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Background: Hepatocellular carcinoma (HCC) is a highly heterogeneous malignancy with poor overall 
prognosis. Cuproptosis, a recently proposed mode of copper-dependent cell death, plays a critical role in 
the malignant progression of various tumors; however, the expression and prognostic value of cuproptosis-
related regulatory genes in HCC remain unclear.
Methods: Genomic, genetic, and expression profiles of ten key cuproptosis-related regulatory genes were 
analyzed using The Cancer Genome Atlas Liver Hepatocellular Carcinoma (TCGA-LIHC) dataset and 
protein expression data from the Human Protein Atlas (HPA) database. Unsupervised clustering of HCC 
patients based on these ten key cuproptosis-related regulatory genes was used to identify different HCC 
subtypes and analyze the differences in clinical and immune characteristics among subtypes. Subsequently, 
univariate Cox and least absolute shrinkage and selection operator (LASSO) Cox analyses were used to 
establish a cuproptosis-related prognostic signature, and the accuracy of prognostic signature prediction was 
internally validated by Kaplan-Meier survival analysis and time-dependent receiver operating characteristic 
curve in TCGA training and testing cohorts. The prognostic signature was externally validated using 
TCGA-LIHC entire cohort and International Cancer Genome Consortium Liver Cancer (ICGC-LIRI) 
cohorts. Finally, the expression landscape of cuproptosis-related regulatory genes in prognostic signature 
was explored by quantitative real-time polymerase chain reaction (qRT-PCR), western blotting and 
immunohistochemistry (IHC) experiments.
Results: Ten cuproptosis-related genes were differentially expressed in normal and HCC tissues. 
Unsupervised clustering identified two subtypes and HCC patients with these two subtypes had different 
clinical prognoses and immune characteristics, as well as different degrees of response to immunotherapy. 
Lipoyltransferase 1 (LIPT1), dihydrolipoamide s-acetyltransferase (DLAT), and cyclin dependent kinase 
inhibitor 2A (CDKN2A) were selected to construct a prognostic signature, which significantly distinguished 
HCC patients with different survival periods in the TCGA training and testing cohorts and was well 
validated in both the TCGA-LIHC entire cohort and ICGC-LIRI cohort. The risk score of the prognostic 
signature was confirmed to be an independent prognostic factor, and nomograms were generated to 
effectively predict the probability of HCC patient survival. The qRT-PCR, western blotting and IHC results 
also revealed a significant imbalance in the expression of these cuproptosis-related genes in HCC.
Conclusions: The classification and prognostic signature based on cuproptosis-related regulatory genes 
helps to explain the heterogeneity of HCC, which may contribute to the individualized treatment of patients 
with the disease.
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Introduction

Hepatocellular carcinoma (HCC) is a major pathological 
primary liver malignancy, accounting for more than 90% 
of all primary liver cancers (1). Its incidence has been 
increasing annually worldwide, with HCC currently 
ranking sixth in global tumor incidence and third in cancer-
related causes of death (2). HCC can arise from a variety of 
high-risk factors, among which are chronic hepatitis B or 
C virus infection, alcoholic liver disease, and non-alcoholic 
fatty liver disease (3,4). At present, surgical resection is the 
main treatment option for patients with HCC. Moreover, 
due to the lack of obvious symptoms and signs of early-
stage disease, many patients are usually diagnosed in the 
middle or late stages, eliminating the opportunity for 

radical surgical treatment (5). The high heterogeneity of 
HCC results in poor efficacy of many targeted drugs, or in 
some patients with HCC, the rapid development of drug 
resistance (6,7). Therefore, a better understanding of the 
molecular changes and mechanisms during HCC, as well as 
the characterization of its occurrence and progression, is of 
great significance for the identification of novel biomarkers 
for HCC prognosis and the development of more effective 
treatment strategies.

Copper is an indispensable mineral nutrient in the 
human body because it plays important roles in many 
biological processes, including mitochondrial respiration, 
kinase signaling, and antioxidation/detoxification (8). Under 
normal physiological conditions, organisms maintain a 
low concentration and dynamic balance of copper ions (9).  
The abnormal accumulation of copper ions can cause 
copper toxicity and induce cell death (10). Some human 
gene mutations have been shown to induce various 
diseases by causing an imbalance in copper homeostasis 
in the body (11). In recent years, studies have found that 
the dysregulation of copper homeostasis is crucial in the 
occurrence and progression of tumors (12,13). Tsvetkov  
et al. found that copper ions cause an abnormal aggregation 
of lipoylated proteins by directly binding to them in the 
tricarboxylic acid cycle pathway, thus interfering with iron-
sulfur cluster proteins in respiratory chain complexes and 
causing a proteotoxic stress response that ultimately leads 
to cell death. This process is a novel mode of death and is 
defined as cuproptosis (14). Studies have shown that ten 
genes including ferredoxin 1 (FDX1), lipoyl syndrome 
(LIAS), lipoyltransferase 1 (LIPT1), dihydrolipoamide 
dehydrogenase (DLD), dihydrolipoamide s-acetyltransferase 
(DLAT), pyruvate dehydrogenase E1 subunit alpha 1 
(PDHA1), pyruvate dehydrogenase E1 subunit beta 
(PDHB), metal regulatory transcription factor 1 (MTF1), 
glutaminase (GLS), and cyclin-dependent kinase inhibitor 
2A (CDKN2A) are key in regulating cuproptosis (14,15). 
In addition, multiple studies have found that copper 
ionophores and their chelating agents are promising 
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drug molecules for tumor therapy (16,17). However, the 
association between the expression of these cuproptosis-
related regulatory genes and the prognosis of patients 
remains largely unknown.

In this study, we comprehensively evaluated the gene 
expression patterns and potential functional enrichment 
analysis of cuproptosis regulators in HCC using The 
Cancer Genome Atlas (TCGA) and International Cancer 
Genome Consortium (ICGC) databases. We also subtyped 
HCC patients using an unsupervised clustering method, 
explored the differences in immune infiltration and immune 
checkpoint expression among HCC patients with different 
subtypes, and predicted their response to immunotherapy 
and sensitivity to targeted drugs. Finally, we established a 
prognostic signature to predict the survival status of patients 
with HCC. Our findings provide a theoretical basis for 
developing a novel comprehensive treatment strategy for 
patients with HCC. We present this article in accordance 
with the TRIPOD reporting checklist (available at https://
tcr.amegroups.com/article/view/10.21037/tcr-23-1876/rc).

