capacity (RYC), of 122 lines from 605 
clone individuals were measured in 2010. RYC’ data were collected and calculated from 69 plus trees. Firstly, we 
collected the phenotype data of individuals. Then, the average value of individuals from the same accession was 
used as the final phenotype data. Resins were collected on sunny days from July to October using the narrow face 
system as described by COPPEN and HONE1. Trees were sampled once per day by removal of a sliver of wood 
from the stem without the application of a stimulant. VW and RYC were calculated by the formulas given below.

The VW of an individual was calculated as follows43:

= . × × ×− . .VW 6 2341803 10 DBH HT , (1)5 1 8551497 0 95682492

where: VW is the volume of wood from an individual tree; DBH is the diameter at breast height in meters, and 
HT is the height of the tree in meters.

The RYC of an individual was calculated as follows43:

=
×

RYC Wt
(D Wd/C)

,
(2)

where: RYC is the resin-yielding capacity of an individual tree; Wt is the total weight of collected resin of a tree; 
D is the cutting time for resin tapping per tree; Wd is the total width of the narrow tapping face; and C is the cir-
cumference of the trunk where the bark was cut.

Association analysis.  The GWAS analysis was performed by multiple methods, namely, the Mixed Linear 
Model (MLM) in TASSLE software59, Factored Spectrally Transformed Linear Mixed Models (FaST-LMM) in 
FaST-LMM software60, Efficient Mixed-Model Association eXpedited (EMMAX) in EMMAX software61 and six 
methods, including multi-locus random effect mixed linear model (mrMLM)62, fast Multi-locus random effect 
mixed linear model (FASTmrMLM)63, fast multi-locus random-SNP-effect EMMA (FASTmrEMMA)64, itera-
tive modified-sure independence screening Expectation-Maximization-Bayesian least absolute shrinkage and 
selection operator (ISIS EM-BLASSO)65, polygenic-background-control-based Kruskal-Wallis test with empir-
ical Bayes (pKWmEB)66 and polygenic-background-control-based least angle regression plus empirical Bayes 
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(pLARmEB)67 in mrMLM.GUI in R. For MLM, fixed effects were calculated with a Q (population structure) 
matrix, and random effects were calculated with a K (Kinship) matrix. The Q + K matrices were both considered 
in the MLM model. The Q matrix was calculated using the Admixture software package54, and the K matrix (the 
genetic relationship among 149 accessions) was predicted using SPAGeDi software. FaST-LMM uses a linear 
mixed modeling approach to test SNP association with quantitative traits. For EMMAX, independent SNPs were 
used to compute the centered relatedness matrix, and the significant P-value between SNPs and phenotypes was 
calculated. For methods mrMLM, FASTmrMLM, FASTmrEMMA, ISIS EM-BLASSO, pKWmEB and pLARmEB, 
the methodologies and procedures were processed according to the reports in recent years62–67. The result of these 
analyses can be obtained by using the R network (mrMLM.GUI v3.2, https://cran.r-project.org/web/packages/
mrMLM.GUI/index.html).

Gene identification of associated SNPs.  We found the SLAF sequences that the suggestive SNPs located 
on and used the DNA sequences as queries to conduct BLASTN with the public database. Meanwhile, the SLAF 
sequences were used to make a conserved domain database analysis using NCBI’s Conserved Domain Database68.

Data Availability
All of the data generated or analyzed during this study are included in this published article (and its Supplemen-
tary Information files).
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