Methods

Data collection and preprocessing

Transcriptome, somatic mutation, and copy number 
variation (CNV) data of 374 HCC and 50 adjacent normal 
tissues in The Cancer Genome Atlas Liver Hepatocellular 
Carcinoma (TCGA-LIHC) dataset, along with the 
corresponding clinical information, were downloaded 
from the Genomic Data Commons (GDC) data portal 
(https://portal.gdc.cancer.gov/). The corresponding mRNA 
expression data were obtained from the transcriptome 
expression data by comparing the annotation files of the 
human genome GRCh38. The mRNA expression data and 
corresponding clinical information for 232 HCC tissues in 
the ICGC dataset were downloaded from the International 
Cancer Genome Consortium database (https://dcc.icgc.org/
projects/LIRI-JP). The study was conducted in accordance 
with the Declaration of Helsinki (as revised in 2013). 
Access to the unassigned linked dataset was obtained from 
the TCGA and ICGC databases in accordance with their 
policies. Immunohistochemistry (IHC) results of normal 
liver and HCC tissues were obtained from the Human 
Protein Atlas (HPA; https://www.proteinatlas.org/) database 
and were used to analyze the protein expression levels of the 
ten cuproptosis regulators.

Unsupervised clustering for the ten cuproptosis-related 
regulators

Unsupervised clustering analysis of the TCGA-LIHC  
d a t a s e t  w a s  p e r f o r m e d  u s i n g  t h e  R  p a c k a g e 
“consensusclusterplus” (18) based on the expression levels of 
the ten cuproptosis regulators; this was to obtain different 
regulatory expression profiles of cuproptosis and classify 
them into corresponding subtypes. The prognosis between 
the two subtypes was compared using Kaplan-Meier analysis. 
Chi-square test was used to analyze the correlation between 
clustering and clinical parameters, and heatmap was used to 
display the result.

Analysis of the landscape of the tumor immune 
microenvironment across subtypes

The single-sample gene set enrichment analysis (ssGSEA) 
algorithm was used with the R package “Gene Set 
Variation Analysis (GSVA)” (19) to quantify the relative 
abundance of multiple immune cell infiltrates in the tumor 
microenvironment (TME) of each HCC sample. The 
expression of common immune checkpoints in HCC tissues 
was compared among the different subtypes. Differences 
in the levels of immune cell infiltration between molecular 
subtypes were assessed using the Wilcoxon rank-sum test.

Construction and validation of the prognostic signature 
from cuproptosis-related regulators

First, univariate Cox regression analysis using the R package 
“survival” (20) was performed to identify the regulatory 
factors of cuproptosis that were significantly associated with 
the prognosis of HCC. Subsequently, we used the R package 
“glmnet” (21) for least absolute shrinkage and selection 
operator (LASSO) Cox regression to shrink the scope of the 
gene filtering. Finally, multivariate Cox regression analysis 
was performed to identify highly correlated genes and to 
construct a prognostic signature. The regression coefficient 
(β) from the multivariate Cox regression analysis and the 
risk score were both calculated using the following formula: 
(coefficient mRNA1 * expression of mRNA 1) + (coefficient 
mRNA2 * expression of mRNA 2) + ... + (coefficient 
mRNA n * expression of mRNA n). We divided all cohort 
patients into high-risk and low-risk groups according to 
the TCGA train of patients’ median risk scores. Survival 
analysis between the two groups was performed using 

https://tcr.amegroups.com/article/view/10.21037/tcr-23-1876/rc
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https://dcc.icgc.org/projects/LIRI-JP
https://www.proteinatlas.org/
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Kaplan-Meier curves and the log-rank test. A receiver 
operating characteristic (ROC) curve was drawn using the 
R package “timeROC” (22) to test the predictive ability 
of the prognostic signature. The prognostic and clinical 
characteristics of the signature were further validated using 
TCGA-LIHC and ICGC cohorts.

Tumour specimens

Matched cancerous and normal hepatic tissue specimens 
were obtained from from 30 HCC patients treated at the 
Department of General Surgery, the Second Affiliated 
Hospital of Nanchang University from 2021 to 2022. The 
study was approved by the Ethics Committee of the Second 
Affiliated Hospital of Nanchang University (No. Review 
[2021] No. (084)). Informed consent was taken from all the 
patients.

RNA extraction and quantitative real-time polymerase 
chain reaction (qRT-PCR)

Total RNA from the tissues was extracted using the TRIzol 
reagent (Invitrogen), and 1 μg of total RNA was used to 
perform reverse transcription to obtain cDNA using a 
cDNA synthesis kit (RR037A; Takara). Then qRT-PCR 
was performed with TB Green Dye (RR430A; Takara) in 
triplicate and glyceraldehyde-3-phosphate dehydrogenase 
(GAPDH) was used as an internal control. Relative 
quantitation was calculated using the 2−ΔΔCt method. The 
primers used in this study are listed in Table S1.

Western blotting and IHC staining

Western blotting and immunohistochemical staining 
were performed as previously described (23). For western 
blotting, cells were lysed at 4 ℃ in lysis buffer. Total 
proteins were separated by SDS-PAGE gels and then 
transferred to 0.22-mm PVDF membranes (Bio-Rad). After 
blocking, the membranes were incubated with indicated 
antibodies. The expression was visualized using an ECL 
detection kit (#RPN2106, GE Healthcare Life Sciences), 
and semi-quantitative analysis was performed by measuring 
the density of the bands using ImageQuant LAS 4000 Mini 
biomolecular imager (GE Healthcare Life Sciences). For 
IHC staining, cells were fixed with 4% formalin (#163-
20145, Wako) for 10 min at room temperature. After 
blocking, cells were incubated with rabbit anti-human 
CDKN2A antibody (1:200 dilution), mouse anti-human 

LIPT1 antibody (1:200 dilution) and mouse anti-human 
DLAT antibody (1:200 dilution) overnight at 4 ℃. After 
washing three times with PBS, cells were incubated with 
anti-rabbit Alexa Fluor 488 (1:10000 dilution) and anti-
mouse Alexa Fluor 546 (1:10000 dilution) secondary 
antibodies at room temperature for 1h in the dark. The 
immunofluorescence in cells was examined on a laser 
confocal microscope (FV10i, Olympus).

Statistical analyses

All data were statistically analyzed using R software 
(version 4.1.3) and GraphPad (version 8.0). Univariate and 
multivariate Cox regression analyses identified independent 
predictors of overall survival (OS), their hazard ratio (HR) 
values, and their 95% confidence intervals (CI). In addition, 
differences in continuous variables between the two groups 
were analyzed using the Student’s t-test or Mann-Whitney 
U-test. Statistical significance was set at P<0.05.

Results

Overview of genetic and expression variation of 
cuproptosis-related regulators in HCC

A flowchart of the study is shown in Figure 1. In this study, 
ten regulators of cuproptosis were identified, including seven 
positive and three negative regulators. We first summarized 
the prevalence of copy number variations and somatic 
mutations in the cuproptosis regulators in HCC; mutations 
in the regulators were present in 16 out of 364 samples  
in the TCGA-LIHC dataset, with a frequency of 4.4%. 
Among them, CDKN2A was the most frequently mutated, 
while no mutations were found in FDX1, LIPT1, or 
DLAT in the HCC samples (Figure 2A). Investigation of 
the frequency of CNV alterations revealed a prevalence in 
the cuproptosis-related regulators; LIAS, GLS, and DLD 
presented more copy number amplifications, while MTF1, 
PDHB, FDX1, DLAT, and CDKN2A presented more copy 
number deletions, particularly of CDKN2A, at greater 
than 10% (Figure 2B). The locations of CNV alterations 
in cuproptosis-related regulators on the chromosomes are 
shown in Figure 2C. To define the expression landscape 
of these regulators in HCC patients, we compared their 
mRNA expression levels between normal and HCC samples 
and found that all but FDX1 were downregulated in the 
HCC samples (Figure 2D,2E). Notably, the expression of 
some of the cuproptosis-related regulators lost by CNV was 

https://cdn.amegroups.cn/static/public/TCR-23-1876-Supplementary.pdf
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significantly reduced in HCC tissues (e.g., FDX1) and vice 
versa (e.g., GLS and LIAS), suggesting that CNV alteration 
could be a key factor contributing to the perturbation of 
the expression of some of the regulators. The correlation 
network between these cuproptosis-related regulators is 
shown in Figure 2F. In addition, we extracted and compared 
paired expression data of cancer tissues from HCC patients 
and adjacent noncancerous tissues from the TCGA-
LIHC dataset and found that all regulators, except FDX1, 
were significantly elevated in HCC tissues (Figure 2G,  

Table 1). IHC staining images from the HPA database further 
demonstrated the expression of these cuproptosis-related 
regulators at the protein level, and the results were largely 
consistent with those at the transcript level (Figure 2H).  
The above results show that the landscape of genetic and 
expression alterations of cuproptosis-related regulators 
is highly heterogeneous between normal liver and HCC 
tissues, indicating that the imbalanced expression of 
cuproptosis-related regulators results in different traits in 
patients with HCC.

Figure 1 Overall flowchart of this study. HCC, hepatocellular carcinoma; TCGA, The Cancer Genome Atlas; qRT-PCR, quantitative real-
time polymerase chain reaction; IHC, immunohistochemistry; OS, overall survival; PFS, progression-free survival; ICGC, International 
Cancer Genome Consortium.
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Figure 2 The landscape of genetic and expression variation of cuproptosis-related regulators in HCC. (A) The mutation frequencies of 
ten cuproptosis-related regulators in 364 patients with HCC from TCGA-LIHC cohort. Each column represents an individual patient. 
The upper bar graph shows tumor mutation burden, and the number on the right shows the mutation frequency of each gene. The 
right bar chart shows the proportion of each variation type. The stacked bar graphs below show the conversion fractions in each sample. 
(B) The CNV frequency of the cuproptosis-related regulators in the TCGA-LIHC cohort. The height of the column represents the 
frequency of alteration. Deletion frequency, green dots; magnification frequency, red dots. (C) The CNV alteration locations of the 
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Identification of two subtypes of HCC based on the ten 
cuproptosis-related regulators

Unsupervised consensus clustering analysis of the TCGA-
LIHC dataset was performed based on the expression 
profiles of ten cuproptosis-related regulators. The mean 
variation coefficient and cluster consensus were determined 
according to the number of categories (Figure 3A,3B). As 
presented in Figure 3C, the consensus matrix represented 
the consensus of k=2, in which the well-defined structure 
constituted by two blocks was shown. Therefore, we 

classified all HCC samples into two molecular subtypes 
based on the differential expression of the ten regulators: 
cluster 1 (n=284) and cluster 2 (n=86) (Figure 3D). We 
further analyzed whether there was a difference between the 
OS of patients with HCC in these two molecular subtypes 
using the Kaplan-Meier method. The results indicated 
that cluster 1 had better progression-free survival (PFS) 
than cluster 2 (Figure 3E). In addition, we investigated the 
association between disease OS and molecular subtype. 
Similarly, the results indicated that the cluster 2 subtype 

Table 1 Full names and corresponding P values of the ten cuproptosis related regulatory genes

Gene symbol Gene name P value

FDX1 Ferredoxin 1 0.0213

LIAS Lipoyl syndrome 1.85E−11

LIPT1 Lipoyltransferase 1 1.39E−14

DLD Dihydrolipoamide dehydrogenase 0.00245

DLAT Dihydrolipoamide s-acetyltransferase 1.16E−10

PDHA1 Pyruvate dehydrogenase E1 subunit alpha 1 7.54E−11

PDHB Pyruvate dehydrogenase E1 subunit beta 4.93E−09

MTF1 Metal regulatory transcription factor 1 2.95E−09

GLS Glutaminase 3.87E−12

CDKN2A Cyclin dependent kinase inhibitor 2A 1.87E−25

cuproptosis-related regulators on 23 pairs of chromosomes were determined using the TCGA-LIHC cohort. (D,E) Ten cuproptosis-
related regulators with imbalanced expression in normal and HCC tissues. N, normal tissue; T, tumor tissue. (F) Correlation network of 
the ten cuproptosis-related regulators, with the red line indicating a positive correlation and the blue line indicating a negative correlation. 
(G) Differential expression of the ten cuproptosis-related regulators between liver cancer and paired adjacent tissues in the TCGA-LIHC 
cohort. (H) IHC of the ten cuproptosis-related regulators in the normal liver and HCC tissues from the HPA database (https://www.
proteinatlas.org/ENSG00000137714-FDX1/pathology/liver+cancer; https://www.proteinatlas.org/ENSG00000137714-FDX1/tissue/
liver; https://www.proteinatlas.org/ENSG00000121897-LIAS/pathology/liver+cancer; https://www.proteinatlas.org/ENSG00000121897-
LIAS/tissue/liver; https://www.proteinatlas.org/ENSG00000144182-LIPT1/pathology/liver+cancer; https://www.proteinatlas.org/
ENSG00000144182-LIPT1/tissue/liver; https://www.proteinatlas.org/ENSG00000091140-DLD/pathology/liver+cancer; https://
www.proteinatlas.org/ENSG00000091140-DLD/tissue/liver; https://www.proteinatlas.org/ENSG00000150768-DLAT/pathology/
liver+cancer; https://www.proteinatlas.org/ENSG00000150768-DLAT/tissue/liver; https://www.proteinatlas.org/ENSG00000131828-
PDHA1/pathology/liver+cancer; https://www.proteinatlas.org/ENSG00000131828-PDHA1/tissue/liver; https://www.proteinatlas.org/
ENSG00000168291-PDHB/pathology/liver+cancer; https://www.proteinatlas.org/ENSG00000168291-PDHB/tissue/liver; https://www.
proteinatlas.org/ENSG00000188786-MTF1/pathology/liver+cancer; https://www.proteinatlas.org/ENSG00000188786-MTF1/tissue/
liver; https://www.proteinatlas.org/ENSG00000115419-GLS/pathology/liver+cancer; https://www.proteinatlas.org/ENSG00000115419-
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ENSG00000147889-CDKN2A/tissue/liver), scale bar, 200 µm. *, P<0.05; **, P<0.01; ***, P<0.001. TMB, tumor mutation burden; HCC, 
hepatocellular carcinoma; TCGA-LIHC, The Cancer Genome Atlas Liver Hepatocellular Carcinoma; CAN, copy number variation; IHC, 
immunohistochemistry; HPA, Human Protein Atlas.
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Figure 3 Molecular subtypes based on cuproptosis-related regulatory genes and their biological characteristics. (A) The   among clusters for 
each category number (k). (B) Relative change in area under CDF curve for k=2–9. (C) The tracking plot for k=2 to 9. (D) Consensus score 
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matrix of HCC patients when k=2. (E) Kaplan-Meier analysis of PFS of the two HCC clusters. (F) Kaplan-Meier analysis of OS of the two 
HCC clusters. (G) Heatmap with the correlation between the two HCC clusters and their clinicopathological characteristics. (H) Waterfall 
plot of tumor somatic mutations established from patients with cluster 1 and cluster 2. (I) Pathways for significant enrichment of each 

subtype derived by GSEA software based on “c2.cp.kegg. v7.1” symbols. *, P<0.05. CDF, cumulative distribution function; TMB, tumor 
mutation burden; KEGG, Kyoto Encyclopedia of Genes and Genomes; HCC, hepatocellular carcinoma; PFS, progression-free survival; 
OS, overall survival; GSEA, gene set enrichment analysis.

had worse OS than the cluster 1 subtype (Figure 3F). These 
results suggest that patients with cluster 1 HCC have a 
better prognosis. Next, we analyzed the association between 
the two molecular subtypes and the clinicopathological 
characteristics of HCC patients. As shown in Figure 3G, 
gene expression profiles and clinicopathological parameters 
including age (≤65 or >65 years), sex, tumor grade (G1–G4),  
tumor stage (I–IV), and tumor node metastasis (TNM) 
stage, were illustrated in a heatmap, in which tumor stage 
differed between the two molecular subtypes (Table 2). To 
further explore the differences between these two molecular 
subtypes, we performed mutation signature analysis of 
the somatic mutation profiles of HCC patients using 
TCGA-LIHC. Mutation spectrum characteristics showed 
that missense mutations were the most common type of 
mutation in both molecular subtypes, in agreement with the 
results of the mutation analysis in Figure 2. The horizontal 
histogram on the right shows the top 20 mutated genes 
in each subtype, with tumor protein P53 (TP53) (39% vs. 
24%), LDL receptor related protein 1B (LRP1B) (13% 
vs. 6%), and FAT atypical cadherin 3 (FAT3) (12% vs. 5%) 
mutations being more common in cluster 1 (cluster 1 vs. 
cluster 2). In contrast, catenin beta 1 (CTNNB1) (15% vs. 
28%), Xin actin binding repeat containing 2 (XIRP2) (2% 
vs. 8%), and AT-rich interaction domain 1A (ARID1A) 
(4% vs. 8%) mutations were more common in the cluster 
2 subtype (Figure 3H). Titin (TTN), mucin 16 (MUC16), 
and albumin (ALB) mutations were the most common 
gene mutations in both subtypes. To further elucidate 
the potential signaling pathways or functions of the 
cuproptosis-related regulators in HCC, we applied GSEA-
Kyoto Encyclopedia of Genes and Genomes (KEGG) to 
clusters 1 and 2, which showed that the metabolic pathways 
were enriched. Cluster 1 was enriched for linoleic acid and 
retinol metabolism, while cluster 2 was enriched for amino 
and nucleotide sugars, purine and sugar, and mannose 
metabolism, among others (Figure 3I).

Immunologic characteristics of the cuproptosis-related 
subtypes and prediction of immunotherapy responsiveness 
and targeted drug sensitivity

Previous studies have shown that the TME is crucial for 
immune function and has multiple clinical implications 
for immunotherapy (24,25). We screened and analyzed 
immune-related pathways using ssGSEA to understand 
the differences between the TME immune cell infiltration 
signatures in the two cuproptosis-related subtypes. The 
results showed increased infiltration of activated CD4+ T 
cells, activated dendritic cells (DCs), cd56bright natural 
killer (NK) cells, cd56dim NK cells, immature DCs, 
macrophages, regulatory T cells, T follicular helper cells, 
and type 2 T helper cells in the cluster 2 subtype, whereas 
eosinophils were more abundant in the cluster 1 subtype 
(Figure 4A). Heatmaps were used to demonstrate the 
correlation between the cuproptosis-related regulators 
in molecular subtypes and the immune cell infiltrates 
(Figure S1). Immune checkpoint blockade has become an 
effective treatment for many tumors; therefore, as these 
two molecular subtypes differed significantly in immune 
cell infiltration, we analyzed the expression differences of 
some known immune checkpoints between them. As shown 
in Figure 4B, most immunomodulatory targets [such as 
hepatitis A virus cellular receptor 2 (HAVCR2), CD200 
molecule (CD200), CD86 molecule (CD86), CD276 
molecule (CD276), TNF superfamily member 4 (TNFSF4), 
galectin 9 (LGALS9), neuropilin 1 (NRP1), and leukocyte 
associated immunoglobulin like receptor 1 (LAIR1)] were 
more highly expressed in cluster 2, suggesting that HCC 
patients in cluster 2 may respond better to immunotherapy 
than those in cluster 1. Tumor Immune Dysfunction 
and Exclusion (TIDE) is a computational framework for 
evaluating tumor immune escape potential based on the 
gene expression profiles of tumor samples that can provide 
predictive results for immunotherapy (26). We calculated 

http://c2.cp
https://cdn.amegroups.cn/static/public/TCR-23-1876-Supplementary.pdf
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Table 2 The demographic and clinicopathological characteristics of two clusters in TCGA-LIHC cohort

Characteristics Cluster 1 (n=284) Cluster 2 (n=86) P value Method

Albumin (g/dL) 4.51 (5.49) 96.42 (694.40) 0.3263 Wilcoxon test

Child-Pugh classification grade 0.5271 Fisher’s exact test

A 176 (61.97) 40 (46.51)

B 19 (6.69) 2 (2.33)

C 1 (0.35) 0 (0)

NA 88 (30.99) 44 (51.16)

Creatinine (mg/dL) 2.60 (10.53) 3.45 (16.13) 0.704 Wilcoxon test

Fetoprotein (ng/mL) 16,832 (140,832) 3,063 (12,057.65) 0.154 Wilcoxon test

Platelet (/mm3) 22,525 (70,339.51) 32,577 (104,691.4) 0.4828 Wilcoxon test

Prothrombin time (s) 4.1 (5.06) 3.8 (4.37) 0.6465 Wilcoxon test

Body mass index (kg/m2) 26.54 (9.08) 24.79 (5.79) 0.0448 Wilcoxon test

Height (cm) 167.5 (11.08) 167 (9.37) 0.7148 Wilcoxon test

Weight (kg) 73.84 (19.74) 69.67 (18.33) 0.0811 Wilcoxon test

Relative family cancer history 0.8899 χ2 test

Yes 87 (30.63) 25 (29.07)

No 159 (55.99) 48 (55.81)

NA 38 (13.38) 13 (15.12)

Race demographic 0.7216 Fisher’s exact test

American Indian or Alaska Native 2 (0.70) 0 (0)

Asian 123 (43.31) 34 (39.53)

Black or African American 13 (4.58) 4 (4.65)

White 137 (48.24) 47 (54.65)

NA 9 (3.17) 1 (1.16)

Sex 0.6226 χ2 test

Male 193 (67.96) 56 (65.12)

Female 91 (32.04) 30 (34.88)

Age (years) 0.398 χ2 test

≤65 173 (60.92) 48 (55.81)

>65 111 (39.08) 38 (44.19)

Histological grade 0.728 Fisher’s exact test

G1 45 (15.85) 10 (11.63)

G2 137 (48.24) 40 (46.51)

G3 91 (32.04) 30 (34.88)

G4 8 (2.82) 4 (4.65)

NA 3 (1.06) 2 (2.33)

Table 2 (continued)
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the TIDE scores of the two molecular subtypes using the 
above algorithm, and the results showed that the TIDE 
scores of the cluster 1 subtype were significantly higher than 
those of cluster 2, indicating that cluster 2 was more likely 
to respond to immunotherapy, which was consistent with 
the immune checkpoint analysis (Figure 4C). In addition, we 
calculated the infiltrated cytotoxic T lymphocyte rejection 
and dysfunction scores in HCC tumor tissues. The T-cell 
rejection scores of the cluster 1 subtype were significantly 
lower than those of cluster 2, and the T-cell dysfunction 
scores of cluster 1 were significantly higher than those of 
cluster 2. These results were consistent with the TIDE 
score results, further suggesting that patients with the 

cluster 2 subtype might have better immunotherapy 
responses compared to those with the cluster 1 subtype 
(Figure 4D,4E). Finally, based on the Genomics of Drug 
Sensitivity in Cancer (GDSC) database and “pRRophetic” 
algorithm, we predicted the difference in chemosensitivity 
to chemotherapeutic drugs between the two molecular 
subtypes of HCC and found that there was a significant 
difference in the sensitivity to multiple chemotherapeutic 
drugs, namely axitinib (P=0.0011), luminespib (P<0.001), 
all-trans-retinoicacid (ATRA) (P=0.0016), ponatinib 
(P=0.0026), AKT.inhibitor.VIII (P<0.001), Acadesine 
(AICAR; P=0.0025), A.770041 (P<0.001), veliparib 
(P<0.001), rucaparib (P=0.0023), motesanib (P<0.001), 

Table 2 (continued)

Characteristics Cluster 1 (n=284) Cluster 2 (n=86) P value Method

Clinical stage 0.006 Fisher’s exact test

I 141 (49.65) 30 (34.88)

II 68 (23.94) 17 (19.77)

III 55 (19.37) 30 (34.88)

IV 5 (1.76) 0 (0)

NA 15 (5.28) 9 (10.47)

Pathologic T 0.078 Fisher’s exact test

T1 147 (51.76) 34 (39.53)

T2 72 (25.35) 21 (24.42)

T3 54 (19.01) 26 (30.23)

T4 8 (2.82) 5 (5.81)

TX/NA 3 (1.06) 0 (0)

Pathologic N 0.246 Fisher’s exact test

N0 197 (69.37) 55 (63.95)

N1 2 (0.70) 2 (2.33)

NX/NA 85 (29.93) 29 (33.72)

Pathologic M 0.542 Fisher’s exact test

M0 206 (72.54) 60 (69.77)

M1 4 (1.41) 0 (0)

MX 74 (26.06) 26 (30.23)

Survival status 0.0023 χ2 test

Alive 199 (70.07) 45 (52.33)

Dead 85 (29.93) 41 (47.67)

Data are presented as mean (SD) or n (%). TCGA-LIHC, The Cancer Genome Atlas Liver Hepatocellular Carcinoma; NA, not applicable.
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Figure 4 The immune landscape, immunotherapy response, and targeted drug sensitivity of different molecular subtypes. (A) Comparisons 
of the abundance of TME immune cells between the two HCC clusters using ssGSEA. (B) The expression of immune checkpoints in the 
two molecular subtypes. (C) TIDE score, (D) exclusion score, and (E) dysfunction score between the two molecular subtypes. The IC50 
values between cluster 1 and cluster 2 for (F) axitinib, (G) luminespib, (H) ATRA, (I) ponatinib, (J) AKT inhibitor VIII, (K) acadesine, (L) 
A.770041, (M) veliparib, (N) rucaparib, (O) motesanib, (P) pan-Akt inhibitor, and (Q) saracatinib. *, P<0.05; **, P<0.01; ***, P<0.001. TME, 
tumor microenvironment; HCC, hepatocellular carcinoma; ssGSEA, single-sample gene set enrichment analysis; TIDE, Tumor Immune 
Dysfunction and Exclusion; ARTA, all-trans-retinoicacid. 

pan-Akt inhibitor (A.443654; P=0.0011), and saracatinib 
(P<0.001) (Figure 4F-4Q). These results suggest that the 
signature derived from a cuproptosis-related regulators has 
the potential to predict the response to immunotherapy and 
sensitivity to multiple targeted drugs in patients with HCC.

Construction and verification of the cuproptosis-related 
gene prognosis signature

First, using the mRNA expression and clinical data of 
HCC patients in the TCGA-LIHC dataset, a univariate 
Cox regression analysis was performed on the previously 
mentioned ten cuproptosis-related regulators, and five 
genes were identified as independent factors of OS in HCC 
patients (Figure 5A). A cuproptosis-related gene prognosis 
signature was created based on the best value of λ from the 
LASSO Cox regulation analysis (Figure 5B). The signature 
comprised LIPT1, DLAT, and CDKN2A, and the risk score 
was calculated as follows: (0.7808 × LIPT1 EXP) + (0.5432 
× DLAT EXP) + (0.2419 × CDKN2A EXP) (Table 3).  
After the risk scores of each patient in the TCGA-LIHC 
cohort were calculated, the median value was selected as 
the cutoff value and the patients in the training and testing 
cohorts were divided into two groups, the low-risk group 
and the high-risk group (Figure 5C,5D). The distribution 
of survival status in both cohorts revealed a higher 
number of deaths and shorter lives in the high-risk group  
(Figure 5E,5F). The heatmap indicated a significantly 
increased expression of the three risk genes among 
patients in the high-risk group (Figure 5G,5H). Principal 

components analysis (PCA) and t-distributed stochastic 
neighbor embedding (t-SNE) analyses were also used to 
test the accuracy of the prognostic signature, which showed 
two cohorts of patients in the low-risk and high-risk 
groups with two orientations (Figure S2A,S2B). Kaplan-
Meier curves and time-dependent ROC curves were used 
to assess the overall predictive potential of the prognostic 
signature for OS of patients in both the training and testing 
cohorts. The Kaplan-Meier curve showed that the OS of 
patients with HCC in the high-risk group was significantly 
lower than that in the low-risk group. Poor prognosis 
of high-risk patients was also found in the test cohort  
(Figure 5I,5J). The ROC curves also indicated that the 
cuproptosis-related gene-independent prognostic signature 
had a better predictive value for the prognosis of patients 
with HCC in both the training and testing cohorts  
(Figure 5K,5L). The clinical characteristics of the TCGA 
training cohort (n=262) and test cohort (n=108) are shown 
in Table S2. To validate the accuracy of this prognostic 
signature, patients in the TCGA-LIHC entire cohort and 
International Cancer Genome Consortium Liver Cancer 
(ICGC-LIRI) cohort were divided into high- and low-
risk groups using the above method. The high-risk group 
tended to have more deaths and a higher expression of risk 
genes (Figure 6A-6F). In both validation cohorts, the reliable 
clustering ability of the risk score was also validated by PCA 
and t-SNE analyses (Figure S2C,S2D). Kaplan-Meier analysis 
showed that patients in the low-risk group had better OS in 
both the validation cohorts (Figure 6G,6H). Furthermore, the 
ROC curves indicated that the signature was reliable and had 
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Figure 5 Construction and evaluation of the cuproptosis-related gene prognosis signature. (A) The forest plot shows the five prognostic 
cuproptosis-related regulatory genes identified by univariate Cox regression analysis. (B) LASSO coefficient profiles for some significant 
cuproptosis-related regulatory genes in the univariate Cox regression analysis. The coefficient curve decreases with the larger λ value. (C,D) 
Risk score distribution in TCGA training cohort and the TCGA test cohort. (E,F) Survival status in the TCGA training cohort and the 
TCGA test cohort. (G,H) The heatmap shows the expression of prognostic genes in the TCGA training cohort and the TCGA test cohort. 
High: high-risk group; Low: low-risk group. (I,J) The Kaplan-Meier analysis of OS between the high- and low-risk groups of the TCGA 
training cohort and the TCGA test cohort. (K,L) The analysis of the AUC in the ROC curve for risk signature at 1-, 3-, and 5-year survival 
time in the TCGA training cohort and the TCGA test cohort. AUC, area under curve; LASSO, least absolute shrinkage and selection 
operator; TCGA, The Cancer Genome Atlas; OS, overall survival; ROC, receiver operating characteristic.
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Table 3 Detailed information of specific cuproptosis related regulatory genes involved in final prognostic model by multivariate analysis

Gene
Multivariate Cox regression analysis

Coefficient
HR 95% CI P value

LIPT1 2.1392 1.1929–3.8362 0.0107 0.7808

DLAT 1.6064 1.1672–2.2109 0.0036 0.5432

CDKN2A 1.2760 1.0720–1.5189 0.0061 0.2419

HR, hazard ratio; CI, confidence interval.

an excellent predictive ability (Figure 6I,6J).

Independent predictive value of the cuproptosis-related 
gene risk signature

We evaluated whether the risk score of the cuproptosis-

related gene signature could serve as an independent prognostic 
factor for HCC patients using univariate and multivariate 
Cox regression analyses. Univariate Cox regression analysis 
indicated that the risk score was an independent predictor 
of poor survival in patients with HCC in both the TCGA 
(HR =1.843, 95% CI: 1.550–2.191) and ICGC cohorts (HR 
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=1.769, 95% CI: 1.272–2.460) (Figure 7A,7B, respectively). 
Multivariate Cox regression analysis showed that the risk score 
was an independent predictor of OS in HCC patients after 
inclusion and correction for other confounders (TCGA cohort: 
HR =1.676, 95% CI: 1.396–2.013, P<0.001; ICGC cohort: 
HR =1.594, 95% CI: 1.149–2.212, P=0.005) (Figure 7C,7D,  
respectively). In addition, we generated a heatmap of clinical 
features for the TCGA cohort based on the signature gene 
expression profiles and found that the stage and survival 

status of HCC patients were differentially distributed 
between low-risk and high-risk subtypes (Figure S3).  
To improve the clinical usefulness of the signature, we 
built a statistical nomogram signature in the TCGA cohort 
according to the risk score and clinical stage of HCC patients, 
and the decision curve analysis (DCA), calibration and 
ROC curve indicated that the nomogram signature could 
effectively predict the probability of survival of HCC patients  
(Figure 7E-7H).

Figure 6 Validation of the risk signature in TCGA-LIHC entire cohort and the ICGC-LIRI cohort. (A,B) Risk score distribution in the 
TCGA entire cohort and the ICGC cohort. (C,D) Survival status in the TCGA entire cohort and the ICGC cohort. (E,F) The heatmap 
shows the expression of prognostic genes in the TCGA entire cohort and the ICGC cohort. High: high-risk group; Low: low-risk group. 
(G,H) The Kaplan-Meier analysis of OS between the high- and low-risk groups of the TCGA entire cohort and the ICGC cohort. (I,J) 
The analysis of the AUC in the ROC curve for risk signature at 1-, 3-, and 5-year survival time in the TCGA entire cohort and the ICGC 
cohort. AUC, area under curve; TCGA-LIHC, The Cancer Genome Atlas Liver Hepatocellular Carcinoma; ICHC-LIRI, International 
Cancer Genome Consortium Liver Cancer; OS, overall survival; ROC, receiver operating characteristic.
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Figure 7 Nomograms based on the cuproptosis-related regulatory genes for HCC patients. (A,B) The univariate analyses for the association 
of the risk-score signature and clinicopathological characteristics with OS in TCGA cohort and the ICGC cohort. (C,D) The multivariate 
analyses for the association of the risk-score signature and clinicopathological characteristics with OS in the TCGA cohort and the ICGC 
cohort. (E) The nomogram constructed to predict the 1-, 2-, and 3-year OS for HCC patients. (F-H) The decision, calibration and ROC 
curves of the nomogram based on cuproptosis-related regulatory genes and other clinicopathological parameters. OS, overall survival; AUC, 
area under curve; HCC, hepatocellular carcinoma; TCGA, The Cancer Genome Atlas; ICGC, International Cancer Genome Consortium; 
ROC, receiver operating characteristic.
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Experimental validation of the expression levels of cuproptosis 
related genes in HCC tissues from prognostic signature

To further validate the expression levels of cuproptosis-
related regulatory genes in HCC tissues from the prognostic 
signature. We first examined the expression of these genes 
in 30 HCC tissue samples and the corresponding adjacent 

tissues by qRT-PCR, western blotting, and IHC. As 
expected, the results of the qRT-PCR experiments were 
consistent with the differential analysis of the databases, 
and it was found that LIPT1, DLAT, and CDKN2A were 
all expressed at higher transcript levels in the HCC tissues 
than in the adjacent tissues (Figure 8A). Their protein 
expressions were detected by Western blot and IHC, and 

Figure 8 LIPT1, DLAT and CDKN2A overexpression in HCC tissues. Relative expression levels of (A) qRT-PCR analysis of LIPT1, 
DLAT and CDKN2A mRNA expression in 30 HCC tumors and peritumoral liver tissues. (B) Western blot detection of LIPT1, DLAT 
and CDKN2A protein levels in HCC tissues and paired normal tissues (T, tumor; NT, nontumorous tissues). Tubulin was used as a loading 
control. (C) Representative IHC staining of LIPT1, DLAT and CDKN2A in HCC tissues (magnification: ×100; inset magnification: ×400). 
***, P<0.001. HCC, hepatocellular carcinoma; qRT-PCR, quantitative real-time polymerase chain reaction; IHC, immunohistochemistry.
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the data indicated that the protein expressions of LIPT1, 
DLAT and CDKN2A were all significantly increased in 
HCC tissues (Figure 8B,8C).

Discussion

The occurrence and development of HCC is a multiple 
stages and factors mediated and complex process 
characterized by high incidence, postoperative recurrence, 
and poor prognosis (27). Abnormal proliferative signal 
transduction, growth cycle disorders, genomic instability, 
epigenetic changes, and other complex interactions lead 
to the rapid proliferation and metastasis of HCC cells. 
Resistance to cell death is also a significant feature of 
HCC cells, which is an important reason for the failure of 
treatment regimens or the development of drug resistance 
(28,29). In the realm of individualized precision medicine, 
the selective targeted induction of cancer cell death may 
be an effective therapeutic strategy. Among the targetable 
cell death pathways are those of apoptosis, necroptosis, 
pyroptosis, and ferroptosis (30-33). In recent years, the 
importance of copper metabolism in tumor evolution has 
gradually become more prominent. Disturbances in copper 
metabolism can promote tumorigenesis by activating tumor 
proliferation-related signaling pathways, regulating tumor 
microangiogenesis, and remodeling the matrix and the 
inflammatory microenvironment (34). The latest research 
has revealed that copper ions can induce cell death even 
when other cell death modalities were inhibited, indicating 
that this novel copper-dependent mechanism of cell death 
is different from the known pathways mentioned above; 
thus, this process has been defined as cuproptosis (14). The 
targeted induction of cuproptosis in a variety of tumors has 
become a potentially effective method for tumor treatment 
with better prospects for clinical application. How the 
regulatory genes associated with cell cuproptosis interact 
in HCC and whether they are related to the survival time 
of patients remain unknown. In this study, we performed a 
comprehensive analysis of the expression, prognostic value, 
and immuno-microenvironment of ten genes that regulate 
cuproptosis in HCC.

First, the landscape of genetic variation in the HCC 
genome based on the TCGA database for these cuproptosis-
related regulators was summarized. Further analysis of the 
TCGA-LIHC transcriptome and HPA database revealed 
that the proteins and mRNAs of these cuproptosis-related 
regulatory genes were differentially expressed between the 
normal and liver cancer tissues. Among them, CDKN2A 

showed more obvious changes in the epigenetic and 
expression levels of the genes, which is also consistent 
with the conclusions obtained in many previous studies 
(35,36). Next, we performed an unsupervised clustering 
analysis of differentially expressed regulatory genes to 
generate two molecular subtypes, revealing the differences 
between different subtypes in prognosis, clinicopathological 
characteristics, genomic mutations, expression profile of 
cuproptosis-related regulatory genes, TME, and enriched 
pathways in patients. Prognostic analysis revealed that 
cluster 1 survived longer than cluster 2, and the two 
molecular subtypes differed significantly in tumor stage. 
It is well known that the TP53 gene encodes the tumor 
protein p53, a tumor suppressor that inhibits cell division 
and proliferation; TP53 mutations may cause increased 
genomic instability (37). Interestingly, we found that HCC 
patients in cluster 2 exhibited more TP53 mutations, 
suggesting that a poor prognosis may be associated with a 
higher rate of TP53 mutations in this group; however, this 
requires more data and further experimental confirmation. 
Analysis of the possible signaling pathways involved in the 
two molecular subtypes using GSEA software revealed that 
both subtypes were enriched in many metabolism-related 
pathways, most of which were related to copper metabolism 
(38,39). Accumulating evidence suggests that immune 
cells in the TME play a vital role in tumorigenesis (40).  
These innate immune cells  include macrophages, 
neutrophils, DCs, congenital lymphocytes, myelogenous 
inhibitory cells, and NK cells, which may have antitumor 
or tumor-promoting functions. Therefore, basic and 
clinical research on tumor immunotherapy has become a 
popular research focus where significant progress has been 
made. In particular, immune checkpoint blockade has been 
successfully used in the treatment of various tumors (41). 
Recent research has revealed a close relationship between 
copper metabolism and tumor immunity. We therefore 
performed ssGSEA to assess the abundance of immune cells 
in two subsets of cuproptosis-related regulatory genes, while 
predicting their potential to respond to immunotherapy 
based on the abundance of immune checkpoint expression 
in tumor tissues from patients with different subtypes and 
the TIDE database. As expected, there were significant 
differences in the degree of infiltration of multiple immune 
cells between the two subtypes, suggesting that cuproptosis 
probably plays an important role in the heterogeneity of 
the immune response between tumors. In contrast, much 
higher expression levels of immune checkpoints were 
observed in patients with HCC in cluster 2, implying 
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that even though these patients have a poor prognosis, 
they may benefit more from some immunotherapies. 
We also studied the association of the two molecular 
subtypes with immunotherapy response based on the 
TIDE algorithm, which can effectively predict treatment 
response to immune checkpoint blockade (42). These 
results were consistent with the above immunotherapy-
related analyses, and HCC patients in cluster 2 were 
more sensitive to immunotherapy. These results are 
similar to the conclusion based on transcriptomics and 
metabolomics that the metabolic and transcriptional 
profiles are different in patients who respond differently 
to immunotherapy with checkpoint inhibitors (43).  
Notably, the recent clinical trials have found that the 
combination of atezolizumab and bevacizumab can 
simultaneously target the two key pathogenic hallmarks of 
HCC immune escape and angiogenesis to achieve a higher 
objective tumor response rate and a longer OS (44-46). 
This combined treatment strategy has gradually become 
the first-line treatment therapy for advanced HCC (47). 
Therefore, we speculate that HCC patients in cluster 2 may 
also obtain better prognosis by combining tyrosine kinase 
inhibitors targeting angiogenesis such as bevacizumab on 
the basis of immunotherapy. In addition, the robustness 
of utilizing the GDSC database and the R package 
“pRRophetic” in predicting the response to chemotherapy 
has been demonstrated in different clinical trials (48). We 
calculated the half maximal inhibitory concentration (IC50) 
values for multiple targeted agents to assess the sensitivity of 
patients and found that both molecular subtypes had their 
respective sensitive targeted agents, which may indicate 
that cuproptosis-related regulatory genes play a potential 
role in it. Clinical trials have reported that Axitinib, ATRA 
and veliparib are effective or well tolerated in the treatment 
of patients with HCC (49-51). In addition, luminespib, 
ponatinib, Akt inhibitor VIII, AICAR and saracatinib 
have also been proved to inhibit the malignant phenotype 
of HCC cells in vitro or in vivo experiments (52-56).  
Collectively, these findings may provide more suitable 
personalized treatment options for HCC patients. However, 
the role of cuproptosis-related regulatory genes in these 
treatment allocations needs to be further clarified. We look 
forward to the addition of clinical trials and basic researches 
in follow-up studies to confirm our findings.

To further analyze the prognostic potential of genes 
involved in the regulation of survival-related cuproptosis, 
after screening by univariate Cox regression analysis and 
narrowing the scope by LASSO regression analysis, the risk 

scores of the three genes (LIPT1, DLAT, and CDKN2A) 
derived from their multivariate Cox regression coefficients 
formed a multigene signature, which was analyzed through 
the training and testing cohorts. Patients with HCC were 
divided into low- and high-risk groups, and the prognosis 
of patients in the low-risk group was better. Previous 
studies have shown that the pyroptosis related gene 
signature, autophagy related gene signature, ferroptosis 
related gene signature, N6-methyladenosine (m6A) related 
gene signature, and peroxisome proliferators-activated 
receptors (PPAR) related multigene signature predict 3-year 
OS of HCC with AUCs of 0.645, 0.650, 0.635, 0.667, 
and 0.685, respectively (57-61), which are similar to our 
study. In addition to the good predictive performance for 
HCC prognosis, the cuproptosis-related genes molecular 
classification and risk signature constructed in our study 
have more advantages. For example, it can distinguish 
immune checkpoint genes into high- and low expression 
group, and found that many of the genes mutated at high 
frequency in HCC differ in their mutation spectrum among 
different subtypes of patients, while predicting multiple 
targeted chemotherapy drug sensitivity differences. It was 
validated using the TCGA-LIHC entire cohort and ICGC-
LIRI cohort. Univariate and multivariate Cox regression 
analyses were used to screen independent prognostic 
factors, and a nomogram was constructed for independent 
prognostic factors. The ROC curve showed that this 
signature exhibited good performance in predicting the 
prognostic outcomes of patients with HCC. In conclusion, 
our signature may be a useful clinical tool to assist doctors 
in effectively evaluating patient prognosis.

Finally, we detected the expression of ten cuproptosis-
related regulatory genes in HCC tissues by qRT-PCR, 
western blotting, and IHC, and the results were consistent 
with the results of previous bioinformatic analyses of 
databases, indicating that the prognostic signature may be 
a promising tool for predicting the survival outcomes of 
HCC patients.

Our study had some limitations; the first was that our 
prognostic signature of cuproptosis-related genes was 
constructed and validated using retrospective data from 
public databases. In the future, we will use our prospective 
multicenter clinical data for further validation. Second, 
there are few studies on the regulation of cuproptosis-
related regulatory genes in HCC; therefore, more 
experimental findings are needed in the future to refine the 
molecular classification and risk signature. Additionally, 
in vitro and in vivo experiments are needed to elucidate 
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the specific mechanism of cuproptosis-related regulatory 
genes in the development of liver carcinogenesis and 
immunotherapy.

Conclusions

In conclusion, our results indicated that cuproptosis 
is strongly associated with HCC. We identified two 
cuproptosis-associated subtypes of HCC and further 
evaluated these subtypes for differences in immune networks 
and signaling pathways, providing additional insights into 
the relationship between cuproptosis and immunity in 
HCC. Furthermore, a prognostic signature of cuproptosis-
related regulatory genes was constructed and proved to 
have significant predictive value. The promising prognostic 
accuracy of this signature may facilitate individualized 
prognosis management and therapeutic intervention.
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